Algebra I, Fall 2016

Solutions to Problem Set 7

1. It is enough to show $f(x+1)=(x+1)^{4}+1$ and $g(x+1)=(x+1)^{6}+(x+1)^{3}+1$ are irreducible. But $f(x+1)=x^{4}+4 x^{3}+6 x^{2}+4 x+2$, and $g(x+1)=x^{6}+6 x^{5}+$ $15 x^{4}+21 x^{3}+18 x^{2}+9 x+3$, so $p=2$ works for f and $p=3$ works for g when we apply the Eisenstein irreducibility criterion.
2. (i) The module structure is given by $(f+g)(m)=f(m)+g(m)$, and $(r f)(m)=$ $r f(m)$ for every $r \in R$ and $f, g \in \operatorname{Hom}(\mathrm{M}, \mathrm{R})$.
(ii) We define a R-homomorphisms

$$
\phi: M^{\vee} \oplus N^{\vee} \rightarrow(M \oplus N)^{\vee}
$$

as follows. If $(f, g) \in M^{\vee} \oplus N^{\vee}$, then $\phi(f, g)(m, n)=f(m)+g(n)$. Clearly ϕ is a R-homomorphism.

- ϕ is injective: if $\phi(f, g)=0$, then $\phi(f, g)(m, 0)=0$ for all $m \in M$, so $f(m)=0$ for all $m \in M$, so $f=0$, and similarly $g=0$, so $(f, g)=0$.
- ϕ is surjective: if $h \in(M \oplus N)^{\vee}$ is given, then let $g \in M^{\vee}$ be defined by $f(m)=$ $h(m, 0)$, and let $g \in N^{\vee}$ be defined by $g(n)=h(0, n)$. Then $\phi(f, g)(m, n)=$ $f(m)+g(n)=h(m, 0)+h(0, n)=h(m, n)$.

3. (i) The operations are given by $\frac{m_{1}}{s_{1}}+\frac{m_{2}}{s_{2}}:=\frac{s_{2} m_{1}+s_{1} m_{2}}{s_{1} s_{2}}$, and $\frac{r}{s} \cdot \frac{m}{s^{\prime}}:=\frac{r m}{s s^{\prime}}$. (It is easy to see that these are well-defined, i.e. they don't depend on the element representing a class.)
(ii) Consider the sequences

$$
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0
$$

and

$$
0 \longrightarrow S^{-1} M^{\prime} \xrightarrow{\tilde{f}} S^{-1} M \xrightarrow{\tilde{g}} S^{-1} M^{\prime \prime} \longrightarrow 0
$$

Note that \tilde{f} is given by $\tilde{f}\left(\frac{m}{s}\right)=\frac{f(m)}{s}$, and \tilde{g} is similarly defined.

- \tilde{g} is surjective: if $\frac{x}{s} \in S^{-1} M^{\prime \prime}$ is given, then there is $y \in M$ such that $g(y)=x$, so $\tilde{g}\left(\frac{y}{s}\right)=\frac{x}{s}$.
- \tilde{f} is injective: if $\tilde{f}\left(\frac{x}{s}\right)=0$, then $\frac{f(x)}{s}=0$, so there is $s^{\prime} \in S$ such that $s^{\prime} f(x)=0$. So $f\left(s^{\prime} x\right)=0$. Since f is injective, this implies $s^{\prime} x=0$, so $\frac{x}{s}=0$.
- $\tilde{g} \circ \tilde{f}=0$: we have $\tilde{g} \circ \tilde{f}\left(\frac{x}{s}\right)=\tilde{g}\left(\frac{f(x)}{s}\right)=\frac{g(f(x))}{s}=0$.
- kernel $(\tilde{g}) \subset$ Image (\tilde{f}) : if $\tilde{g}\left(\frac{x}{s}\right)=0$, then $\frac{g(x)}{s}=0$, so there is $s^{\prime} \in S$ such that $s^{\prime} g(x)=0$, so $g\left(s^{\prime} x\right)=0$, so there is $y \in M^{\prime}$ such that $f(y)=s^{\prime} x$, so $\tilde{f}\left(\frac{y}{s^{\prime} s}\right)=\frac{s^{\prime} x}{s^{\prime} s}=\frac{x}{s}$.

4.

(i). Let $x \in M_{3}$ be such that $f_{3}(x)=0$. Then $f_{4} \circ g_{3}(x)=h_{3} \circ f_{3}(x)=0$. Since f_{4} is injective, this implies that $g_{3}(x)=0$. Since the top sequence is exact, there should be $y \in M_{2}$ such that $g_{2}(y)=x$. Therefore, $h_{2} \circ f_{2}(y)=f_{3} \circ g_{2}(y)=f_{3}(x)=0$. Let $t=f_{2}(y)$. Then $h_{2}(t)=0$, and since the lower sequence is exact, this implies that there is $s \in N_{1}$ such that $h_{1}(s)=t$. But f_{1} is surjective, so there is $m \in M_{1}$ such that $f_{1}(m)=s$. Now $f_{2} \circ g_{1}(m)=h_{1} \circ f_{1}(m)=h_{1}(s)=t$, Since f_{2} is injective and $f_{2}\left(g_{1}(m)\right)=f_{2}(y)=t$, we conclude that $g_{1}(m)=y$ and therefore $x=g_{2} \circ g_{1}(m)=0$ since the top sequence is exact at M_{2}.
(ii) Assume $x \in N_{3}$ if given. Let $t=h_{3}(x)$. Since the bottom sequence is exact at N_{4}, we have $h_{4}(t)=0$. Since f_{4} is surjective, there is $s \in M_{4}$ such that $f_{4}(s)=t$. We have $f_{5} \circ g_{4}(s)=h_{4} \circ f_{4}(s)=h_{4}(t)=0$. Since f_{5} is injective, this implies $g_{4}(s)=0$. Since the top sequence is exact at M_{4} this implies there is $y \in M_{3}$ such that $g_{3}(y)=s$. Let $x^{\prime}=f_{3}(y)$. Then $h_{3}\left(x^{\prime}\right)=h_{3} \circ f_{3}(y)=f_{4} \circ g_{3}(y)=f_{4}(s)=t$. So $h_{3}\left(x-x^{\prime}\right)=$ $t-t=0$. Therefore there is $a \in N_{2}$ such that $h_{2}(a)=x-x^{\prime}$. Since f_{2} is surjective, there is $b \in M_{2}$ such that $f_{2}(b)=a$. So $f_{3} \circ g_{2}(b)=h_{2} \circ f_{2}(b)=h_{2}(a)=x-x^{\prime}$. So $f_{3}\left(y+g_{2}(b)\right)=f_{3}(y)+f_{3}\left(g_{2}(b)\right)=x^{\prime}+\left(x-x^{\prime}\right)=x$. So x is in the image of f_{3}.

