Algebra I, Fall 2016

Solutions to Problem Set 7

1. It is enough to show $f(x+1) = (x+1)^4 + 1$ and $g(x+1) = (x+1)^6 + (x+1)^3 + 1$ are irreducible. But $f(x+1) = x^4 + 4x^3 + 6x^2 + 4x + 2$, and $g(x+1) = x^6 + 6x^5 + 15x^4 + 21x^3 + 18x^2 + 9x + 3$, so p = 2 works for f and p = 3 works for g when we apply the Eisenstein irreducibility criterion.

2. (i) The module structure is given by (f + g)(m) = f(m) + g(m), and (rf)(m) = rf(m) for every $r \in R$ and $f, g \in \text{Hom}(M, \mathbb{R})$.

(ii) We define a *R*-homomorphisms

$$\phi: M^{\vee} \oplus N^{\vee} \to (M \oplus N)^{\vee}$$

as follows. If $(f,g) \in M^{\vee} \oplus N^{\vee}$, then $\phi(f,g)(m,n) = f(m) + g(n)$. Clearly ϕ is a *R*-homomorphism.

- ϕ is injective: if $\phi(f,g) = 0$, then $\phi(f,g)(m,0) = 0$ for all $m \in M$, so f(m) = 0 for all $m \in M$, so f = 0, and similarly g = 0, so (f,g) = 0.
- ϕ is surjective: if $h \in (M \oplus N)^{\vee}$ is given, then let $g \in M^{\vee}$ be defined by f(m) = h(m, 0), and let $g \in N^{\vee}$ be defined by g(n) = h(0, n). Then $\phi(f, g)(m, n) = f(m) + g(n) = h(m, 0) + h(0, n) = h(m, n)$.

3. (i) The operations are given by $\frac{m_1}{s_1} + \frac{m_2}{s_2} := \frac{s_2m_1+s_1m_2}{s_1s_2}$, and $\frac{r}{s} \cdot \frac{m}{s'} := \frac{rm}{ss'}$. (It is easy to see that these are well-defined, i.e. they don't depend on the element representing a class.)

(ii) Consider the sequences

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

and

$$0 \longrightarrow S^{-1}M' \xrightarrow{f} S^{-1}M \xrightarrow{\tilde{g}} S^{-1}M'' \longrightarrow 0$$

Note that \tilde{f} is given by $\tilde{f}(\frac{m}{s}) = \frac{f(m)}{s}$, and \tilde{g} is similarly defined.

- \tilde{g} is surjective: if $\frac{x}{s} \in S^{-1}M''$ is given, then there is $y \in M$ such that g(y) = x, so $\tilde{g}(\frac{y}{s}) = \frac{x}{s}$.
- \tilde{f} is injective: if $\tilde{f}(\frac{x}{s}) = 0$, then $\frac{f(x)}{s} = 0$, so there is $s' \in S$ such that s'f(x) = 0. So f(s'x) = 0. Since f is injective, this implies s'x = 0, so $\frac{x}{s} = 0$.
- $\tilde{g} \circ \tilde{f} = 0$: we have $\tilde{g} \circ \tilde{f}(\frac{x}{s}) = \tilde{g}(\frac{f(x)}{s}) = \frac{g(f(x))}{s} = 0$.
- kernel $(\tilde{g}) \subset \text{Image } (\tilde{f})$: if $\tilde{g}(\frac{x}{s}) = 0$, then $\frac{g(x)}{s} = 0$, so there is $s' \in S$ such that s'g(x) = 0, so g(s'x) = 0, so there is $y \in M'$ such that f(y) = s'x, so $\tilde{f}(\frac{y}{s's}) = \frac{s'x}{s's} = \frac{x}{s}$.
- 4.

(i). Let $x \in M_3$ be such that $f_3(x) = 0$. Then $f_4 \circ g_3(x) = h_3 \circ f_3(x) = 0$. Since f_4 is injective, this implies that $g_3(x) = 0$. Since the top sequence is exact, there should be $y \in M_2$ such that $g_2(y) = x$. Therefore, $h_2 \circ f_2(y) = f_3 \circ g_2(y) = f_3(x) = 0$. Let $t = f_2(y)$. Then $h_2(t) = 0$, and since the lower sequence is exact, this implies that there is $s \in N_1$ such that $h_1(s) = t$. But f_1 is surjective, so there is $m \in M_1$ such that $f_1(m) = s$. Now $f_2 \circ g_1(m) = h_1 \circ f_1(m) = h_1(s) = t$, Since f_2 is injective and $f_2(g_1(m)) = f_2(y) = t$, we conclude that $g_1(m) = y$ and therefore $x = g_2 \circ g_1(m) = 0$ since the top sequence is exact at M_2 .

(ii) Assume $x \in N_3$ if given. Let $t = h_3(x)$. Since the bottom sequence is exact at N_4 , we have $h_4(t) = 0$. Since f_4 is surjective, there is $s \in M_4$ such that $f_4(s) = t$. We have $f_5 \circ g_4(s) = h_4 \circ f_4(s) = h_4(t) = 0$. Since f_5 is injective, this implies $g_4(s) = 0$. Since the top sequence is exact at M_4 this implies there is $y \in M_3$ such that $g_3(y) = s$. Let $x' = f_3(y)$. Then $h_3(x') = h_3 \circ f_3(y) = f_4 \circ g_3(y) = f_4(s) = t$. So $h_3(x - x') = t - t = 0$. Therefore there is $a \in N_2$ such that $h_2(a) = x - x'$. Since f_2 is surjective, there is $b \in M_2$ such that $f_2(b) = a$. So $f_3 \circ g_2(b) = h_2 \circ f_2(b) = h_2(a) = x - x'$. So $f_3(y + g_2(b)) = f_3(y) + f_3(g_2(b)) = x' + (x - x') = x$. So x is in the image of f_3 .