To show part (c) implies part (a) in Question 2 you can do the following: Let $\alpha : M' \to M$ be an injective *R*-homomorphism and $f : M' \to Q$ a *R*-homomorphism. Define a *R*-homomorphism $\beta : M' \to Q \oplus M$ by $\beta(x) = (-f(x), \alpha(x))$. The image of β is a submodule of $Q \oplus M$. Let $N = (Q \oplus M)/Im(\beta)$. There are two *R*-homomorphisms $\tilde{\alpha} : Q \to N$, sending q to $(q, 0) + Im(\beta)$ and $\tilde{f} : M \to N$ sending m to $(0, m) + Im(\beta)$.

Show that

- $\tilde{f} \circ \alpha = \tilde{\alpha} \circ f$
- $\tilde{\alpha}$ is injective
- by part (c) there is a r-homomorphism $\gamma: N \to Q$ such that $q \circ \tilde{\alpha} = id_Q$
- $\gamma \circ \tilde{f}: M \to Q$ is the extension of f to M. (i.e. $f = (\gamma \circ \tilde{f}) \circ \alpha$)