Algebra I, Fall 2016

Solutions to Problem Set 8

1. We have the sequences

$$
\begin{gathered}
M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0 . \\
0 \longrightarrow \operatorname{Hom}\left(\mathrm{M}^{\prime \prime}, \mathrm{P}\right) \xrightarrow{\phi} \operatorname{Hom}(\mathrm{M}, \mathrm{P}) \xrightarrow{\psi} \operatorname{Hom}\left(\mathrm{M}^{\prime}, \mathrm{P}\right)
\end{gathered}
$$

where ϕ is composition with g and ψ is composition with f.

- g is surjective: Let $P=M^{\prime \prime} / \operatorname{Im}(g)$ and $h: M^{\prime \prime} \rightarrow P$ the canonical map. Then $h \circ g=0$. Since ϕ is injective, and since $\phi(h)=h \circ g=0, h$ should be the zero map. So $M^{\prime \prime}=\operatorname{Im}(g)$.
- $\operatorname{Im}(f) \subset \operatorname{Ker}(g)$: We know $\psi \circ \phi=0$ and want to show $g \circ f=0$. Let $P=M^{\prime \prime}$ and $i \in \operatorname{Hom}\left(M^{\prime \prime}, P\right)$ the identity map. Then $0=\psi \circ \phi(i)=i \circ g \circ f=g \circ f$.
- $\operatorname{Ker}(g) \subset \operatorname{Im}(f):$ Let $P=M / \operatorname{Im}(f)$, and $h: M \rightarrow P$ the canonical homomorphism. Then $h \circ f=0$, so $\psi(h)=0$, so by the exactness of the hom sequence, there is $q \in \operatorname{Hom}\left(M^{\prime \prime}, P\right)$ such that $\phi(q)=h$. That means $q \circ g=h$. So if $g(x)=0$, then $h(x)=q(g(x))=0$, so by definition of h, x should be in the image of f.

2. Clearly (a) implies (b) since the sequence

$$
0 \rightarrow \operatorname{Hom}_{\mathrm{R}}\left(\mathrm{M}^{\prime \prime}, \mathrm{Q}\right) \rightarrow \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{Q}) \rightarrow \operatorname{Hom}_{\mathrm{R}}\left(\mathrm{M}^{\prime}, \mathrm{Q}\right)
$$

is always exact, and (a) says the map $\operatorname{Hom}_{R}(\mathrm{M}, \mathrm{Q}) \rightarrow \operatorname{Hom}_{\mathrm{R}}\left(\mathrm{M}^{\prime}, \mathrm{Q}\right)$ is surjective.
To show (b) implies (c), set $M^{\prime}=Q$. Then by (b), the map $\operatorname{Hom}_{R}(\mathrm{M}, \mathrm{Q}) \rightarrow$ $\operatorname{Hom}_{\mathrm{R}}(\mathrm{Q}, \mathrm{Q})$ is surjective. So the identity map $i: Q \rightarrow Q$ should be the image of a map $h: M \rightarrow Q$. (so the composition of h with the injective map $Q \rightarrow M$ is the identity map). So by definition the sequence splits.

To show (c) implies (a) let $\alpha: M^{\prime} \rightarrow M$ be an injective R-homomorphism and $f: M^{\prime} \rightarrow Q$ a R-homomorphism. Define a R-homomorphism $\beta: M^{\prime} \rightarrow Q \oplus M$ by $\beta(x)=(-f(x), \alpha(x))$. The image of β is a submodule of $Q \oplus M$. Let $N=(Q \oplus$ $M) / \operatorname{Im}(\beta)$. There are two R-homomorphisms $\tilde{\alpha}: Q \rightarrow N$, sending q to $(q, 0)+\operatorname{Im}(\beta)$ and $\tilde{f}: M \rightarrow N$ sending m to $(0, m)+\operatorname{Im}(\beta)$.

We have:

- $\tilde{f} \circ \alpha=\tilde{\alpha} \circ f: \tilde{f} \circ \alpha(x)=(0, \alpha(x))+\operatorname{Im}(\beta)$ and $\tilde{\alpha} \circ f(x)=(f(x), 0)+\operatorname{Im}(\beta)$. But $(f(x), 0)-(0, \alpha(x))=\beta(x) \in \operatorname{Im}(\beta)$
- $\tilde{\alpha}$ is injective: if $\tilde{\alpha}(q)=0$, then $(q, 0) \in \operatorname{Im}(\beta)$, so $(q, 0)=(-f(x), \alpha(x))$ for some $x \in M^{\prime}$. So $\alpha(x)=0$, but α is injective, so $x=0$ and $q=-f(0)=0$.
- by part (c) there is a r-homomorphism $\gamma: N \rightarrow Q$ such that $q \circ \tilde{\alpha}=i d_{Q}$
- $\gamma \circ \tilde{f}: M \rightarrow Q$ is the extension of f to M. (i.e. $f=(\gamma \circ \tilde{f}) \circ \alpha$)

3. Consider the set of pairs (H, ϕ) such that H is a subgroup of M and $\phi: H \rightarrow \mathbf{Q}$ extends g. By Zorn's lemma, there is a maximal element $\left(H_{0}, \phi_{0}\right)$ in this set. If $H_{0}=M$, we are done. Otherwise pick $m \in M \backslash H$. We get a contradiction by showing it is possible to extend g to $<m, H>$. Let $G=\{a \in \mathbf{Z} \mid a m \in H\}$. Clearly G is a subgroup of \mathbf{Z} and therefore generated by an integer a_{0}. If $a_{0}=0$, then $<m>\cap H=\emptyset$, and we define $\phi:<m, H>\rightarrow \mathbf{Q}$ by $\phi(b m+h)=\phi_{0}(h)$. This is clearly well-defined.

If $a_{0} \neq 0$, then we define $\phi: H \rightarrow \mathbf{Q}$ by

$$
\phi(b m+h)=\frac{b}{a_{0}} q+\phi_{0}(h) \quad b \in \mathbf{Z}, h \in H
$$

This is well defined: if $b m+h=b^{\prime} m+h^{\prime}$, then $\left(b-b^{\prime}\right) m=h^{\prime}-h \in H$, so $a_{0} \mid b-b^{\prime}$, so $b-b^{\prime}=c a_{0}$, and so $\phi_{0}\left(h^{\prime}-h\right)=\phi_{0}\left(\left(b-b^{\prime}\right) m\right)=\phi_{0}\left(c\left(a_{0} m\right)\right)=c q=\frac{b-b^{\prime}}{a_{0}} q$. Therefore, $\frac{b}{a_{0}} q+\phi_{0}(h)=\frac{b^{\prime}}{a_{0}} q+\phi_{0}\left(h^{\prime}\right)$.
4. We defined a map $R / I \times R / J$ by sending $(r+I, s+J)$ to $r s+(I+J)$. This is well defined (if $r-r^{\prime} \in I$, then $\left(r-r^{\prime}\right) s \in I$, so $\left(r-r^{\prime}\right) s \in I+J$, and similarly if
$s-s^{\prime} \in J$, then $\left.r\left(s-s^{\prime}\right) \in I+J\right)$ and clearly bilinear, so it induces a R-homomorphism $\phi: R / I \otimes_{R} R / J \rightarrow R /(I+J)$.

We can also defined a R-homomorphism $\psi: R /(I+J) \rightarrow R / I \otimes_{R} R / J$ by

$$
\psi(r+(I+J))=(r+I) \otimes(1+J) .
$$

Note that this is well defined: if $r+(I+J)=0$, then $r \in(I+J)$, so $r=i+j$, $i \in I, j \in J$, so $(r+I) \otimes(1+J)=(j+I) \otimes(1+J)=j((1+I) \otimes(1+J))=$ $(1+I) \otimes(j+J)=(i+I) \otimes 0=0$. It is easy to see ϕ and ψ are inverse to each other.

