Algebra I, Fall 2016

Solutions to Problem Set 9

1. Since IM is a R-submodule of M, M/IM is a R-module. We first show
that as R-modules M/IM and M ®p R/I are isomorphic. There is a bilinear
map M ®g R/I — M/IM which sends (m,r + I) to rm + IM. This induces a
R-homomorphism ¢ : M ®r R/I — M/IM. There is also a R-homomorphism
v M/IM — M ®gr R/I which sends m + IM to m ® (1 + I). ¢ is well-
defined since if m € IM, m = rymy + -+ + rgmywith r; € I, and so ¢(m) =
(rimy 4+ +rmm) @ L+ =rm(m@Q+1)+-+r(mp (1 +1)) =
mi @ (ri+1)+--+mp®(ry + 1) =0. The R-homomorphisms ¢ and ¢ are
inverse to each other and therefore, ¢ is an isomorphism.

Now to show ¢ is also an isomorphism of R/I-modules, it is enough to show ¢
respects multiplication with elements of R/I. We have ¢((r+1)(m® (s+1))) =
dm@(rs+1))=rsm+IM = (r+I1)(sm+IM)=(r+1p(m® (s+1)).

2. (a). Pick z € M. By our choice of sy, p**x = 0 since z is a linear combination
of the m;. Let r be the minimum positive integer such that p"x € N. Then
r < s1. We have p"x = Amy for some A € R, and p* "p"x = 0, so p** " Amy = 0.
Hence p” divides A, since by part (i) of Question 3, ged(p®, p® ~"A\)m, = 0. Write
A =p"B. Then p"x = Amy = p"fmy, so p"(x— Pmy) = 0. Set y := . — fm;. We
claim that y has the desired property. Clearly y+ N = x+ N. Also, if p’y € N,
then p*x € N, so s > r by our choice of r. Therefore p*y = p*(x — fmy) = 0.
Note that this shows more generally that if n € R is such that ny € N, then
ny = 0. The reason is that ny € N implies n(y+N) = 0, and since p"(y+N) = 0,
by question 3 part (i) we have ged(n, p")(y + N) = 0, and since ged(n, p") is of
the form p® for some s, we conclude that p*(y+ N) = 0, so p°y € N. Therefore,
p®y = 0, and so ny = 0.

(b) We use induction on the number k of a set of generators. If k = 1,
there is nothing to prove. Assume the statement is true for £k — 1. and M =<



my,...,mg > be as in part (a). Then there is a short exact sequence of R-
modules
0—-N—->M-—M/N—0

and M/N is generated by k — 1 elements so there is an isomorphism
oMy D---d M, > N/M

where M; is an R-modules which is generated by an element a; € M;. For each
i, let z; be such that ¢(0, ..., a;,...,0) = x;+ NN, and let y; be the corresponding
y as in part (a). Define now a R-homomorphism

v:M®---OM, &N =M

by ¥ (piaq, ..., fntn,y) = p1y1+- - -+ pnyn+y. Then part a shows that this map
is well-defined: if (pay, ..., pnan,y) = (Mmay, ..., Muan, y), then (u; —n;)a; =0,
for every 1 < i < nso (u; —n:)xs € N, 80 (i — m:)y; € N, so (p; —n:)ys = 0.
Therefore, u;y; = n;y;. It is clear that 1 is one-to-one and onto and is therefore
an isomorphism.

3. (i) There are z,y € R such that ged(a,b) = xa + yb. Hence ged(a, b)ym =
xam + ybm = 0.

(ii) There is a homomorphism ¢ : M, & M, — M, which sends (mq,ms)
to my; + my. We show ¢ is bijective. ¢ is injective since if ¢(my, my) = 0,
my = —mg, so my € M, N M., so by part (a) m; = 0 and hence my = 0. To
show ¢ is surjective note that there are xz,y € R such that 1 = zb + yc, so
m = xbm + yem. Let my = yem and my; = xbm. If am = 0, then bm; = 0 and
cmy = 0, so (my,mg) € My, & M, and ¢(mq, ms) = m.

(iii) Let s be the smallest positive integer such that p*m = 0, and let N
be the submodule generated of M by m. We show N ~ R/(p®). There is a
homomorphism ¢ : R/(p*) — N which sends r + (p®) to rm. We show 9 is
well-defined and injective: if r € (p®), then r = 'p*, so rm = r'p*m = 0. And
conversely, if 7m = 0, then by part (i) ged(r, p*)m = 0, but ged(r, p*) = p* with
s' <'s, so by our assumption on s, s’ = s and r € (p®). The map ¢ is clearly
surjective, so it is an isomorphism.

4. Let K = F(a?). Then wehave F C K C E. If a € K, then £ = K = F(a?).
Otherwise « is algebraic of degree 2 over K. Therefore [E : K] = 2, but then
[E: F]=[F: K|K : F|] =2[K : F] contradicting the assumption that [E : F]
is an odd extension.



