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Abstract. Let X be a smooth hypersurface of degree d in Pn over an algebraically closed
field of characteristic p. We show that X must be separably rationally connected and must
contain a free line if either p ≥ d or if p ≥ d− 1 and the defining equation has some partial
derivative that is not too singular. We also show that X must be separably rationally
connected in any characteristic if d = 4 and n is sufficiently large. Along the way, we
generalize results on the spaces of k-planes in X to characteristic p and connect some of
these questions to the spaces of linear sections of X.

1. Introduction

Given a smooth projective variety X over an algebraically closed field, we say that X is
rationally connected if there is a variety M and dominant map e : M×P1 → X such that the
natural map M × P1 × P1 → X ×X sending (m, p1, p2) to (e(m, p1), e(m, p2)) is dominant.
We say X is separably rationally connected if there is a very free curve in X, that is, a map
f : P1 → X with f ∗TX ample. In characteristic 0 the two notions agree, but in characteristic
p, there exist rationally connected varieties which are not separably rationally connected (see
[15, V5]). A well-known question asks whether smooth Fano varieties are always separably
rationally connected. We consider this question for Fano hypersurfaces in projective space.

Question 1.1. Is every smooth Fano hypersurface over an algebraically closed field separably
rationally connected?

This question has already been studied by several different authors. By [23], a smooth Fano
hypersurface is separably rationally connected if it contains a free rational curve. Question
1.1 has been answered affirmatively for general Fano hypersurfaces of degree d [7, 3, 26]
(see also [17]) and for arbitrary smooth Fano hypersurfaces of degree d < p and index at
least 2 [22]. Additionally, every cubic hypersurface of dimension at least 2 is separably
rationally connected since it contains smooth cubic surfaces as linear sections, and smooth
cubic surfaces are rational and hence, separably rationally connected. Beyond these cases,
the question remains open.

In this paper, we study the separable rational connectedness of hypersurfaces for smaller
characteristics p. In general, the smaller the characteristic of the ground field, the more
difficult the question, so as p gets smaller we need stricter hypotheses on n and d. We use
two different techniques that we hope will be of independent interest. First, we study when
hypersurfaces can contain a free line, improving on the condition p ≥ d+ 1 from [22].

Theorem 1.2. Let X = V (f) be a smooth Fano hypersurface of degree d < n+1
2

in Pn over
an algebraically closed field of characteristic p. Suppose one of the following holds:

(1) p ≥ d
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(2) p = d− 1 and the singular locus of some linear combination of the partial derivatives
of f has dimension s ≤ n− 2d− 1.

Then X must contain a free line and is separably rationally connected. If furthermore d ≤ n−1
2

and, in the case p = d− 1, s ≤ n− 2d− 2, then the space F1(X) of lines on X is irreducible
of the expected dimension.

The result from Theorem 1.2 part (1) cannot be improved without some extra hypothesis,
since the Fermat hypersurface of degree p + 1 in characteristic p is known to have no free
lines. See [19, 5] for more about the study of free curves on these Fermat hypersurfaces. We
prove an analogous result to part (2) of Theorem 1.2 for k-planes, albeit with a stronger
hypothesis on the partial derivatives of f (see section 3). Using a result of Starr, it follows
that every hypersurface will be a linear section of a large-dimensional hypersurface having
expected-dimensional Fano scheme, a result of independent interest (see Proposition 3.4).
Since hypersurfaces with a separably rationally connected linear section must themselves be
rationally connected, questions about linear sections of hypersurfaces are related to under-
standing the separable rational connectedness. Results like Proposition 3.4 also have many
other applications, see for instance [14] or Lemma 4.2 from [8].

As is clear from the Fermat example, results about separable rational connectedness be-
come more and more difficult to obtain as the characteristic of the ground field decreases.
Our other main result focuses on quartic hypersurfaces in low characteristic.

Theorem 1.3. In any characteristic and for n ≥ 12, a non-singular quartic hypersurface in
Pn is separably rationally connected.

In fact, we develop a new technique for proving that high dimensional hypersurfaces are
separably rationally connected, relating it to a restriction theorem for a particular type of
kernel bundle. We make a conjecture that would imply the analogue of Theorem 1.3 for all
degrees d, not just quartics, see Question 4.1.
Structure of paper: In Section 2, we prove Theorem 1.2. In section 3, we generalize

this result to k-planes, and present a proof of Starr’s result on k-plane sections of a hyper-
surface. In Section 4, we prove Theorem 1.3, and describe a conjecture about a particular
kernel bundle that would prove separable rational connectivity for Fano hypersurfaces in any
characteristic with n sufficiently large relative to d. In Section 5, we prove a result about
the dimension of the spaces of higher degree rational curves in characteristic p.
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2. Lines on hypersurfaces

Suppose that X is a smooth hypersurface of degree d in Pn over an algebraically closed
field of characteristic p, and denote by F1(X) the Hilbert scheme of lines on X. By [22],
when d < p, there exist free lines on X, implying that X is separably uniruled. In this
section, we focus on the case p ≥ d − 1, and our main goal is to prove Theorem 1.2. Most
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of the arguments in this section are adaptations of the proofs in [2], modified to suit the
positive characteristic setting.

If d ≤ p and d < n/2, we obtain free lines as in Theorem 1.2 (1). However, when
d ≥ p + 1, we need the additional hypothesis from Theorem 1.2 (2). To see that this
additional hypothesis is necessary, consider the Fermat hypersurface

xd
0 + · · ·+ xd

n = 0

of degree d = pr + 1. In this case, every irreducible component of F1(X) has dimension at
least 2n − 6, and since a free line lies only on expected-dimensional components of F1(X),
there are no free lines on X.
The example of the Fermat hypersurfaces suggests an important question: When is a Fano

hypersurface not separably uniruled by lines? Other than Fermat hypersurfaces, we know
of no examples of hypersurfaces that fail to be separably uniruled by lines when d = p + 1.
However by [4], there are further examples when d = mp+1 with m > 1. A characterization
of this kind could provide insight into the geometry of X, potentially leading to a proof of
separable uniruledness (and hence separable rational connectedness) of X.

2.1. Background. We begin by recalling some basic facts about the space of lines F1(X)
and the space of lines through a point on X. For a line l in X, the Zariski tangent space
T[l]F1(X) is naturally identified with H0(l, Nl/X), where Nl/X denotes the normal bundle of
l in X. The dimension of every irreducible component of F1(X) at [l] is at least

h0(l, Nl/X)− h1(l, Nl/X) = 2n− d− 3.

The number 2n−d−3 is referred to as the expected dimension of F1(X). If H1(l, Nl/X) = 0,
then F1(X) is smooth of the expected dimension at [l].

For a point q on X, let F q(X) denote the space of lines on X through q. If q ∈ l, then
the Zariski tangent space to F q(X) at [l] is

T[l]F
q(X) ∼= H0(l, Nl/X(−q)).

If l is free, then F q(X) is smooth of the expected dimension at [l].
This tangent space can also be described in terms of the linear parts of the homogeneous

pieces of the defining equation of X at q. Choose homogeneous coordinates so that q = (1 :
0 : · · · : 0) and X = V (f). Expand f around q as

f = xd−1
0 f1 + · · ·+ x0fd−1 + fd

with f1, . . . , fd homogeneous polynomials in x1, . . . , xn. Then F q(X) can be identified with
V (f1, . . . , fd) ⊂ V (x0) = Pn−1. Fix some line l in F q(X). Let Li denote the linear part of
fi at l ∩ V (x0), where by the linear part of a homogeneous polynomial g ∈ k[x1, . . . , xn] at
a point a ∈ V (g), we mean the linear polynomial L =

∑n
i=1

∂g
∂xi

(a)xi. Then the embedded

tangent space to F q(X) at [l] is

V (L1, . . . , Ld) ⊂ V (x0).

Remark 2.1. While the particular Li depend on the choice of coordinates, observe that
properties involving whether the first r of them are linearly independent do not. Indeed,
V (f1, . . . , fr) is the space of lines meeting X to order at least r + 1 at p, and V (L1, . . . , Lr)
is the embedded tangent space to V (f1, . . . , fr), which does not depend on the choice of coor-
dinates.
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Lemma 2.2. Assume that the base field has characteristic p ≥ d−1, and let m = min{d, p}.
Suppose l is a line in X and q is a general point of l. Let Li be the linear part of fi at l∩V (x0)
as above. Then there is an integer r with 1 ≤ r ≤ m such that L1, . . . , Lr is a basis for the
linear span of L1, . . . , Lm.

Proof. As described above, we have selected a choice of coordinates where q = (1 : 0 : · · · : 0).
As in Remark 2.1, the linear independence or dependence of the Li is independent of the
choice of coordinate system on V (x0), so we may assume that l is given by x2 = · · · = xn = 0.
Then each Li is a linear form in x2, . . . , xn.
Assume, for contradiction, that there exist indices i < j ≤ p such that L1, . . . , Li, Lj are

independent but L1, . . . , Li, Li+1 are linearly dependent. Let j be the smallest integer greater
than i for which L1, . . . , Li, Lj is linearly independent.

Deforming q to (1 : ϵ) on l, and replacing x1 by x′
1 = x1 − ϵx0, Li becomes Li + iϵLi+1,

so L1, . . . , Li, Lj−1 are linearly independent. Since linear independence is an open condition,
this contradicts the assumption that q is a general point of l. □

Let DX be the projective linear series of hypersurfaces of degree d − 1 in Pn spanned by
vanishing locus of the partial derivatives

∂f

∂x0

, . . . ,
∂f

∂xn

.

When the characteristic of the base field is 0, by Bertini’s theorem, a general member of DX

is non-singular. In characteristic p, this is no longer true. For example, when d = pm+1 and
X is the Fermat hypersurface of degree d, every memeber of DX is everywhere non-reduced.
We will show that when d ≤ p, or d = p+1 and a general member of DX is not too singular,
then the space of lines in X has the expected dimension.

The proof of the following lemma from [2] works in characteristic p without any modifi-
cation.

Lemma 2.3. Let h1, . . . , hr be homogeneous polynomials on Pn of degree strictly less than d
and let h be a polynomial of degree d such that V (h) has singular locus of dimension s, where
s = −1 if V (h) is non-singular. Then the locus where V (h) is tangent to V (h1, . . . , hr) has
dimension at most r + s.

2.2. Results. We now are ready to study the space of nonfree lines in a smooth hypersurface
X.

Theorem 2.4. Suppose d ≤ p + 1. Let G be an irreducible subvariety of F1(X), and let
Y ⊂ X be the subvariety swept out by the lines parametrized by G. Set m = dimY and
r = dimG. When d ≤ p, set s = −1, and when d = p + 1, let s be the dimension of the
singular locus of a general member of DX . If for a general l parametrized by G,

h1(l, Nl/X(−1)) = a > 0,

then
r ≤ d+m+ s− a− 1.

Proof. Let H be a general hyperplane in Pn. Let l be a general line parametrized by G,
and let q be a general point on l. Choose homogeneous coordinates so that H = V (x0) and
q = (1 : 0 : · · · : 0). Suppose X = V (f) and expand f around q as

f = xd−1
0 f1 + · · ·+ x0fd−1 + fd,
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where each fi is a homogeneous polynomial in x1, . . . , xn. Let Li denote the linear part of
V (fi) at l ∩ V (x0) (viewed as a linear form on H ∼= Pn−1).
Since

h0(l, Nl/X(−1)) = codimH V (L1, . . . , Ld),

and we assume h1(Nl/X(−1)) = a, we have

h0(Nl/X(−1)) = n− d− 1 + a.

Thus, the codimension of the vanishing locus V (L1, . . . , Ld) in H is d − a. Then there are
two possibilities:

• L1, . . . , Ld−a are linearly independent and Ld−a+1, . . . , Ld are linear combinations of
them. In particular, Ld is a linear combination of L1, . . . , Ld−a.
Since H = V (x0) is a general hyperplane, V (fd) = X ∩ V (x0) is non-singular. By

Lemma 2.3, the locus in V (fd) at which Ld is a linear combination of L1, . . . , Ld−a

has dimension at most d− a− 1. On the other hand, the set of lines of G that pass
through q has dimension r + 1−m, so

r + 1−m ≤ d− a− 1.

• d = p + 1, L1, . . . , Ld−a−1, Ld are linearly independent, and Ld−a, . . . , Ld−1 are lin-
ear combinations of L1, . . . , Ld−a−1. In particular, Ld−1 is a linear combination of
L1, . . . , Ld−a−1.

Since the family of lines parametrized by G through q has dimension r+1−m, and
since l is general, there is a locus of dimension at least r + 1 −m in V (fd−1) where
the linear form Ld−1 is a linear combination of L1, . . . , Ld−a−1. Hence, by Lemma 2.3,
the hypersurface V (fd−1) is singular in dimension at least ≥ (r+1−m)− (d−a−1).

On the other hand, fd−1 = ∂f
∂x0

|{x0=0}. Since x0 is a general coordinate, the sin-

gular locus of V ( ∂f
∂x0

) has dimension s. Therefore, the singular locus of V (fd−1) has
dimension ≤ s+ 1. Therefore,

r + 1−m− (d− a− 1) ≤ s+ 1,

which gives the desired result.

□

Corollary 2.5. Let X be as above with d ≤ p + 1. If d ≤ p, let s = −1; and if d = p + 1,
let s be the dimension of the singular locus of a general member of DX .

(1) The space of non-free lines in X has dimension ≤ n+ d+ s− 3.
(2) The space of non-free lines through a general point of X has dimension ≤ d+ s− 1.

Proof. Let G be an r-dimensional irreducible subvariety of F (X) paramterizing non-free
lines, and let m be the dimension of the subvariety of X swept out by G. Then m ≤ n− 1,
so by the above theorem,

dimG ≤ d+m+ s− a− 1 ≤ d+ (n− 1) + s− 2.

Part (2) follows immediately.
□
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Proof of Theorem 1.2. We first show that every irreducible component of F1(X) contains a
free line, which implies that the lines parametrized by that component sweep out X, and
the component has the expected dimension 2n − d − 3. Note that the dimension of any
irreducible component of F1(X) is at least the expected dimension.

Let F be an irreducible component of F1(X), and let l be a general line parametrized by F .
If l is free, then F has the expected dimension and the lines parametrized by F sweep out X.
So suppose instead that every line parametrized by F is non-free. Let a = h1(l, Nl/X(−1)),
so a ≥ 1. By Theorem 2.4,

dimF ≤ d+ (n− 1) + s− a− 1 ≤ d+ n+ s− 3 ≤ 2n− d− 4.

a contradiction. Therefore, F must contain a free line.
We next show under the numerical conditions in the second part of Theorem 1.2, the space

F1(X) is irreducible. Suppose to the contrary that F1(X) has more than one irreducible
component. By the above argument, every irreducible component is dominating. Therefore,
for a general point q ∈ X, the space F q(X) of lines in X through q is reducible. Let Σi,
1 ≤ i ≤ l, be the irreducible components of F q(X). Then dimΣi ≥ n − d − 1 for every
i. By [10, Exp. XIII, (2.1) and (2.3)], (note that this holds in arbitrary characteristic),
F q(X) = V (f1, ..., fd) is connected in dimension n − 2 − d. Hence, there exist indices i, j,
1 ≤ i < j ≤ l such that Σi ∩ Σj has dimension at least n− d− 2. If not, then removing the
intersections Σi ∩ Σj for 1 ≤ i < j ≤ l would disconnect F q(X), which is not possible.

Every line l parametrized by the intersection of Σi and Σj is a singular point of F q(X)
and is therefore non-free. By Corollary 2.5, the space of non-free lines through a general
point of X has dimension ≤ d+ s− 1, so

n− d− 2 ≤ d+ s− 1,

contradicting our assumption that s ≤ n− 2d− 2. Thus F1(X) is irreducible. □

3. Family of k-planes and k-plane sections

Let X be a smooth hypersurface of degree d in Pn over an algebraically closed field of
characteristic p ≥ d − 1. Let Fk(X) denote the moduli space of k-planes contained in X.
Then the expected dimension of Fk(X) is

(k + 1)(n− k)−
(
d+ k

k

)
,

and every irreducible component of Fk(X) has dimension at least the expected dimension.
In this section, we have two main goals. First, we generalize the results of the previous

section to higher dimensional linear subvarieties of X, showing that Fk(X) has the expected
dimension given n large enough and a (slightly more convoluted) condition on the partial
derivatives of the defining equation of X when d = p + 1. Second, we present a result of
Starr that shows that if Fk(X) has the expected dimension, every hypersurface in Pk is a
k-plane section of X.

3.1. Dimension of Fk(X). Assume that d ≤ p + 1. Our approach closely follows the
notation of [2], and we include a brief review for the convenience of the reader. Given a
k-plane Φ in X, let Λ be a general (k − 1)-plane contained in Φ. Choose homogeneous
coordinates so that

Λ = V (xk, . . . , xn).
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Define T as the set of all multisets of size at most d − 1 from the indices {0, . . . , k − 1}.
For each I ∈ T , let xI denote the corresponding monomial. Expanding f around Λ, we can
write

f =
∑
I∈T

cIx
I

where each cI is a homogeneous polynomial of degree d− |I| in xk, . . . , xn.
The space of k-planes in Pn containing Λ can be identified with the projective space of

dimension n−k, denoted by P = V (x0, . . . , xk−1). Let F
Λ(X) be the space of k-planes in X

containing Λ. Then by Proposition 3.3 of [2], the cI cut out F
Λ(X) in P , and for Φ ∈ FΛ(X),

the tangent space to FΛ(X) at Φ is cut out by the linear parts of the cI at Φ∩P . We denote
these linear parts by L(cI). If Φ is the k-plane V (xk+1, . . . , xn), then L(cI) is the coefficient

of xIx
d−1−|I|
k in the expression for f .

With this notation, a subset T ′ ⊂ T \ {∅} is called downward if for any I ∈ T ′, we have

I ∪ {j} ∈ T ′ for every j such that 0 ≤ j ≤ k − 1.

The following generalizes Lemma 2.2 to higher-dimensional linear subvarieties.

Lemma 3.1. Suppose X is a smooth hypersurface of degree d ≤ p+1. Suppose Φ is a k-plane
in X and Λ is a general (k− 1)-plane in Φ. Choose a system of homogeneous coordinates so
that

Λ = V (xk, . . . , xn), Φ = V (xk+1, . . . , xn).

Then there is a downward subset T ′ ⊂ T \ {∅} such that {L(cI), I ∈ T ′}, form a basis for
the span of {L(cI), I ∈ T \ {∅}}.

Proof. If we deform Λ to

V (xk −
k−1∑
i=0

aixi, xk+1, ..., xn),

we can preserve the choice of coordinates by applying the transformation φ which modifies
xk as xk → xk +

∑k−1
i=0 aixi. Let L(cI) be the linear part of cI in its expansion around Φ.

Let T1 ⊂ T \ ∅ be a subset such that {L(cI)|I ∈ T1} forms a basis for the span of
{L(cI)|∅ ̸= I ∈ T}. Let T2 ⊂ T1 be a downward subset with the largest possible size among
all downward subsets of T1. If T1 is not a downward set, then there must exist some J ∈ T1

and some l ∈ {0, 1, ..., k − 1} such that L(cJ) is linearly independent of {L(cI)|I ∈ T2}, but
L(cJ∪{l}) is linearly dependent on {L(cI)|I ∈ T1}.

Choose J as above such that |J | is as large as possible. Note that by our assumption
J ̸= ∅ so |J | ≥ 1. Now, deform Λ using the change of coordinates xk → xk + ϵxl. Under this
deformation, we have

L(cI) → L(cI) + ϵ(d− |I|)L(cI\{l})
if l ∈ I, and

L(cI) → L(cI)

otherwise. Since |J | ≥ 1, d− |J | ≠ 0 mod p, so under this deformation we see that L(cJ∪{l})
will become independent of {L(cI)|I ∈ T1}, contradicting the generality of Λ. Thus, T1 must
be a downward set. □
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Let S be the incidence correspondence

S = {(λ, q) | λ ∈ DX , q ∈ DX,λ, q is a singular point of DX,λ} ⊂ DX × Pn,

where DX,λ is the vanishing locus of the partial derivative corresponding to λ.
In characteristic 0, since DX is base-point-free, it satisfies the strong Bertini theorem.

Hence, the codimension of the locus in DX parameterizing hypersurfaces which are singular
in dimension ≥ t, is at least t+1 [11, Lemma 4.1]. Therefore, dimS ≤ n−1. In characteristic
p, however, this no longer holds: for example, in the case of the Fermat hypersurface of degree
p+ 1, we have dimS = 2n− 1. In what follows, we show that the space of k-planes has the
expected dimension when d ≤ p, or d = p+ 1 and dimS is not too large.

Lemma 3.2. Suppose that d ≤ p, or d = p+ 1 and

dimS ≤ 2n− 2k − 2

(
d+ k − 1

k

)
+ 1.

Let F be an irreducible component of Fk(X), Φ a general k-plane parametrized by F , and Λ
a general (k − 1)-plane in Φ. Then F ∩ FΛ(X) has the expected dimension n− k −

(
d+k−1

k

)
at [Φ].

Proof. We work in coordinates where Λ is given by V (xk, ..., xn) ⊂ Pn. If the tangent
space TΦF

Λ(X) has the expected dimension, then we are done. So, assume instead that the
dimension of TΦF

Λ(X) is larger than expected.
Expanding f around Λ as before, the assumption that dimTΦF

Λ(X) is larger than ex-
pected implies the set {L(cI)| I ∈ T} is not linearly independent. By Lemma 3.1, there is a
downward subset T ′ ⊂ T such that ∅ ̸∈ T ′, and {L(cI)| I ∈ T ′} form a basis for the linear
span of {L(cI), I ∈ T \ {∅}}.

If T = T ′ ∪ ∅, we get a contradiction: by our assumption the set {L(cI) | I ∈ T} is
not linearly independent, so L(c∅) is linear combination of the set of L(cI), I ̸= ∅. This
contradicts that X is non-singular in the same way as in [2, Theorem 3.7]. Hence, we may
assume that there exists some j ∈ {0, .., k − 1} such that {j} ̸∈ T ′. By the proof of Lemma
3.1, this can happen only if d = p + 1. In this case L(c{j}) is a linear combination of
{L(cI)|I ∈ T ′, I ̸= {j}}). Consequently, there is a linear combination g of c{0}, . . . , c{k−1}
such that L(g) is in the span of {L(cI) | |I| > 1}. Therefore, V (g) is tangent to V (cI , |I| > 1).
Since Φ and Λ were taken to be general, the same argument can be applied to any general

Φ′ parametrized by F which contains Λ. Given a point a = (a0 : · · · : ak−1) in Pk−1, let
ga = a0c{0} + · · · + ak−1c{k−1}, which is a homogeneous polynomial in xk, . . . , xn. Consider
Σ ⊂ (FΛ(X) ∩ F )× Pk−1 given by

Σ = {(Φ′, a)|V (ga) is tangent to V (cI , |I| > 1) at Φ′}.

Let π1, π2 be the two projections to the first and second factors. Then for a ∈ Pk−1, π−1
2 (a) is

the locus of points at which V (ga) does not meet the intersection of V (cI , |I| > 1) transver-
sally.

By our assumptions, π1 is dominant, and since dimF ∩ FΛ is at least n− k−
(
d+k−1

k

)
, we

get that

dimΣ ≥ n− k −
(
d+ k − 1

k

)
.
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Choose an irreducible component Σ0 of Σ with dimension ≥ n− k−
(
d+k−1

k

)
, and denote by

R the image of Σ0 under π2. Then for a general a ∈ R,

dim π−1
2 (a) ≥ n− k −

(
d+ k − 1

k

)
− dimR.

Note that for each a as above, ga is the restriction of a partial derivative of f :

ga =

(
k−1∑
j=0

aj
∂f

∂xj

)
|{x0=···=xk−1=0}.

Hence, if the singular locus of
∑k−1

j=0 aj
∂f
∂xj

has dimension m, then the singular locus of ga has

dimension ≤ k +m. Since {∅ ≠ I ∈ T, |I| > 1} has size
(
d+k−1

k

)
− k − 1, by [2, Lemma 1.2],

dimπ−1
2 (a) ≤ m+ k +

(
d+ k − 1

k

)
− k − 1.

Comparing the above two inequalities, we get

dimR +m ≥ n− k − 2

(
d+ k − 1

k

)
+ 1.

This means that if we consider the (k − 1)-plane in DX spanned by partial derivatives
∂f
∂x0

, . . . , ∂f
∂xk−1

, then the inverse image of this (k− 1)-plane under π : S → DX has dimension

at least n− k − 2
(
d+k−1

k

)
+ 1.

Since x0, . . . , xk−1 are general coordinates, this implies that for any (k−1)-plane Z in DX ,

dimπ−1(Z) ≥ n− k − 2

(
d+ k − 1

k

)
+ 1.

Consequently,

dimS ≥ n− k − 2

(
d+ k − 1

k

)
+ 1 + (n− k + 1),

a contradiction. □

Corollary 3.3. Suppose n ≥ 2
(
d+k−1

k

)
+ 2k − 2, and X is a non-singular hypersurface of

degree d in Pn such that d ≤ p, or d = p + 1 and dimS ≤ 2n − 2k − 2
(
d+k−1

k

)
+ 1. Then

Fk(X) has the expected dimension (k + 1)(n− k)−
(
d+k
k

)
.

Proof. We prove the statement by induction on k. For k = 1, the results were proved in
the previous section. Suppose that the statement holds for k − 1. Let F be an irreducible
component of Fk(X), and consider the incidence correspondence

I = {(Λ,Φ) | Λ ⊂ Φ, [Λ] ∈ Fk−1(X), [Φ] ∈ F}.

Let π1, π2 be the projections to the first and second factors, respectively. Since F is irre-
ducible and the fibers of π2 are projective spaces, the variety I is irreducible, hence π1(I) is
irreducible. By Lemma 3.2, for a general [Λ] in π1(I), the fiber π−1

1 ([Λ]) has the expected
9



dimension n− k −
(
d+k−1

k

)
. Therefore,

dim I ≤ n− k −
(
d+ k − 1

k

)
+ dimFk−1(X)

= n− k −
(
k + d− 1

k

)
+ k(n− k + 1)−

(
d+ k − 1

k − 1

)
= k(n− k) + n−

(
d+ k

k

)
Since the fibers of π2 have dimension k, we get

dimF ≤ (k + 1)(n− k)−
(
d+ k

k

)
.

Since the dimension of every component of Fk(X) is at least the expected dimension, we
conclude that F has the expected dimension.

□

3.2. Linear sections of X. Studying linear sections of a hypersurface is useful for under-
standing free rational curves. For instance, if a linear section of a hypersurface contains a
free rational curve, then that curve must be free in the original hypersurface. Thus, it is
useful to know the possible linear sections of a hypersurface. Some hypersurfaces (such as
the Fermat in certain characteristics) have very few distinct linear sections [1]. In this section
we show that hypersurfaces X with Fk(X) having the expected dimension (such as those
described in the previous section) have very favorable properties for their linear sections.

In particular, if Fk(X) has the expected dimension, then any hypersurface in Pk can be
realized as a linear section of X. The proof is due to Jason Starr, but to our knowledge does
not appear in a published paper; a weaker version appears in an arxiv preprint by Starr [20],
and its ideas have been used in other places such as [9]. For the reader’s convenience, we
reproduce the proof of the stronger result below.

Let G(k, n) denote the Grassmannian of k-planes in Pn, and PNd the projective space
parametrizing hypersurfaces of degree d in Pk. Consider the rational map

G(k, n) 99K PNd//PGLk+1

Starr [20] shows that if n ≥
(
d+k−1

k

)
+ k − 1, the above map is dominant. In fact, we can

obtain every hypersurface in Pk as a linear section of X.

Proposition 3.4 (Starr [21]). Suppose X is a (possibly singular) hypersurface of degree d
in Pn over an algebraically closed field of arbitrary characteristic such that Fk(X) has the
expected dimension (k + 1)(n− k)−

(
k+d
k

)
≥ 0. Then for any hypersurface Y of degree d in

Pk, there is a k-plane section of X that is isomorphic to Y .

The bound on n ensures that every hypersurface of degree d in Pn contains a k-plane.

Proof. Fix the k-plane Λ = V (xk+1, . . . , xn) in Pn, and let Y = V (f) ⊂ Λ. Let V be the
vector space of all polynomials g of degree d in x0, . . . , xn such that g|Λ = cf for some constant
c (possibly zero). Let W ⊂ V be the subspace of those polynomials whose restriction to Λ
is zero. Then PW is a divisor in PV .

10



Let Hn,d denote the projective space of hypersurfaces of degree d in Pn, and let

ϕ : PV ×GL(n+ 1) → Hn,d

be the morphism given by change of coordinates. Denote by ϕ′ the restriction of ϕ to the
divisor PW×GL(n+1). Any point in the fiber of ϕ′ over [X] can be identified with a k-plane
contained in X along with the choice of an automorphism of Pn sending Λ to the k-plane.
Hence

dimϕ′−1([X]) = dimFk(X) + (n+ 1)2 − (k + 1)(n− k) = t.

Since n satisfies the given bound, every hypersurface of degree d in Pn contains a k-
plane. Hence ϕ′ is surjective, and consequently ϕ is also surjective. The restriction of ϕ to
PV ×GL(n+ 1) \ PW ×GL(n+ 1) is therefore dominant.

Let [Z] be a general point in the image of PV ×GL(n+ 1) \ PW ×GL(n+ 1). Then the
fiber of ϕ′ over [Z] has dimension t, so the fiber of ϕ over [Z] has dimension t+ 1.

Now, if the fiber of ϕ over [X] is not contained in PW × GL(n + 1), then there exists a
k-plane not contained in X whose intersection with X is isomorphic to Y . Suppose instead
that the fiber of ϕ over [X] is entirely contained in PW ×GL(n+1). Then the dimension of
the fiber of ϕ′ over [X] is equal to the dimension of the fiber of ϕ over [X] which is at least
t+ 1, therefore,

dimFk(X) ≥ dimFk(Z) + 1,

a contradiction. □

The above proposition does not hold for hypersurfaces in the given degree range if Fk(X)
does not have the expected dimension. For example, for the Fermat hypersurface of degree
d = p + 1, the non-singular k-plane sections are all isomorphic to the Fermat hypersurface
of degree d in Pk. (This extreme case occurs only for Fermat hypersurfaces. See [1] and [24]
for more details about linear sections of hypersurfaces.)

One obstruction to having a large family of linear sections arises from the fact that the
codimension of the singular locus of a general partial derivative does not decrease when
restricted to a general k-plane section. A general hypersurface has non-singular general
partial derivatives. Therefore, a general hypersurface Y of degree d cannot be isomorphic
to a k-plane section of X if, for example, a general member of DX is singular in dimension
≥ n− k.

Since the dimension of the singular locus of general partial derivatives is largest for Fermat
hypersurfaces, we ask the following question:

Question 3.5. Over an algebraically closed field of arbitrary characteristic and given some
degree d and dimension k, is there an N such that for every n ≥ N , a non-singular hyper-
surface of degree d in Pn must have the Fermat hypersurface in Pk as a k-plane section?

The answer to this question is positive in characteristic 0 by Proposition 3.4, since for
sufficiently large n, Fk(X) has the expected dimension.

In characteristic p, Question 3.5 is open, and answering it would have important conse-
quences for understanding the separable rational connectedness of high-dimensional hyper-
surfaces. Assume that, for given d and p with p ∤ d, the answer to Question 3.5 is positive
for some k ≫ d. Then we conclude that in characteristic p, every hypersurface X of degree
d and sufficiently large dimension (relative to d) is separably rationally connected. To prove

11



this, it is enough to show that the Fermat hypersurface of degree d in Pk is separably ratio-
nally connected if k is sufficiently large relative to d. This was shown in Corrolaire 3.18 of
[6] when d | pr + 1 for some r ≥ 1.

Proposition 3.6. In characteristic p ∤ d, the Fermat hypersurface X0 of degree d in Pk

is separably rationally connected for k ≥ 2d + 1. Thus, if X0 is a k-plane section of a
hypersurface X in Pn, then X is also separably rationally connected.

Proof. We construct a free rational curve explicitly. Consider the d-plane

Λ = V (x0 − µx1, . . . , x2d − µx2d+1, x2d+2, . . . , xk)

in the Fermat hypersurface where µ is a d-th root of −1. A simple computation shows that
the rational normal curve of degree d, given by the image of the morphisms f : P1 → Λ,

f(t : s) = (µtd : td : µtd−1s : td−1s : · · · : µsd : sd : 0 : · · · : 0)
gives a free rational curve on the Fermat hypersurface. Let X0 be the Fermat hypersurface
in Pk and X be the original hypersurface that X0 is a k-plane section of. Then the sequence

0 → TX0|C → TX |C → OC(1)
n−k → 0

shows that the curve C will be free on the originalX as well, showing thatX is also separably
rationally connected. □

Thus, for a given hypersurface of degree d, finding a Fermat section of dimension at least
2d+ 1 shows that the original hypersurface was separably rationally connected.

4. hypersurfaces of fixed degree and large dimension

Suppose X is a smooth hypersurface of degree d and k a positive integer. For n sufficiently
large compared to d and k, any smooth hypersurface of degree d in Pn contains a k-plane.
We expect that such k-planes should contain rational curves that are free in X. In this
section, we explore this idea and verify it in the case d = 4.

Suppose Λ is a k-plane contained in a smooth Fano hypersurface of degree d in Pn over an
algebraically closed field of arbitrary characteristic. Then we have a short exact sequence

0 → M → OΛ(1)
⊕n+1 → OΛ(d) → 0

where the mapOΛ(1)
⊕n+1 → OΛ(d) is given by the partial derivatives of the defining equation

of X and M sits in the short exact sequence 0 → O → M → TX |Λ → 0. In particular, a
rational curve C in Λ is free in X if and only if M |C has no negative summand. This leads
to the following more general question:

Question 4.1. Suppose V is a base-point free linear system of dimension k+1 of polynomials
of degree r in Pk for k ≥ r ≥ 2. Consider the surjective map OPk(1)⊕k+1 → O(r+1) induced
by V and denote its kernel by M . Are there always rational curves C in Pk such that M |C
is globally generated?

An affirmative answer to the above question implies separable rational connectedness in
high dimensions.

Proposition 4.2. If Question 4.1 has an affirmative answer for r = d − 1 and some k ≥
r, then smooth hypersurfaces of sufficiently large dimension compared to d are separably
rationally connected.

12



Proof. Observe that for n sufficiently large relative to k, d, every smooth hypersurface of
degree d in Pn contains a k-plane Λ. Because the partial derivatives of the defining equation
of X form a basepoint-free linear series on X, it follows that we can select k + 1 of them
that form a basepoint-free linear series on Λ, giving us a subsheaf MΛ of M |Λ. Let C be the
curve affirmatively answering Question 4.1 for MΛ. Then the sequence

0 → MΛ|C → M |C → OC(1)
n−k → 0

shows that M |C will be globally generated. Thus, TX |C will be as well. □

In this section, we show that the answer to the question is positive in all characteristics
when r = 3 and n = k = 3:

Proposition 4.3. Suppose V is a base-point free linear system of dimension 4 of polynomials
of degree 3 in P3, and M is the kernel of the surjection O(1)4 → O(4). Then there exists a
rational curve C such that M |C is globally generated. Moreover C can be taken to be

• a twisted cubic if the characteristic is 3 and V is generated by x3
0, x

3
1, x

3
2, x

3
3, and

• a line or a smooth conic otherwise.

In particular, a quartic hypersurface of dimension ≥ 11 is separably uniruled by rational
curves of degree at most 3.

We also show that the answer to Question 4.1 has an affirmative answer in characteristic
0 when k ≥ r + 1.

Proposition 4.4. If the characteristic of the base field is zero and k ≥ r+1, then the answer
to Question 4.1 is positive.

For the proofs, we require the following lemma:

Lemma 4.5. The locally free sheaf M from Question 4.1 is stable.

Proof. We show that M ′ := M(−1) is stable. Note that rankM ′ = k and degM ′ = −r. For
the sake of contradiction, assume that there exists a subsheaf E of rank b, with 1 ≤ b < k,
and degree e such that

e

b
= µ(E) ≥ µ(M ′) =

−r

k
.

The inclusion 0 → E → M ′ induces

0 →
b∧
E →

b∧
M ′

which gives a non-zero global section of
∧bM ′ ⊗ (

∧bE)∨ =
∧bM ′(−e). Since −e ≤ rb

k
< r,

to obtain a contradiction, it suffices to show that H0(Pk,
∧bM ′(t)) = 0 for any t < r. More

generally we show by reverse induction on i that

H i(Pk,

b+i∧
M ′(t− ri)) = 0

for every i, 0 ≤ i ≤ k − b, and t < r.
If i = k− b, then

∧i+b M ′ is a line bundle and 0 < i ≤ k− 1, so the vanishing result holds.
The exact sequence:

0 → M ′ → Ok+1
Pk → OPk(r) → 0
13



gives the exact sequence:

0 → (
i+b+1∧

M ′)(t− r(i+ 1)) → (
i+b+1∧

O⊕k+1
Pk )(t− r(i+ 1)) → (

i+b∧
M ′)(t− ir) → 0.

Observe for i ≥ 1, H i of the middle term vanishes because i ≤ k − b and we are on
a Pk, and for i = 0, H0 of the middle term vanishes since t < r. Thus by induction,
H i(Pk, (

∧i+bM ′)(t− ir)) = 0. □

Proof of Proposition 4.4. Let e > k2−3k
2(k−r)

, and let C be a general rational curve of degree e in

Pk. Suppose that

M |C =
k⊕

i=1

O(ai), a1 ≤ · · · ≤ ak.

Then
∑

ai = e(k − r), and since M(1)|C is a sub-bundle of O(1)k+1|C , we have ai ≤ e for
each i.

On the other hand, since M is stable, by [18, Proposition 3.1], the restriction of M to
C satisfies the Grauert-Mulich property: ai+1 − ai ≤ 1 for every i. So if a1 ≤ −1, then
a2 ≤ 0, . . . , ak ≤ k − 2. So

k∑
i=1

ai ≤
(k − 2)(k − 1)

2
− 1 < e(k − r),

which is not possible. □

Proof of Proposition 4.3. Let V ⊂ H0(P3,OP3(3)) be a 4-dimensional base-point free linear
system. Define M as the bundle of rank 3 that makes the following sequence exact:

0 → M → V ⊗OP3(1) → OP3(4) → 0.

We have degM = 0 and rankM = 3. For a general line l in P3, write M |l = Ol(a1) ⊕
Ol(a2)⊕Ol(a3), with

∑
ai = 0. Since M |l injects into Ol(1)

4, we also have ai ≤ 1 for all i.
The only possibilities are

(1) M |l ≃ Ol(1)
⊕2 ⊕Ol(−2),

(2) M |l ≃ O⊕3
l ,

(3) M |l ≃ Ol(1)⊕Ol(−1)⊕Ol.

We now analyze each case separately.

Case (1). M |l ≃ Ol(1)
⊕2 ⊕Ol(−2). We show in this case, the characteristic of the base field

is 3 and the linear system is generated by x3
0, . . . , x

3
3. Note that for a general line l, we have

h0(M(−1)|l) = 2, hence there are two linearly independent polynomials in V which vanish
on l.
Define Ψ = {(D, [l]) : l ⊂ {D = 0}} ⊂ PV × G(1, 3), and let π1, π2 be the projections to

the first and second factors, respectively. Then the map π2 is dominant and the dimension
of every fiber is at least 1. Therefore dim(Ψ) ≥ 5. Since each member of the linear system
V is a cubic in P3, the map π1 is surjective, which shows that general fiber of π1 must
have dimension at least 2. The only way a cubic surface can contain a 2-parameter family
of lines is if it contains a P2 as a component. It follows from the generalized version of
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Bertini’s theorem in characteristic p ([13, Theorem 6.3] and [25, Theorem I.6.3]) that the
characteristic is 3 and V is generated by x3

0, x
3
1, x

3
2, and x3

3.
Consider now the twisted cubic C in P3 which is given by parametrization [s3 : ts2 : t2s : t3].

A direct computation shows that M |C is globally generated.

Case (2). M |l ≃ O⊕3
l . In this case, a general line satisfies the desired property.

Case (3). M |l ≃ Ol(−1) ⊕ Ol ⊕ Ol(1). Let Z = l1 ∪ l2 be a reducible conic in P3, where
l1 and l2 are general lines through a general point p in P3. We show that in this case, the
smoothing of the nodal curve Z will be the desired C in the statement. Using notation
from [16], we can write M |Z =

⊕3
i=1OZ(ai, bi). We now analyze this scenario by looking at

different subcases:

(I) There is a i such that ai = bi = −1. In this case there is a well defined subspace E(p)
of Mp ⊗ k(p) spanned by the restriction of the rank-two summands O ⊕ O(1) from
the two components of Z to p. These subspaces glue together to give a subbundle
E ⊂ M that has degree 1. This contradicts the stability of M .

(II) There is i, j such that ai = −1, bi = 1 and aj = 1, bj = −1. In this case, applying
Theorem 4.12 from [16] shows us that a general smoothing Z ′ of Z has M |Z′ = O3.

(III) There exists i, j such that ai = −1, bi = 0 and aj = 0, bj = −1. In this case, one can
repeat the argument in case (I) with M replaced by its dual.

(IV) There is i, j such that ai = −1, bi = 0, and aj = 0, bj = 1. Without loss of generality
and for brevity, assume i = 1, j = 2. Let E1 and E2 be the subspaces of Mp ⊗ k(p)
obtained by restricting the O(1) summand to l1 and l2, respectively, and let F1 and
F2 denote the subspaces obtained by restricting O(1)⊕O. We show that this case is
impossible by proving that for general lines l1 and l2, we have E1 ̸⊂ F2 and E2 ̸⊂ F1.

Consider the open subset of pairs (l1, l2) such that E1 ̸⊂ F2. We are done if this
is non-empty, since then by the symmetry of its definition we will also have E2 ̸⊂ F1

over a non-empty set. Suppose that this set is empty. Fix a general line l1 through
a general point p, and let E1 ⊆ F1 ⊆ E be the filtration on E := Mp ⊗ k(p). We
then have that for any other general line l2 through p and the corresponding filtration
E2 ⊆ F2 ⊆ E, E1 ⊆ F2, so E1 ⊂ F1∩F2. So we must have either E1 = E2 or F1 = F2

for all pairs of general lines (l1, l2) through p. We can therefore again glue these
subspaces together to get destabilizing sub-bundles like in case (I), and therefore we
are done.

If d = 4 and n ≥ 12, then every quartic X in Pn contains a linear subvareity of dimension
3, so X contains a non-singular free rational curve of degree at most 3. □

5. Higher degree curves

We extend our results on lines on hypersurfaces to higher degree rational curves to prove
that under similar assumptions, the space of degree e rational curves on a smooth hypersur-
face has the expected dimension.

Let X be a non-singular hypersurface of degree d over an algebraically closed field of
characteristic p. Denote by M0,0(X, e) the Kontsevich moduli scheme parametrizing tuples
(C, f) where C is a projective, connected, nodal curve of genus 0 and f : C → X a stable
map of total degree e. The expected dimension of M0,0(X, e) is e(n+1− d)+n− 4, and the
dimension of every irreducible component is larger than or equal to the expected dimension.
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If [(C, f)] ∈ M0,0(X, e) is such that the restriction of f ∗TX to each component has only
non-negative summands, then M0,0(X, e) has the expected dimension at [(C, f)].
We call an irreducible component M of M0,0(X, e) dominating if the images of the maps

parametrized by M sweep out X. Following the proof of Theorem 5.1 in [2], we prove

Theorem 5.1. Let X be a non-singular hypersurface of degree d ≤ p + 1, in Pn over an
algebraically closed field of characteristic p. If d ≤ p, set s = −1, and if d = p + 1, let s be
the dimension of the singular locus of a general member of DX . If s ≤ n−2d−1, then every
irreducible component of M0,0(X, e) is dominating and has the expected dimension whenever
d < n+e−s−1

e+1
.

We use the following lemma in the proof.

Lemma 5.2. With the same assumptions as in Theorem 5.1, the locus in M0,0(X, e) parametriz-
ing stable maps with at least one non-free component has dimension at most en+ d+ s− 3.

Proof. We proceed by induction on e. For e = 1, this was proved in Corollary 2.5. Suppose
the statement holds for every degree smaller than e and suppose thatM is an irreducible sub-
scheme of M0,0(X, e) such that the every map parameterized by M has a non-free irreducible
component. Let m = dimM . If m < 2n− 4, then since

2n− 4 ≤ en+ d+ s− 3,

we are done. So suppose m ≥ 2n−4. Then by the Bend-and-Break Lemma [12, Lemma 5.1],
there exists a stable map with reducible domain parameterzed by M . Moreover, the locus
of maps with reducible domains is either all of M or a divisor in M . Therefore there exist
positive integers e1, e2 with e1 + e2 = e such that the locus of stable maps which decompose
as a degree e1 stable map with at least one non-free component glued at a point to a degree
e2 stable map has dimension at least m− 1.
By Lemma 5.2 in [2], the locus of stable maps of degree e2 whose image pass through any

point of X is at most e2n− 2. By induction hypothesis, the locus of degree e1 stable maps
with at least one non-free component has dimension ≤ e1n + d + s− 3. Hence the locus of
glued maps has dimension at most

(e1n+ d+ s− 3) + (e2n− 2) + 1 ≤ en+ d+ s− 4.

It follows that

m ≤ en+ d+ s− 3,

which proves the desired result for e.
□

Proof of Theorem 5.1. Let M be an irreducible component of M0,0(X, e). If there is a map
parametrized by M such that every irreducible component is free, then M has the expected
dimension and is dominating. Otherwise, by Lemma 5.2, we have

dimM ≤ en+ d+ s− 3 < e(n+ 1− d) + n− 4,

which is not possible. Therefore, every irreducible component is dominating and has the
expected dimension. □

When e = 2, it is possible to improve the bound obtained in the theorem above.
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Theorem 5.3. Suppose X is a non-singular hypersurface of degree d ≤ p + 1 over an
algebraically closed field of characteristic p. If d ≤ p, set s = −1, and if d = p + 1, let s be
the dimension of the singular locus of a general member of DX . If s ≤ n− 2d− 1, then the
space of conics in X has the expected dimension.

Proof. Note that the space of non-free lines in X has dimension at most n + d + s − 3 by
Corollary 2.5. Given our conditions on n and d, it follows that the space of lines on X has
the expected dimension. The expected dimension of M0,0(X, 2) is 3n− 2d− 2. Suppose to
the contrary that M0,0(X, 2) has an irreducible component M which is larger than expected
and assume that the images of the maps parameterized by M sweep out a subvariety Y ⊂ X
of dimension r.

Note that every double cover of a line in X is determined by the line together with the
two branched points. Since the space of lines on X has the expected dimension, we conclude
that the locus of double covers of lines in M has dimension at most

2n− d− 3 + 2 < 3n− 2d− 1,

so, a general map parametrized by M is not a double cover of a line.
Since 3n − 2d − 1 ≥ 2n − 4 ≥ 2 dimY − 2, there is a family of dimension at least 1

consisting of stable maps in M whose images pass through two general points of Y . By the
Bend-and-Break Lemma [12, Lemma 5.1], it follows that there is an irreducible family N of
dimension at least 3n − 2d − 2 of degree 2 stable maps to Y with reducible domains. We
now show that this is not possible.

Let l1 ∪ l2 be a general reducible conic in N meeting at a point q ∈ Y . Let

a = max{h1(l1, Nl1/X(−1)), h1(l2, Nl2/X(−1))}.
If a = 0, then since the family of free lines through every point has dimension n−d−1, the

dimension of the space of two free lines intersecting at q is 2(n−d−1). Hence the dimension
of chains of two free lines parametrized by N is ≤ dimX + 2(n− d− 1) < 3n− 2d− 2, and
the claim follows.

If a > 0, then by Theorem 2.4, the family of lines l with h1(l, Nl/X(−1)) = a has dimension
at most d+ n+ s− a− 2. On the other hand, the dimension of F q(X) at [l2] is at most

n− d− 1 + h1(l2, Nl2/X(−1)) ≤ n− d− 1 + a.

Therefore,

dimN ≤ (d+ n+ s− a− 2) + 1 + (n− d− 1 + a) ≤ 2n+ s− 2 < 3n− 2d− 2

giving the desired contradiction.
□

We remark that the above result is valid in characteristic zero as well and strengthens the
previously known bounds [2].

Let M0,0(X, e) be the open subscheme of M0,0(X, e) parameterizing stable maps with
irreducible domains. The above result shows, in particular, that in charactersitic p if d ≤
p and d < (n + 1)/2, then every dominating component of M0,0(X, 2) has the expected
dimension.

In characteristic 0, every dominating component of M0,0(X, e) generically parametrizes
free maps, so every such component has the expected dimension. In characteristic p, one can
use the same ideas as in [22] to prove that for any fixed e, if p ≫ d and n is sufficiently large,
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then every dominating component of M0,0(X, e) has the expected dimension. A natural
question is whether one can find such a bound that does not depend on e.
We end this section with a stronger version of this question:

Question 5.4. Suppose X is a non-singular Fano hypersurface of degree d in Pn over an
algebraically closed field of characterisitic p with d ≤ p. If d < n+1

2
, does it follow that every

dominating family of rational curves has the expected dimension?

As pointed out to us by Raymond Cheng, nmust be somewhat large relative to d for this to
work. For instance, consider Fermat hypersurface X of degree p+1

2
in Pn. This hypersurface

admits a natural double cover from Y , the hypersurface of degree p + 1 in Pn via squaring
the coordinates. For e even, it is easy to show that Y has dominant components of rational
curves of degree e/2 and dimension at least

dimM0,0(Pn, e)−
(e
2
+ 1
)2

= (n+ 1)
(e
2
+ 1
)
− 4−

(e
2
+ 1
)2

=
(e
2
+ 1
)(

n− e

2

)
− 4.

Pushing forward to X, we get a family of curves of degree e and dimension at least ( e
2
+

1)(n − e
2
) − 4. This will be larger than the expected dimension e(n − d + 1) + n − 4 when

d > n
2
+ e

4
+ 3

2
.
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