Let p be a prime number. We use the additive notation here: for example $p x$ instead of x^{p}. We first reduce the problem to the case when for every a in $A, p a=0$: Let $\phi: A \rightarrow A$ be the homomorphism $\phi(a)=p a$. Let B be the kernel of ϕ and C its image.
(a) Show that every subgroup of order p in A is contained in B, and every subgroup of index p contains C. Show that the orders of the groups B and A / C are equal.

The groups B and A / C are finite abelian groups with the property that every nonzero element has order p. (so in particular they are p-groups.) Groups of this form are called elementary abelian groups. Now It is enough to show the number of subgroups of order p in B and subgroups of index p in A / C are equal. Let

$$
|B|=|A / C|=p^{n}
$$

(b) Show that in an elementary abelian group with p^{n} elements, every non-zero element generates a subgroup of order p, and therefore the number of subgroups of order p is $\left(p^{n}-1\right) /(p-1)$
(c) Show that in an elementary abelian group G with p^{n} elements, the number of subgroups of index p is $\left(p^{n}-1\right) /(p-1)$ in the following way: we have $G \cong \mathbf{Z}_{p} \oplus \cdots \oplus \mathbf{Z}_{p}$ (n copies), so the number of non-zero (and therefore onto) homomorphisms

$$
G \rightarrow \mathbf{Z}_{p}
$$

is $p^{n}-1$. the kernel of any such homomorphism is a subgroup of index p, and conversely every subgroup H of index p can be obtained as a kernel of such a homomorphism because $G / H \cong \mathbf{Z}_{p}$. Fix H and show that the number of homomorphisms α as above whose kernel is H is $p-1$ by showing α is determined by the image of any element which is not H.

