A differential equation is of the form
\[F(x, y, y', y'', \ldots, y^{(n)}) = 0. \] \(\text{(1)} \)

We say \(u(x) \) is a solution on an interval \(I \) if \((\text{1}) \) holds for all \(x \in I \).

Ex. (Natural growth). \(y = e^{10x} \) satisfies the DE
\[y' - 10y = 0 \]

because
\[(e^{10x})' - 10e^{10x} = 10e^{10x} - 10e^{10x} = 0 \text{ for all } x \in \mathbb{R} \]

The general solution is the 1-parameter family
\[y(x) = Ce^{10x}. \]

Ex. \(y(x) = \frac{1}{c - x} \) is a solution to \(\frac{dy}{dx} = y^2 \),

general

If we add the initial condition \(y(1) = 2 \) we get the particular solution
\[y(x) = \frac{1}{\frac{3}{2} - x}. \]

Note the singularity at \(x = \frac{3}{2} \)!!

Ex. The general solution to \(y'' + y = 0 \) is the two-parameter family
\[y(x) = A \cos x + B \sin x. \]

Make sure you can verify this fact.