Wednesday 8/29/18.

- Solutions via integration. If \(\frac{dy}{dx} = f(x) \), the general solution is \(y(x) = \int f(x) \, dx \); if we know \(y(x_0) = y_0 \), then \(y(x) = \int_{x_0}^{x} f(s) \, ds + y_0 \), by FTC. We can solve \(n \)th-order equations too:

\[
\begin{align*}
y'' &= \cos x & \Rightarrow & & y' = \sin x + C \\
&\quad \Rightarrow & & y = -\cos x + Cx + D.
\end{align*}
\]

This is great for recovering position from acceleration (\(\equiv \) force),

\[
y'' = -g \Rightarrow y = -\frac{1}{2} gt^2 + v_0 t + h
\]

gives parabolic motion for an object in free-fall.

- This technique doesn't help with (e.g.) \(y' = xy \),

because we cannot compute \(\int y(x) \, dx \). Fix by **separating variables**:

\[
\begin{align*}
dy/dx &= xy & \Rightarrow & & dy/y = x \, dx \\
&\quad \Rightarrow & & \int dy/y = \int x \, dx \\
&\quad \Rightarrow & & \ln |y| = \frac{1}{2} x^2 + C \\
&\quad \Rightarrow & & y = \pm Ce^{\frac{1}{2} x^2}.
\end{align*}
\]

Note how this misses the singular solution \(y = 0 \). We'll talk more about this when we see equilibria, stability, slope fields, and so on.