Note:

Approximation

Somewhat recently, following the work Nyman [5], Beurling [3], and Báez-Duarte [1], S. Waleed Noor proved the following result ([4], Theorem 6):

For $j \geq 2$, let

$$
h_{j}=\frac{1}{1-z} \log \left(\frac{1-z^{j}}{j(1-z)}\right) .
$$

The Riemann hyposthesis is true if and only if the constant function 1 is in the closed linear span of $\left\{h_{j}: j \geq 2\right\}$ in H^{2}.

Of course, here, H^{2} is the set of analytic functions on the unit disk \mathbb{D} with square-summable Maclaurin coefficients. One way to approach this problem, in the spirit of least-squares (e.g. see [2]), is to notice that 1 is in the closed linear space of $\left\{h_{j}: j \geq 2\right\}$ if and only if we can find constants $\left(c_{j, N}\right)_{j=2}^{N}$ such that $\left\|\sum_{j=2}^{N} c_{j, N} h_{j}-1\right\|_{H^{2}} \rightarrow 0$ as $N \rightarrow \infty$. Asking this norm to decay optimally gives a minimization problem for each N :

$$
\min _{c_{2}, \ldots, c_{N} \in \mathbb{C}}\left\|\sum_{j=2}^{N} c_{j} h_{j}-1\right\|_{H^{2}} .
$$

Given the Hilbert space structure, we see that this minimization is really just asking us to find, for each $N \geq 2$, the orthogonal projection of 1 onto the subspace $V_{N}:=\operatorname{span}\left\{h_{j}: j=2, \ldots, N\right\}$. Denoting the orthogonal projection of 1 onto V_{N} as $P_{N} 1$, and noting then that $1-P_{N} 1$ is orthogonal to V_{N}, we see that the corresponding coefficients of each h_{j} in $P_{N} 1$, say $c_{j, N}^{*}$, must satisfy the orthogonality condition

$$
1-\sum_{j=2}^{N} c_{j, N}^{*} h_{j} \perp \sum_{n=2}^{N} c_{n} h_{n}
$$

for all constants $c_{2}, \ldots, c_{N} \in \mathbb{C}$. Namely, taking $\sum_{n=2}^{N} c_{n} h_{n}=h_{k}$ for each $k=2, \ldots N$, we get

$$
\left\langle 1-\sum_{j=2}^{N} c_{j, N}^{*} h_{j}, h_{k}\right\rangle_{H^{2}}=0 .
$$

Moving some things around, we have

$$
\sum_{j=2}^{N} c_{j, N}^{*}\left\langle h_{j}, h_{k}\right\rangle_{H^{2}}=\left\langle 1, h_{k}\right\rangle_{H^{2}} .
$$

Putting this together for each $k=2, \ldots, N$, we arrive at the following system:

$$
\left(\left\langle h_{j}, h_{k}\right\rangle_{H^{2}}\right)_{2 \leq j, k \leq N}\left(c_{2, N}^{*}, \ldots, c_{N, N}^{*}\right)^{T}=(\log (1 / 2), \ldots, \log (1 / N))^{T}
$$

where the right hand side follows from noting that 1 is the reproducing kernel at 0 for H^{2} and $\overline{h_{k}(0)}=\log (1 / k)$. Further, we see that square distance between 1 and V_{N} is

$$
\begin{aligned}
\operatorname{dist}^{2}\left(1, V_{N}\right): & =\left\|P_{N} 1-1\right\|_{H^{2}}^{2} \\
& =\left\|P_{N} 1\right\|^{2}-2 \Re\left\langle P_{N} 1,1\right\rangle_{H^{2}}+\|1\|^{2} \\
& =1-\left\|P_{N} 1\right\|_{H^{2}}^{2} \\
& =1-\sum_{j=2}^{N} c_{j, N}^{*} h_{j}(0)
\end{aligned}
$$

where the last and next to last equalities hold since $\left\|P_{N} 1\right\|^{2}=\left\langle P_{N} 1, P_{N} 1,\right\rangle=\left\langle P_{N} 1,1\right\rangle=$ $\left(P_{N} 1\right)(0)$.
This leads us to an additional equivalence:
The Riemann hypothesis is true if and only if $1-\sum_{n=2}^{N} c_{n, N}^{*} \log (1 / n) \rightarrow 0$ as $N \rightarrow \infty$, where, for each $N \geq 2, c_{2, N}^{*}, \ldots, c_{N, N}^{*} \in \mathbb{C}$ is the solution to the linear system

$$
\left(\left\langle h_{j}, h_{k}\right\rangle_{H^{2}}\right)_{2 \leq j, k \leq N}\left(c_{2, N}^{*}, \ldots, c_{N, N}^{*}\right)^{T}=(\log (1 / 2), \ldots, \log (1 / N))^{T} .
$$

So why not just compute the solution to the system above for general N, take a limit, and collect the million dollars? Well, the first trouble here comes not in inverting the matrices G_{N}, which will be challenging in its own right, but in calculating the inner products $\left\langle h_{j}, h_{k}\right\rangle_{H^{2}}$. This approach is not the first in taking up least-squares against the RH. Most recently, in [2], Bellemare, Langlois, and Ransford confront a similar problem in $L^{2}(0,1)$.
For each integer $k \geq 2$, define $f_{k}:(0,1] \rightarrow \mathbb{R}$ by

$$
f_{k}(x):=\frac{1}{k}\left[\frac{1}{x}\right]-\left[\frac{1}{k x}\right]
$$

where $[y]$ is the integer part of $y \in \mathbb{R}$. Via theorems of Nyman and Báez-Duarte, they relay the following:

Let d_{n} be the distance between 1 and the span of $\left\{f_{2}, \ldots, f_{n}\right\}$ in $L^{2}(0,1)$.
The Riemann hypothesis is true if and only if $d_{n} \rightarrow 0$ as $n \rightarrow \infty$.
They then provide some concise and useful results surrounding this problem and produce a quite robust numerical exploration, leaving with a conjecture about the positivity of a certain matrix arising from the minimization problem associated to the above distance problem.

A Short Numerical Experiment

Noor (and an anonymous referee) provide a Maclaurin series representation of h_{k} ([4], pp. 249) as

$$
h_{k}(z)=\sum_{n \geq 0}\left(\log (1 / k)+\sum_{j=1}^{n} \frac{1}{j}(1-k[k \mid j])\right) z^{n}
$$

where $[k \mid j]$ equals 1 if k divides j and 0 otherwise. This gives

$$
\left\langle h_{j}, h_{k}\right\rangle_{H^{2}}=\sum_{n \geq 0}\left(\log (1 / j)+\sum_{m=1}^{n} \frac{1}{m}(1-j[j \mid m])\right)\left(\log (1 / k)+\sum_{m=1}^{n} \frac{1}{m}(1-k[k \mid m])\right) .
$$

Suppose we let

$$
g_{j, k}^{N}:=\sum_{n=0}^{N}\left(\log (1 / j)+\sum_{m=1}^{n} \frac{1}{m}(1-j[j \mid m])\right)\left(\log (1 / k)+\sum_{m=1}^{n} \frac{1}{m}(1-k[k \mid m])\right) .
$$

be the N-th truncation of $\left\langle h_{j}, h_{k}\right\rangle_{H^{2}}$. Then a truncated reformulation of the H^{2} minimization problem is as follows:

The Riemann hypothesis is true if and only if $1-\sum_{n=2}^{N} a_{n, N} \log (1 / n) \rightarrow 0$ as $N \rightarrow \infty$, where, for each $N \geq 2, a_{2, N}, \ldots, a_{N, N} \in \mathbb{C}$ is the solution to the linear system

$$
\left(g_{j, k}^{N}\right)_{2 \leq j, k \leq N}\left(a_{2, N}, \ldots, a_{N, N}\right)^{T}=(\log (1 / 2), \ldots, \log (1 / N))^{T} .
$$

A priori, the matrix $\left(g_{j, k}^{N}\right)_{2 \leq j, k \leq N}$ is not invertible, so the solution to the system does not necessarily uniquely exist. However, as will shortly be evident, the matrix of truncated inner products above is invertible for some small N. It should also be noted that the matrix $\left(g_{j, k}^{N}\right)_{j, k}$ could be of any size and does not have to coincide with the length of the truncation of $\left\langle h_{j}, h_{k}\right\rangle_{H^{2}}$, it is simply stated as such for numerical ease. Numerical calculations give the following values for N versus $\delta_{N}^{2}:=1-\sum_{j=2}^{N} a_{j, N} h_{j}(0)$:

N	δ_{N}^{2}
5	0.001439242733910
10	0.000484875828723
15	0.000349984890394
20	0.000001209978708
25	0.000023766812139
30	0.000207317697316
35	0.000233307885123
40	0.000003705806710
45	0.000060039097384

N versus δ_{N}^{2} for $N=5,10, \ldots, 45$
Note that the values tangential to the horizontal axis are not actually zero (only appearing so due to scaling). These computations show, for small N, that δ_{N}^{2} is not monotonic. Of course, this observation has no bearing on the overall question at hand.
Nonetheless, it is not the point to become so overzealous or naive to try to tackle this problem at the waist, but, instead, to be motivated by this equivalence to find some tractable work on its peripheries.

References

[1] L. Báez-Duarte. A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis, 2. arXiv preprint math/0205003, 2002.
[2] H. Bellemare, Y. Langlois, and T. Ransford. A positivity conjecture related to the Riemann zeta function. The American Mathematical Monthly, 126(10):891-904, 2019.
[3] A. Beurling. A closure problem related to the Riemann zeta-function. Proceedings of the National Academy of Sciences of the United States of America, 41(5):312, 1955.
[4] S. W. Noor. A Hardy space analysis of the Báez-Duarte criterion for the RH. Advances in Mathematics, 350:242-255, 2019.
[5] B. Nyman. On the one-dimensional translation group and semi-group in certain function spaces. na, 1950.

