
CLASSIFICATION OF ISOPARAMETRIC
HYPERSURFACES

QUO-SHIN CHI

1. Early History of Isoparametric Hypersurfaces

Wikipedia. In physics, a wavefront is the locus of points having the
same phase: a line or curve in 2-d or a surface for a wave propagating
in 3-d.

A typical example is the crests of ocean waves forming wave fronts.
A skillful surfer, on the other hand, knows how to ride a wavefront
below the crest.

Question 1. (Laura, 1918 [16]): What are the wavefronts whose front
speed remains constant on each front surface?

The wave equation is

∆φ =
∂2φ

∂t2

Wave fronts are level surfaces of φ, at each moment, which propagate
along the normal directions of the level surfaces. That the front speed
remains constant on each level surface means

|∇φ| = change per unit length of φ along the normal = a(φ),

ds/dt = b(φ),

for some smooth functions a and b, where s is the distance a wavefront
travels. Therefore,

∂φ

∂t
=
∂φ

∂s

ds

dt
= a(φ)b(φ) := c(φ),

∆φ =
∂2φ

∂t2
= c′(φ)c(φ).

Definition 2. A smooth function f over R3 is transnormal if

|∇f | = A(f)

for some smooth functions A. A transnormal function is isoparametric
if

∆f = B(f).
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Let c be a regular value of an isoparametric function f . The level
surface f−1(c) is called an isoparametric surface.

Theorem 3. (Somigliana, 1918-1919 [28]) A transnormal function f is
isoparametric if and only if each regular level surface of f has constant
mean curvature.

Theorem 4. (Somigliana) The regular level surfaces of an isoparamet-
ric function must be either all spheres, all cylinders or all planes.

This theorem was rediscovered later by Segre [26] in 1924 and Levi-
Civita in 1937. Levi-Civita’s approach lent its way to the subsequent
generalization to higher dimensions.

Lemma 5. (Levi-Civita, 1937 [17]) A transnormal f is isoparametric
if and only if the two principal curvatures of each regular level surface
are constant.

Theorem 6. (Segre, 1938 [27]) The same conclusion of Somigliana
holds on Rn. That is, an isoparametric hypersurface, which is a regular
level hypersurface of an isoparametric function f over Rn satisfying

|∇f | = A(f), ∆f = B(f),

is either a hypersphere, a hyperplane, both are totally umbilic (one prin-
cipal curvature), or a cylinder Sk × Rn−1−k.

Theorem 7. (Cartan, 1938 [3]) The same conclusion of Segre holds on
the hyperbolic space Hn of constant curvature −1. That is, an isopara-
metric hypersurface in Hn must be either a sphere, a hyperbolic Hn−1,
a Euclidean Rn−1 (called a horosphere), all three are totally umbilic, or
a cylinder Sk ×Hn−k−1.

IDEA: Cartan first showed that a transnormal function f (in the
standard space forms) is isoparametric if and only if each regular level
hypersurface of f has constant mean curvature, if and only if the shape
operator of each regular level hypersurface has constant principal cur-
vatures (values), counting multiplicities.

In the hyperbolic case, he then showed again that there are at most
two principal values of the shape operator. Indeed, let λ1, · · · , λn−1
be the principal values of an isoparametric hypersurface in a standard
space form of dimension n with constant curvature C. Then we have

(1)
∑
j 6=k

mj
C + λkλj
λk − λj

= 0, summed on j,

referred to by Cartan as the “Fundamental Formula”, which was proved
by Segre in the Euclidean case and by Cartan in general. Here, mj is
the multiplicity of λj and λi 6= λj if i 6= j.
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Remark 8. Say, C = 1. That is, the ambient space is the unit sphere
in which the isoparametric hypersurface sits. Write

λj = cot(θj).

Then the fundamental formula is nothing but∑
j 6=k

cot(θk − θj) = 0,

which carries a significant geometric meaning. Namely, in the spher-
ical case, wavefronts, that is, the 1-parameter family of isoparametric
hypersurfaces, eventually degenerate to two subspaces of much smaller
dimensions whose mean curvatures are zero.

The case C = 1 is remarkably deep! At this point, 95 years after
Laura first investigated isoparametric surfaces, there remains the last
case (out of infinitely many) to be classified:

Classify the isoparametric hypersurfaces in S31 with four principal val-
ues of multiplicities 7, 7, 8, 8.

Different fields of mathematics, such as differential geometry, alge-
braic geometry, algebraic topology, homotopy theory, K-theory, repre-
sentation theory, etc., interplay in this arena.

Definition 9. g is the number of principal values of an isoparametric
hypersurface in Sn.

Theorem 10. (Cartan, 1939-1940 [4], [6])

g = 1. This is the 1-parameter family of parallel hyperspheres degener-
ating to the North and South Poles, called the focal submanifolds
of the family.

g = 2. This is the 1-parameter family of generalized tori Sk × Sn−k−1,
whose points are

(x0, · · · , xk, xk+1, · · · , xn), x20+· · ·+x2k = r2, x2k+1+· · ·+x2n = s2, r2+s2 = 1,

which degenerates to two focal submanifolds Sk and Sn−k−1 of
radius 1 as r approaches 0 or 1.

g = 3. I. The three principal values have equal multiplicity m = 1, 2, 4,
or 8.

II. In the ambient Euclidean space Rn+1 ⊃ Sn, there is a ho-
mogeneous polynomial F of degree 3, satisfying

|∇F |2 = 9r2, r is the Euclidean radial distance, and,

∆F = 0,
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whose restriction to Sn is exactly the isoparametric func-
tion f . The range of f is [−1, 1] and ±1 are the only crit-
ical values. Thus f−1(c),−1 < c < 1, form a 1-parameter
family of isoparametric hypersurfaces that degenerates to
the two focal submanifolds f−1(1) and f−1(−1).

III. The two focal submanifolds are the real, complex, quater-
nionic, or octonion projective plane corresponding to the
principal multiplicity m = 1, 2, 4, or 8. Each isoparametric
hypersurface in the family is a tube around the projective
plane.

IV. Let F be one of the normed algebras R,C,H and O. Let
X, Y, Z ∈ F and a, b ∈ R. Then

F = a3 − 3ab2

+
3a

2
(XX + Y Y − 2ZZ)

+
3
√

3b

2
(XX − Y Y )

+
3
√

3

2
((XY )Z + (XY )Z)

(2)

g = 4. He assumed equal multiplicity m and classified the cases when
m = 1 or 2.

Question 11. (Cartan, 1940 [6])

(i) What are the possible g?
(ii) Is equal multiplicity of principal values always true?
(iii) Are all isoparametric hypersurfaces homogeneous?

Technically, it is more convenient to work with the following defi-
nition of an isoparametric hypersurface, though it is equivalent to the
above one, as we will see later.

Definition 12. A hypersurface in Rn, Sn or Hn, is called isoparametric
if its principal values are everywhere constant, counting multiplicities.

Question 13. Classify all isoparametric hypersurfaces in spheres.

This is Problem 34 on Yau’s list of important open problems in
geometry proposed in 1992 [32].

2. Development in the early 1970s, the homogeneous case

Nomizu wrote two papers [23], [24] in the early 1970s that revived
the interest in isoparametric hypersurfaces. At about the same time,
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Takagi and Takahashi [30] classified homogeneous isoparametric hy-
persurfaces in spheres. Takagi and Takahashi’s work was based on
the comprehensive work of Cartan on the classification of symmetric
spaces, and Hsiang and Lawson’s 1971 work on the classification of
homogeneous hypersurfaces in spheres.

Definition 14. A connected hypersurface M in a smooth manifold X
is called homogeneous if I(X,M), the group of isometries of X leaving
M invariant, acts transitively on M .

It is clear that for such a hypersurface, the principal values of its
shape operator are everywhere constant, counting multiplicities.

Theorems 6 and 7 classify all isoparametric hypersurfaces in Rn and
Hn to be exactly the homogeneous hypersurfaces in these space forms.

What is interesting is then the spherical case.

We start with understanding the homogeneous ones:

Theorem 15. (Hsiang and Lawson, 1971 [15]) A homogeneous hyper-
surface in a sphere is exactly a principal orbit of the isotropic repre-
sentation of a rank 2 symmetric space.

The following table is the collection of all symmetric spaces G/K
of Types I and II whose isotropy representations give homogeneous
(isoparametric) hypersurfaces M . There are at most two multiplicities
(m1,m2),m1 ≤ m2, for the g principal curvatures.

G K dimM g (m1,m2)
S1 × SO(n+ 1) SO(n) n 1 (1, 1)
SO(p+ 1)× SO(n+ 1− p) SO(p)× SO(n− p) n 2 (p, n− p)
SU(3) SO(3) 3 3 (1, 1)
SU(3)× SU(3) SU(3) 6 3 (2, 2)
SU(6) Sp(3) 12 3 (4, 4)
E6 F4 24 3 (8, 8)
SO(5)× SO(5) SO(5) 8 4 (2, 2)
SO(10) U(5) 18 4 (4, 5)
SO(m+ 2),m ≥ 3 SO(m)× SO(2) 2m− 2 4 (1,m− 2)
SU(m+ 2),m ≥ 2 S(U(m)× U(2)) 4m− 2 4 (2, 2m− 2)
Sp(m+ 2),m ≥ 2 Sp(m)× Sp(2) 8m− 2 4 (4, 4m− 5)
E6 (Spin(10)× SO(2))/Z4 30 4 (6, 9)
G2 SO(4) 6 6 (1, 1)
G2 ×G2 G2 12 6 (2, 2)
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3. Development in the early 1970s, the general case

Münzner [22] in 1973 proved a remarkable result that extended Car-
tan’s investigation, recorded in Theorem 10, in a far-reaching manner:

Theorem 16. Let M be any isoparametric hypersurfaces with g prin-
cipal curvatures in Sn. Then we have the following.

(1) There is a homogeneous polynomial F , called Cartan-Münzner
polynomial, of degree g over Rn satisfying

|∇F |2 = g2r2g−2, ∆F =
m− −m+

2
g2rg−2,

where r is the radial function over Rn+1.
(2) Let f := F |Sn. Then the range of f is [−1, 1]. The only critical

values of f are ±1. Moreover, M± := f−1(±1) are connected
submanifolds of codimension m±+1 in Sn, called focal subman-
ifolds, whose principal curvatures are cot(kπ/g), 1 ≤ k ≤ g− 1.

(3) For any c ∈ (−1, 1), Mc := f−1(c) is an isoparametric hypersur-
face with at most two multiplicities m± associated with the prin-
cipal curvatures. In fact, if we order the principal curvatures
λ1 > · · · > λg with multiplicities m1, · · · ,mg, then mi = mi+2

with index modulo g; in particular, all multiplicities are equal
when g is odd, and when g is even, there are at most two mul-
tiplicities precisely equal to m±.

(4) Each of the 1-parameter isoparametric hypersurfaces is a tube
around the two focal submanifolds, so that Sn is obtained by
gluing two disk bundles over M± along the isoparametric hy-
persurface M0 := f−1(0). As a consequence, algebraic topology
implies that the only possible values of g are 1, 2, 3, 4, or 6.

Corollary 17. M± are minimal submanifolds of Sn. The minimality
condition is exactly equation (1), the fundamental formula of Segre and
Cartan.

Corollary 18. There is a unique minimal isoparametric hypersurface
in the 1-parameter family Mc.

Now that Sn is obtained by gluing two disk bundles over the focal
submanifolds M± along an isoparametric hypersurface M , Münzner
used algebraic topology to express the cohomology ring of M , with Z2

coefficients, as modules of those of M±, whose module structures then
give g = 1, 2, 3, 4, or 6.

Based on Münzner’s work, Ozeki and Takeuchi [25] in 1975-76 con-
structed two classes, each with infinitely many members, of inhomoge-
neous isoparametric hypersurfaces with g = 4. They also classified all
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isoparametric hypersurfaces with g = 4 when one of the multiplicities
m± is 2, which are all homogeneous.

An important ingredient in their work is their expansion formula of
the Cartan-Münzner polynomial:

F (tx+ y + w) = t4 + (2|y|2 − 6|w|2)t2 + 8(

m+∑
a=0

pawa)t

+ |y|4 − 6|y|2|w|2 + |w|4 − 2

m+∑
a=0

(pa)
2 + 8

m+∑
a=0

qawa

+ 2

m+∑
a,b=0

〈∇pa,∇pb〉wawb.

Here, x is a point on M+, y is tangent to M+ at x, and w is normal
to M+ with coordinates wi with respect to the chosen orthonormal
normal basis n0,n1, · · · ,nm+ at x. Moreover, pa(y) (resp., qa(y)) is
the a-th component of the 2nd (resp., 3rd) fundamental form of M+

at x. Furthermore, pa and qa are subject to ten convoluted equations,
to be seen later, of which the first three assert that, since Sn, the
2nd fundamental matrix of M+ in any unit normal direction n, has
eigenvalues 1,−1, 0 with fixed multiplicities, it must be that (Sn)3 =
Sn.

The expansion formula coupled with the ten identities are funda-
mentally important for the classification of isoparametric hypersurfaces
with g = 4.

4. Development in the 1980s

The multiplicities of the principal values for g = 4 and g = 6 had
remained undetermined until Abresch [2] in 1983 extended Münzner’s
work to show, by algebraic topology, that for g = 6 we have m+ =
m− = 1 or 2. This is in agreement with the multiplicities of the ho-
mogeneous examples. Although he derived some constraints in the
case g = 4, among which we have, for instance, m+ = m− implies
m+ = m− = 1 or 2, etc., the case remained open.

Meanwhile, Ferus, Karcher and Münzner [14] in 1981 generalized the
inhomogeneous examples of Ozeki and Takeuchi to construct infinitely
many classes, each with infinitely many members, of inhomogeneous
isoparametric hypersurfaces with g = 4. Their construction can be best
motivated by the example in Nomizu’s 1973 paper mentioned earlier:
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Consider Ck = Rk ⊕ Rk and write z ∈ Ck as z = x +
√
−1y accord-

ingly. Define an homogeneous polynomial of degree 4 on Ck by

F̃ = (|x|2 − |y|2)2 + 4(〈x, y〉)2.
Then F is an isoparametric function with multiplicities {1, k − 2}. In
fact, the isoparametric hypersurfaces are the principal isotropy orbits
of the symmetric spaces SO(k + 2)/S(2)× SO(k).

Note that f̃ = F̃ |S2k−1 has range [0, 1]. So we normalize it by defining

f := 1− 2f̃ , or rather, by setting

F := (|x|2 + |y|2)2 − 2F̃ .

F is an isoparametric function such that f has range [−1, 1]. Let us
set

P0 :=

(
I 0
0 −I

)
, P1 :=

(
0 I
I 0

)
, u := (x, y)tr,

where I is the k by k identity matrix. Then F can be rewritten as

F = |u|4 − 2
1∑
i=0

(〈Piu, u〉)2, PiPj + PjPi = 2δijI.

Ferus, Karcher and Münzner’s construction is a generalization of this.

Definition 19. The skew-symmetric (resp., symmetric) Clifford alge-
bra Cn (resp., C ′n) over R is the algebra generated by the standard basis
e1, · · · , en of Rn subject to the only constraint

eiej + ejei = −2δijI (resp., eiej + ejei = 2δijI).

The classification of the Clifford algebras are known:

n 1 2 3 4 5 6 7 8
Cn C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
δn 1 2 4 4 8 8 8 8
C ′n R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)
θn 2 4 8 8 16 16 16 16

Here, δn is the dimension of an irreducible module of Cn−1, and θn is
the dimension of an irreducible module of C ′n+1. Moreover, Cn (resp.,
C ′n) is subject to the periodicity condition Cn+8 = Cn ⊗ R(16) (resp.,
C ′n+8 = C ′n ⊗ R(16)). The generators e1, · · · , en acting on each irre-
ducible module of either Cn or C ′n in the table give rise to n skew-
symmetric or symmetric orthogonal matrices T1, · · · , Tn satisfying

TiTj + TjTi = ±2δijI,
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a representation of Cn or C ′n on the irreducible module. Note that we
have

θn = 2δn.

This is not fortuitous. It says that we can construct symmetric rep-
resentations of C ′m+1 from skew-symmetric representations of Cm−1,
and vice versa. Indeed, let us be given k irreducible representations
V1, · · · , Vk of Cm−1. Set

V := V1 ⊕+ · · · ⊕ Vk ' Rl, l = kδm.

The representations of e1, · · · , em−1 on V1, · · · , Vk give rise to m − 1
skew-symmetric orthogonal matrices E1, · · · , Em−1 on V . Set

P0 :=

(
I 0
0 −I

)
, P1 :=

(
0 I
I 0

)
, P1+i =

(
0 Ei
−Ei 0

)
, 1 ≤ i ≤ m−1.

Then
PiPj + PjPi = 2δijI.

P0, · · · , Pm give a representation of C ′m+1 on R2l.
Ferus, Karcher and Münzner’s examples, referred to as of OT-FKM

type henceforth (OT short for Ozeki and Takeuchi), are

F := |u|4 − 2
m∑
i=0

(〈Piu, u〉)2, u ∈ R2l, l = kδm.

Note that we recover Nomizu’s example when m = 1.
By a straightforward calculation, we conclude

Proposition 20. The two multiplicities m± of an isoparametric hy-
persurface of OT-FKM type are

(m, kδm −m− 1),

where m, k ∈ N to make the second entry positive.

We have the following table for the multiplicity pair (m, kδm−m−1).

δm = 1 2 4 4 8 8 8 8 16 · · ·
k = 1 – – – – (5, 2) (6, 1) – – (9, 6) · · ·
k = 2 – (2, 1) (3, 4) (4, 3) (5, 10) (6, 9) (7, 8) (8, 7) (9, 22) · · ·
k = 3 (1, 1) (2, 3) (3, 8) (4, 7) (5, 18) (6, 17) (7, 16) (8, 15) (9, 38) · · ·
k = 4 (1, 2) (2, 5) (3, 12) (4, 11) (5, 26) (6, 25) (7, 24) (8, 23) (9, 54) · · ·
k = 5 (1, 3) (2, 7) (3, 16) (4, 15) (5, 34) (6, 33) (7, 32) (8, 31) (9, 70) · · ·

...
...

...
...

...
...

...
...

...
...

...

Among other things, Ferus, Karcher and Münzner established
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Theorem 21. (1) OT-FKM type with multiplicities on the first,
second, fourth columns, (4, 3) and (9, 6) are exactly the homo-
geneous examples, except for the two with multiplicities {2, 2}
and {4, 5} not on the list.

(2) OT-FKM type with multiplicities on the third and seventh columns
are exactly the inhomogeneous examples constructed by Ozeki
and Takeuchi.

So, except for the first, second and fourth columns, we have infinitely
many families, each with infinitely many members, of inhomogeneous
isoparametric hypersurfaces with four principal curvatures. Note that
we also have the fact that OT-FKM type with multiplicities (2, l) is
congruent to the one with multiplicities (l, 2). Note also that Cartan
classified the cases when the multiplicities are {1, 1} and {2, 2}, both
being homogeneous.

Wang [31] investigated the topology of OT-FKM type by K-theory
and showed that there are many pairs of minimal isoparametric hyper-
surfaces in spheres, of identical constant scalar curvature, which are
diffeomorphic but noncongruent to each other.

Dorfmeister and Neher [12] in 1985 settled one of the two cases when
g = 6:

Theorem 22. An isoparametric hypersurface with g = 6 and multi-
plicities m± = 1 is homogeneous.

5. Development in the 1990s

Another remarkable result, via homotopy theory, was achieved in
1999 by Stolz [29], who classified all the possible multiplicity pairs
(m1,m2), where m1 ≤ m2, of isoparametric hypersurfaces with g = 4:

Theorem 23. The multiplicity pairs (m1,m2),m1 ≤ m2, of isopara-
metric hypersurfaces with four principal curvatures are exactly those in
the above table for the OT-FKM type, except for the pairs (2, 2) and
(4, 5) not in the table.

He established that if (m1,m2),m1 ≤ m2, is neither (2, 2) nor (4, 5),
then m1+m2+1 is a multiple of 2φ(m1−1), where φ(n) denotes the num-
ber of natural numbers s, 1 ≤ s ≤ n, such that s ≡ 0, 1, 2, 4 (mod 8).
One can see easily that such pairs (m1,m2) are exactly those for the
OT-FKM type in the above table.

His approach is reminiscent of the theorem of Adams [1]:

Theorem 24. If there are k independent vector fields on Sn, then n+1
is a multiple of 2φ(k).
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The core technique Adams developed for proving the above theorem
on vector fields was to what Stolz reduced his proof.

6. Development in the 2000s

The author and his collaborators [7] and later the author [8], [10]
established the following:

Theorem 25. When g = 4, except possibly for the case with multi-
plicity pair {7, 8}, an isoparametric hypersurface is, up to congruence,
either of OT-FKM type, or homogeneous of multiplicity pair {2, 2} or
{4, 5}.

The proof utilizes commutative algebra, algebraic geometry and Stolz’s
multiplicity result.

Miyaoka [19], [21] recently settled the other case when g = 6:

Theorem 26. An isoparametric hypersurface with g = 6 and multi-
plicities m± = 2 is homogeneous.

She also gave a simpler and more geometric proof of the theorem of
Dorfmeister and Neher by the same technique [18], [20].

So as it stands now, only the case with g = 4 and {m+,m−} = {7, 8}
remains open, for which we know three inhomogeneous examples of
OT-FKM type.

7. Idea of attack on the classification for g = 4

We outline the simpler and more powerful method employed in [8]
and [10]. In the expansion formula

F (tx+ y + w) = t4 + (2|y|2 − 6|w|2)t2 + 8(

m+∑
a=0

pawa)t

+ |y|4 − 6|y|2|w|2 + |w|4 − 2

m+∑
a=0

(pa)
2 + 8

m+∑
a=0

qawa

+ 2

m+∑
a,b=0

〈∇pa,∇pb〉wawb.

of Ozeki and Takeuchi, the second components of the 2nd and 3rd
fundamental forms are highly convoluted in ten equations. The first
three are that the shape operator Sn satisfies (Sn)3 = Sn. Set

< f, g >:= 〈∇(f),∇(g)〉, G =
∑
a

p2a.
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Then we have the remaining seven equations:

< pa, qa >= 0;

< pa, qb > + < pb, qa >= 0, a 6= b;

<< pa, pb >, qc > + << pc, pa >, qb > + << pb, pc >, qa >= 0, a, b, c distinct;∑
a

paqa = 0;

16(
∑
a

q2a) = 16G(
∑
i

y2i )− < G,G >;

8 < qa, qa >= 8(< pa, pa > (
∑
i

y2i )− p2a)+ << pa, pa >,G > −24G− 2
∑
b

< pa, pb >
2;

8 < qa, qb >= 8(< pa, pb > (
∑
i

y2i )− papb)+ << pa, pb >,G > −2
∑
c

< pa, pc >< pb, pc > .

Here, yi are the coordinates of y. They seem to be too overwhelming
to solve! But,

every cloud has a silver lining.

The 4th of these gory equations is a syzygy equation:
m1∑
a=1

paqa = 0.

What happens when the homogeneous p0, · · · , pm1 of degree 2 form
a regular sequence, for which the syzygy is trivial, so that

qa =
∑
b

rabpb,

where rab = −rba are homogeneous of degree 1? (That is, we are looking
into complete intersections.)

Moreover, what conditions guarantee that p0, · · · , pm1 form a regular
sequence?

The answer to the second question is Serre’s criterion of normal va-
rieties [13]:

Theorem 27. (Special Case) Over the complex numbers let p1, · · · , ps
be a regular sequence of homogeneous polynomials in a polynomial ring,
let V be the variety cut out by p1, · · · , ps, and let J be the subvariety
of V where the rank of the Jacobian of p1, · · · , ps is < s. If dim(J) ≤
dim(V )− 2, then the ideal (p1, · · · , ps) is prime.

Corollary 28. ( [7]) Over the complex numbers, let p1, · · · , pk, k ≥ 2,
be linearly independent homogeneous polynomials of equal degree ≥ 1 in
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a polynomial ring. For i ≤ k, let Vi be the variety cut out by p1, · · · , pi,
and let Ji be the subvariety of Vi where the rank of the Jacobian matrix
of p1, · · · , pi is < i. If dim(Ji) ≤ dim(Vi) − 2 for 1 ≤ i ≤ k − 1, then
p1, · · · , pk form a regular sequence in the polynomial ring.

The answer to the first question is then facilitated by the following:

Theorem 29. ( [8]) Let {m1,m2} be the multiplicity pair of an isopara-
metric hypersurface with four principal values in the sphere. If m1 <
m2 and p0, · · · , pm1 form a regular sequence, then the hypersurface is
of OT-FKM type.

Theorem 25 follows from Corollary 28 and Theorem 29.
In fact, when m2 ≥ 2m1 − 1, one can show that indeed p0, · · · , pm1

do form a regular sequence by Corollary 28, so that the isoparamet-
ric hypersurface is of OT-FKM type, which had been proven in [7] by
a considerably more complicated method that does not seem to ex-
tend to the remaining cases. By Stolz’s multiplicity result, this takes
care of exactly the multiplicity pairs except for the anomalous ones
{3, 4}, {4, 5}, {6, 9}, {7, 8}, for which p0, · · · , pm1 ,m1 < m2, do not form
a regular sequence in general. The zero locus of a nonregular sequence,
even over complex numbers, can be wildly untamed. However, one can
now employ the notion of Condition A of Ozeki and Takeuchi [25]:

Definition 30. A focal submanifold of an isoparametric hypersurface
with four principal values in the sphere is said to be of Condition A, if
its shape operator has a fixed kernel in all normal directions at some
point.

The focal submanifold satisfying Condition A must be of codimen-
sion 2, 4, or 8 in the sphere [25], so that, in particular, the associ-
ated isoparametric hypersurface cannot be of multiplicity pair {4, 5}
or {6, 9}. On the other hand, the isoparametric hypersurfaces of OT-
FKM type with multiplicity pair {3, 4} or {7, 8} do admit points of
Condition A on the focal submanifold with codimension 4 or 8 [25], [14].
Conversely, it is proved in [11] that the existence of points of Condition
A implies that the isoparametric hypersurface is of OT-FKM type (see
also [9]).

With Condition A and Theorem 29, one can now conclude [8], [10]
that the isoparametric hypersurface is either homogeneous in the {4, 5}
case, or is of OT-FKM type in the {3, 4} and {6, 9} cases, for which the
codimension 2 estimates in Corollary 28 is manageable. The essential
point is that, for the three multiplicity pairs {3, 4}, {4, 5}, and {6, 9},
nonexistence of points of Condition A (even locally) implies that either

13



p0, · · · , pm1 ,m1 < m2, form a regular sequence, so that the isopara-
metric hypersurface is of OT-FKM type, or the 2nd and, hence, the
3rd fundamental forms of the hypersurface coincide with those of the
homogeneous example.
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[26] B. Segre, Una Proprietá caratteristixca di tre sistemi ∞1 di superficie, Atti
Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 29 (1924), 666-671.

[27] , Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad
un qualunque numero di demesioni, Atti Accad. Naz. Lincie Cl. Sci. Fis. Mat.
Natur. Rend. Lincei (9) Mat. Appl. 27 (1938), 203-207.

[28] C. Somigliana, Sulle relazione fra il principio di Huygens e l’ottica geometrica,
Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 24 (1918-1919), 974-979.

[29] S. Stolz, Multiplicities of Dupin hypersurfaces Inven. Math.138(1999), 253-
279.

[30] R. Takagi and T. Takahashi, On the principal curvatures of homogeneous
hypersurfaces in a sphere, Differential Geometry in honor of K. Yano, 469-
481, Kinokuniya, Tokyo, 1972.

[31] Q,-M. Wang, On the topology of Clifford isoparametric hypersurfaces, J. Diff.
Geom. 27(1988), 55-66.

[32] S. T. Yau, Open problems in geometry, Chern - A Great Geometer of the
Twentieth Century, International Press, 1992, 275-319.

Department of Mathematics, Washington University, St. Louis, MO
63017

E-mail address: chi@math.wustl.edu

15


