A polynomial $P \in C\left[z _1, \ldots, z _d\right]$ is strongly $D^{\wedge} d$-stable if P has no zeroes in the d-dimensional closed unit polydisc $D^{\wedge} d$. For such a polynomial, its spectral density function is defined to be $1 /\left[\mathrm{P}(z) \mathrm{P}\left(1 / z^{*}\right)^{\star}\right]$. Meanwhile, an abelian square is a finite string of the form ww' where w' is a rearrangement of w . I will discuss ongoing work (joint with Chung Wong) on a polynomial-valued operator whose spectral density function's Fourier coefficients are all generating functions for combinatorial classes that can be thought of as generalizations of the abelian square concept.

