1. **Exercise 1, Section 3.2, page 84.** If X is the real line with the topology generated by the subbase consisting of all the open intervals and the set \mathbb{Q}, show that X is Hausdorff but not regular.

Solution. It is not hard to check that the given collection of subsets indeed forms a subbase for a topology on the real line since the open intervals themselves already form a subbase. This topology is clearly Hausdorff since any two distinct points can be separated by disjoint open intervals. But the topology is not regular. In fact, let x be a rational number and $F = \mathbb{R} \setminus \mathbb{Q}$, the set of irrational numbers. In the given topology, \mathbb{Q} is an open set, so its complement F is closed. I claim that x and F cannot be separated by disjoint open sets.

To prove this claim, let U be any neighborhood of x and V any neighborhood of F. We wish to show that $U \cap V$ cannot be empty. We may assume that U is a base element. Note that base sets can be of two types: an open interval or the intersection of an open interval with \mathbb{Q}. As x is rational, we may assume that $U = (a, b) \cap \mathbb{Q}$ for some open interval (a, b) containing x. Let y be any element of F which is in (a, b). (Such y exists because the set F of irrational numbers is dense in the real line.) Let G be a base neighborhood of y contained in V. Since G contains the irrational point y, it must be an open interval: $G = (c, d)$ for real numbers $c < d$. Without loss of generality (as $a < y < b$), we may assume $a < c < d < b$. But since \mathbb{Q} is dense in \mathbb{R}, the interval (c, d) must contain a rational point, which would then be a point in U. We conclude that U and V must intersect, so X cannot be regular.

2. **Exercise 2, Section 3.2, page 84.** Prove that if X is a regular topological space and $E \subseteq X$, then E with its relative topology is regular.

Solution. Let F be a closed subset of E and x a point of E in the complement of F. A closed set in the subspace topology is the intersection $F' \cap E$ of a closed set F' of X with E. Clearly F' cannot contain x since x belongs to $E \cap (X \setminus F)$. Since X is regular, there must be disjoint open sets U, V in X such that $x \in U$ and $F' \subseteq V$. But then $U \cap E$ and $V \cap E$ are disjoint open sets in E such that $x \in U \cap E$ and $F \subseteq V \cap E$. This shows that E is also regular.

3. **Exercise 4, Section 3.2, page 84.** If X is a topological space and for each $x \in X$ there is an open set G such that $x \in G$ and $\text{cl}G$ with its relative topology is a regular space, then X is regular.

Solution. Let F be a closed subset of X and $x \in X \setminus F$. Let G be an open neighborhood of x whose closure is regular with the relative topology. Let $F' = F \cap \text{cl}G$, which is a closed subset of $\text{cl}G$. Since the closure of G is regular, we can find disjoint open subsets U, W' of $\text{cl}G$ such that $x \in U$ and $F' \subseteq W'$. We may assume that U is
an open subset of G since $x \in G$ and G is open. Let W be an open subset of X such that $W' = W \cap \text{cl}G$ and define $V = W \cup (X \setminus \text{cl}G)$. Then U and V are disjoint open sets in X, $x \in U$ and

$$F = (F \cap \text{cl}G) \cup (F \cap (X \setminus \text{cl}G)) \subseteq W \cup (X \setminus \text{cl}G) = V.$$

Therefore X is regular.

\[\diamondsuit\]

5. **Exercise 5, Section 3.2, page 84, modified.** Show that if X is regular then for any two distinct points x and y there are open sets U and V such that $x \in U$, $y \in V$ and $\text{cl}U \cap \text{cl}V = \emptyset$. (The textbook claims that the converse is true. Can you prove it?)

Solution. Assume X is regular. By the standing assumption that X is Hausdorff, given two points x, y, we can find disjoint open sets G and H such that $x \in G$ and $y \in H$. Then by Proposition 3.2.2, there are open sets $U \subseteq \text{cl}U \subseteq G$ and $V \subseteq \text{cl}V \subseteq H$ such that $x \in U$, $y \in V$. But this means that the closures of U and V are disjoint.

\[\diamondsuit\]

6. **Exercise 10, page 84.** If X is a connected completely regular space that is not a singleton, show that X has uncountably many points.

Solution. Let two distinct points x_1, x_2 of X. Naturally, the set $\{x_1\}$ is closed (a consequence of the standing assumption that our topological spaces are Hausdorff). Since X is completely regular, there is a continuous function $f : X \to \mathbb{R}$ such that $f(x_1) = 0$ and $f(x_2) = 1$. Since X is connected, I claim that every $c \in [0, 1]$ is the value of some point of X under f, and therefore X has uncountably many points (since the unit interval is uncountable). In fact, suppose some $c \in (0, 1)$ is not the value of any point in X. Let $U = \{x \in X : f(x) > c\}$ and $V = \{x \in X : f(x) < c\}$. Then U and V are nonempty, disjoint, open subsets of X whose union is all of X. But this contradicts the assumption that X is connected.