
Homework set 6 - due 12/01/22

Math 444

There are two parts to this assignment. In the first part we look at a class of problems in quantum probability

theory that requires the use of symmetric and antisymmetric tensor products of Hilbert spaces. In physics, this is

related to the subject of quantum statistics and the notions of fermions and bosons. For more on this topic (from a

math perspective) see An Introduction to Quantum Stochastic Calculus by K.R. Parthasarathy (Springer, 1992, Chapter

2, Section 17) and Indistinguishable Classical Particles by Alexander Bach (Springer, 1997).

The second part has to do with the postulate about the dynamics of quantum states.

In the first part, most of the exercises, except number 6, already have answers. You should take those as a reading

assignment.

¦

Quantum statistics. Consider a system consisting of n identical subsystems. We call these subsystems particles.

To say that the particles are identical means that they agree in all their intrinsic (that is, state independent) properties.

Effectively, for this assignment, this means that identical particles are associated to a same Hilbert space. If H denotes

the Hilbert space of one subsystem, then the Hilbert space for the composite system is the n-fold tensor product

H⊗n :=H⊗·· ·⊗H.

Identical particles are said to be indistinguishable if they are in a state that is symmetric. To make sense of this

statement, recall that Sn is the symmetric group in n symbols, i.e., the group of all permutations of the set X = {1, . . . ,n}.

Each permutation σ ∈ Sn is a bijective function σ : X → X . For each σ ∈ Sn , let Π(σ) be the linear operator on H⊗n

obtained by setting

Π(σ)u1 ⊗·· ·⊗un = uσ−1(1) ⊗·· ·⊗uσ−1(n)

on decomposable tensors, then extendingΠ(σ) to all ofH⊗n by linearity. Recall thatΠ is a group homomorphism from

Sn to the group of unitary transformations on H⊗n . This means that Π(σ) is a unitary operator and Π(ση) =Π(σ)Π(η)

for all σ,η ∈ Sn .

We can now state as a definition that the identical particles are indistinguishable if they are in a state (defined by

the density operator) ρ which is symmetric in the sense that Π(σ)ρΠ(σ−1) = ρ for all σ ∈ Sn . For example, if ρ0 is a

state on H then ρ⊗n
0 := ρ0 ⊗·· ·⊗ρ0 is a symmetric state.

1. Let ρ be a symmetric state of a composite systems of n identical particles. Each particle’s Hilbert space is H. Let

P1, . . . ,Pn ∈P(H) be orthogonal projections onH representing events, and let the joint event be P := P1⊗·· ·⊗Pn .

Define the permuted joint eventΠ(σ)PΠ(σ−1). (This is a composition of linear maps.)

(a) Show that

Π(σ)PΠ(σ−1) = Pσ−1(1) ⊗·· ·⊗Pσ−1(n).



(b) Show that the probability of any permuted eventΠ(σ)PΠ(σ−1) with respect to the symmetric state ρ is the

same as the probability of P with respect to ρ. (Recall that the probability of the event P in the state ρ is

Tr(ρP ).)

(c) Let Ps and Pa be the linear transformations on H⊗n defined by

Ps := 1

n!

∑
σ∈Sn

Π(σ), Pa := 1

n!

∑
σ∈Sn

sgn(σ)Π(σ),

called the symmetrization and antisymmetrization operators. Show that Ps ,Pa ∈P(H⊗n). (Recall that the

latter space consists of the orthogonal projections on the tensor product Hilbert space. Thus proving that

P ∈P(H⊗n) amounts to checking that P 2 = P and that P is self-adjoint with respect to the inner product

on H⊗n .)

(d) Show that

Π(σ)Ps = PsΠ(σ) = Ps , Π(σ)Pa = PaΠ(σ) = sgn(σ)Pa

for all σ ∈ Sn .

(e) Let H⊗n
s be the range of Ps (i.e., the image of H⊗n under the transformation Ps ). We call it the symmetrized

tensor product. Similarly, define the antisymmetrized tensor product H⊗n
a , the range of Pa . Show that

the symmetric state ρ maps the symmetrized tensor product into itself and the antisymmetrized tensor

product into itself.

(f) Let ρ be a symmetric state of n identical particles. Let u ∈H⊗n , u 6= 0, be an eigenvector of ρ corresponding

to eigenvalue p. Show that the linear span of all Π(σ)u, σ ∈ Sn , is contained in the eigenspace of ρ for the

eigenvalue p. (This amounts to checking that ρΠ(σ)u = pΠ(σ)u for all σ ∈ Sn .)

We say that the n particles are n identical bosons if their joint Hilbert space is H⊗n
s with a symmetric state. They

are n identical fermions if their joint Hilbert space is H⊗n
a with a symmetric state.

Solution.

(a) Let us applyΠ(σ)PΠ(σ−1) to a decomposable vector u1 ⊗·· ·⊗un :

Π(σ)PΠ(σ−1)u1 ⊗·· ·⊗un =Π(σ)Puσ(1) ⊗·· ·⊗uσ(n)

=Π(σ)P1uσ(1) ⊗·· ·⊗Pnuσ(n)

= Pσ−1(1)u1 ⊗·· ·⊗Pσ−1(n)un

= Pσ−1(1) ⊗·· ·⊗Pσ−1(n)u1 ⊗·· ·⊗un .

As decomposable tensors of the form u1 ⊗·· ·⊗un span H⊗n , the claimed identity holds.

(b) If ρ is a symmetric state and P then, since Tr(AB) = Tr(B A),

Tr(ρΠ(σ)PΠ(σ−1)) = Tr(Π(σ−1)ρΠ(σ)P ) = Tr(ρP ).

(c) I will show this for Pa . The same argument holds for Ps . First note thatΠ(σ) satisfies

Π(σ)∗ =Π(g−1).
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It suffices to verify this identity on separable tensors:

〈
Π(σ)∗u1 ⊗·· ·⊗un , v1 ⊗·· ·vn

〉= 〈u1 ⊗·· ·⊗un ,Π(σ)v1 ⊗·· ·vn〉
= 〈

u1 ⊗·· ·⊗un , vσ−1(1) ⊗·· ·v−1
σ (n)

〉
= 〈

u1, vσ−1(1)

〉 · · ·〈un , vσ−1(n)

〉
= 〈

uσ(1), v1
〉 · · ·〈uσ(n), vn

〉
(permuting the factors of this product according to σ)

= 〈
uσ(1) ⊗·· ·⊗uσ(n), v1 ⊗·· ·⊗ vn

〉
= 〈
Π(σ−1)u1 ⊗·· ·⊗u1, v1 ⊗·· ·⊗ vn

〉
.

Therefore, since sgn(σ) = sign(σ−1),

P∗
a = 1

n!

( ∑
σ∈Sn

sgn(σ)Π(σ)

)∗
= 1

n!

∑
σ∈Sn

sgn(σ)Π(σ)∗ = 1

n!

∑
σ∈Sn

sgn(σ)Π(σ−1) = 1

n!

∑
σ∈Sn

sgn(σ−1)Π(σ−1).

The group inverse σ 7→σ−1 is a bijection. Therefore

1

n!

∑
σ∈Sn

sgn(σ−1)Π(σ−1) = 1

n!

∑
σ∈Sn

sgn(σ)Π(σ) = Pa .

This shows that P∗
a = Pa . Let us now check that P 2

a = Pa .

PaPa =
(

1

n!

∑
σ∈Sn

sgn(σ)Π(σ)

)(
1

n!

∑
η∈Sn

sgn(η)Π(η)

)

= 1

n!

1

n!

∑
σ∈Sn

∑
η∈Sn

sgn(σ)sgn(η)Π(σ)Π(η)

= 1

n!

∑
σ∈Sn

(
1

n!

∑
η∈Sn

sgn(ση)Π(ση)

)
(sgn andΠ are homomorphisms)

= 1

n!

∑
σ∈Sn

Pa (η 7→ση is a bijection)

= Pa (Sn has order n!)

(d) Let us check this for Pa . The same argument will apply to Ps . Since

Π(σ)Π(η) =Π(σ)Π(η), sgn(ση) = sgn(σ)sgn(η), sgn(σ) = sgn(σ−1),

then

Π(σ)Pa = 1

n!

∑
η∈Sn

sgn(η)Π(ση) = 1

n!

∑
η∈Sn

sgn(σ−1)sgn(ση)Π(ση) = sgn(σ)
1

n!

∑
η∈Sn

sgn(η)Π(η) = sgn(σ)Pa .

We have used that η 7→ση is a bijection. The other identities are shown in a similar way.

(e) It suffices to check that ρ sends elements of H⊗n
a of the form Pau, u ∈H⊗n , to elements of the same form.

But ρ commutes with each Π(σ), therefore it commutes with Pa . Thus ρPau = Paρu. The same argument

applies to Ps .

(f) This is immediate due to ρ commuting withΠ(σ).
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2. Let {e1, . . . ,eN } be an orthonormal basis for the N -dimensional Hilbert space H. Let r1, . . . ,rN be nonnegative

integers such that r1 +·· ·+ rN = n. It will be useful to employ the following notation:

e(r1, . . . ,rN ) := e1 ⊗·· ·⊗e1︸ ︷︷ ︸
r1

⊗·· ·⊗ei ⊗·· ·⊗ei︸ ︷︷ ︸
ri

⊗·· ·⊗eN ⊗·· ·⊗eN︸ ︷︷ ︸
rN

.

Naturally, if ri = 0, the term ei does not appear in the above product. The orthogonal projection to the one-

dimensional subspace of H⊗n spanned by e(r1, . . . ,rN ) will be denoted |e(r1, . . . ,rN )〉〈e(r1, . . . ,rN )| .

(a) Show that {(
n!

r1! · · ·rN !

)1/2

Ps e(r1, . . . ,rN ) : r j ≥ 0 ( j = 1, . . . , N ),r1 +·· ·+ rN = n

}
is an orthonormal basis for H⊗n

s . Conclude that

dimH⊗n
s =

(
N +n −1

n

)
.

(b) Show that H⊗n
a = {0} if n > N . If n ≤ N , show that{p

n!Pae(r1, . . . ,rN ) : r j ∈ {0,1},r1 +·· ·+ rN = n
}

is an orthonormal basis for H⊗n
a . Conclude that

dimH⊗
a =

(
N

n

)
.

Solution.

(a) Let us first check that these vectors are orthonormal. Let us define

ar s :=
〈(

n!

r1! · · ·rN !

)1/2

Ps e(r1, . . . ,rN ),

(
n!

s1! · · · sN !

)1/2

Ps e(s1, . . . , sN )

〉
.

Then, since P∗
s = Ps = P 2

s ,

ar s = n!p
r1! · · ·rN !s1! · · · sN !

〈e(r1, . . . ,rN ),Ps e(s1, . . . , sN )〉

= 1p
r1! · · ·rN !s1! · · · sN !

∑
σ∈Sn

〈e(r1, . . . ,rN ),Π(σ)e(s1, . . . , sN )〉

= 1p
r1! · · ·rN !s1! · · · sN !

∑
σ∈Sn

〈
e1 ⊗·· ·⊗e1︸ ︷︷ ︸

r1

⊗·· ·⊗eN ⊗·· ·⊗eN︸ ︷︷ ︸
rN

,Π(σ)e1 ⊗·· ·⊗e1︸ ︷︷ ︸
s1

⊗·· ·⊗eN ⊗·· ·⊗eN︸ ︷︷ ︸
sN

〉
.

It is apparent from this last expression that it is nonzero only when (r1, . . . ,rN ) = (s1, . . . , sN ) and when σ

permutes the factors in each block ei ⊗ ·· · ⊗ ei among themselves. The number of permutations of this

kind is r1! · · ·rN ! and each nonzero inner product in the above sum equals 1. Therefore ar,s = 0 if r 6= s

and ar,r = 1. Further note that the symmetrization of an arbitrary tensor of the form ei1 ⊗ ·· ·⊗ ein equals
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Ps e(r1, . . . ,rN ) for some (r1, . . . ,rN ) such that r1 +·· ·+ rN = n. Therefore the orthonormal family of tensors

spans all of H⊗n
s and thus constitutes an orthonormal basis.

To show that the dimension is the given binomial expression, we need to count the ways we can separate

the numbers 1,2, . . . ,n into N bunches of consecutive numbers. We think of the bunches as obtained by

placing N −1 walls between the numbers disposed in linear fashion. Thus let us imagine that there are a

total of n +N −1 places disposed in a line and that each place is to be occupied by either a number from

1 to n (in this order) or by a wall. The number of bunches is then the number of ways of choosing N −1

places out of n+N −1. This is also equal to the number of ways of choosing n out of N +n−1, which is the

given binomial expression.

(b) First note that Pae(r1, . . . ,rN ) = 0 if ri ≥ 2 for some i . In fact, letσbe an odd permutation that only permutes

the factors in the block ei ⊗·· ·⊗ei . Then

−Pae(r1, . . . ,rN ) =Π(σ)Pae(r1, . . . ,eN ) = PaΠ(σ)e(r1, . . . ,rN ) = Pae(r1, . . . ,rN ).

This implies that Pae(r1, . . . ,rN ) = 0. Therefore the image of Pa is spanned by the vectors

{Pae(r1, . . . ,rN ), ri ∈ {0,1}, r1 +·· ·+ rN = n}.

We can show that the vectors
p

n!Pae(r1, . . . ,rN ) are orthonormal by the same argument used in the previ-

ous item. Thus for the antisymmetrized tensor product Hilbert space to be non-zero we must have N ≥ n.

If we write these antisymmetrized vectors as Paei1 ⊗ ·· · ⊗ ein , i1 < ·· · < in , then the number of such vec-

tors equals the number of ways of choosing n (ordered) indices among N numbers. But this is the given

binomial coefficient.

¦

3. Statistics of occupancy I: Maxwell-Boltzmann. Let us first consider a classical probability problem. Suppose n

identical balls are placed randomly into N urns. The urns are labeled 1, . . . , N . The probability that any one of

the balls will fall into urn j is assumed to be p j ≥ 0, so that p1+·· ·+pN = 1. We wish to determine the probability

of the event E(r1, . . . ,rN ) of obtaining r j balls in urn j for j = 1, . . . , N . It is a basic fact from probability theory

that the probability of this event is

Pr(E(r1, . . . ,rN )) = n!

r1! · · ·rN !
pr1

1 · · ·prN
N .

This is called the multinomial distribution. Let us derive this probability using the language of Hilbert spaces

and linear operators.

The probability distribution for a single ball, written as a density operator, is

ρ0 =
N∑

j=1
p j | j 〉〈 j | .

Here, for a single ball, we employ the standard notation | j 〉 = e j . Note that the probability of finding a given ball

with density operator ρ0 in urn s is the probability of the event Es := |s〉〈s| ∈P(H), which is

Prρ0 (Es ) = Tr(ρ0Es ) = Tr

(∑
j

p j | j 〉〈 j |s〉〈s|
)
=∑

j
p j | 〈 j |s〉 |2 =∑

j
p jδ j s = ps .
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We assume that the joint probability distribution for all the balls is given by ρ = ρ⊗n
0 = ρ0 ⊗·· ·⊗ρ0. To verify that

the multinomial distribution indeed holds, we need to obtain the probability of the event E(r1, . . . ,rN ), which

may be written in Dirac notation as

E(r1, . . . ,rN ) = ∑
|{i : ji= j }|=r j : j=1,...,N

| j1 · · · jn〉〈 j1 · · · jn | ,

where the summation is over all ( j1, . . . , jn) ∈ {1, . . . , N }n such that each value j ∈ {1, . . . , N } appears in | j1, . . . , jn〉
r j times.

(a) Show that E(r1, . . . ,rN ) is an orthogonal projection on H⊗n whose range has dimension n!
r1!···rN ! .

(b) Show that the probability of the event E(r1, . . . ,rN ) in state ρ⊗n
0 is given by

Tr
(
ρ⊗n

0 E(r1, . . . ,rN )
)= n!

r1! · · ·rN !
pr1

1 · · ·prN
N .

Solution.

(a) That E(r1, . . . ,rN ) is an orthogonal projection is an immediate consequence of the fact that it is a sum

of orthogonal projections that are mutually orthogonal. The dimension of the range is the dimension of

the subspace of H⊗n spanned by the orthogonal unit vectors | j1 · · · jn〉 such that each value j ∈ {1, . . . , N }

appears r j times among the ji . But the number of such vectors is the number of ways of distributing

n (distinct) balls into N urns such that urn j has r j balls. A standard counting method shows that this

number is given by the multinomial coefficient(
n

r1, . . . ,rN

)
= n!

r1! · · ·rN !
.

(b) We have

Tr
(
ρ⊗n

0 E(r1, . . . ,rN )
)= ∑

|{i : ji= j }|=r j : j=1,...,N
Tr

(
ρ⊗n

0 | j1 · · · jn〉〈 j1 · · · jn |
)

= ∑
|{i : ji= j }|=r j : j=1,...,N

〈 j1 · · · jn |ρ⊗n
0 | j1 · · · jn〉

= ∑
|{i : ji= j }|=r j : j=1,...,N

p j1 · · ·p jn

= n!

r1! · · ·rN !
pr1

1 · · ·prN
N .

¦

4. Statistics of occupancy II: Bose-Einstein. We suppose that the n balls are n identical bosons. The Hilbert space

for the system is now H⊗n
s . We take the probability distribution ρ⊗n

0 conditional on the event Ps . (Recall that

Ps is the orthogonal projection to the symmetrized tensor product Hilbert space.) It makes sense to define the

conditional probability distribution by the normalized density operator

ρ⊗n
s :=

ρ⊗n
0

∣∣
H⊗n

s

Tr
(
ρ⊗n

0 Ps
) .
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(It should be clear thatρ⊗n
0 maps the symmetrized Hilbert space into itself.) Thus a system of n indistinguishable

bosons may be defined by the quantum probability space

(
H⊗n

s ,P
(
H⊗n

s

)
,ρ⊗n

s

)
.

We now wish to obtain the probability of the event that the n bosons are distributed over the N urns according

to the occupation numbers (r1, . . . ,rN ). Imposing the symmetry on the event E(r1, . . . ,rN ), we have

Es (r1, . . . ,rN ) := Ps E(r1, . . . ,rN )Ps .

Note that this event corresponds to the orthogonal projection to the one-dimensional subspace ofH⊗n
s spanned

by the vector Ps e(r1, . . . ,rN ).

(a) Show that Es (r1, . . . ,rN ) is the orthogonal projection to the one-dimensional subspace of H⊗n
s spanned by

the tensor
(

n!
r1!···rN !

)1/2
Ps |e(r1, . . . ,rN )〉.

(b) Show that

c := Tr
(
ρ⊗n

0 Ps
)= ∑

s1+···+sN=n
p s1

1 · · ·p sN
N .

(c) Show that the probability of the event Es (r1, . . . ,rN ) in the bosonic state ρ⊗n
s = c−1 ρ⊗n

0

∣∣
H⊗n

s
is

Tr
(
ρ⊗n

s Es (r1, . . . ,rN )
)= pr1

1 · · ·prN
N∑

s1+···+sN=n p s1
1 · · ·p sN

N

.

In this case, the indistinguishable particles are said to obey the Bose-Einstein statistics.

Solution.

(a) This follows from the observation that

Ps E(r1, . . . ,rN )Ps =
∑

|{i : ji= j }|=r j : j=1,...,N
Ps | j1 · · · jn〉〈 j1 · · · jn |Ps

= ∑
|{i : ji= j }|=r j : j=1,...,N

Ps |e(r1, . . . ,rN )〉〈e(r1, . . . ,rN )|Ps

= n!

r1! · · ·rN !
Ps |e(r1, . . . ,rN )〉〈e(r1, . . . ,rN )|Ps ,

which is the orthogonal projection to the one-dimensional subspace generated by the unit vector√
n!

r1! · · ·rN !
Ps |e(r1, . . . ,rN )〉 .
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(b) We have, using the result of the first item:

Tr
(
ρ⊗n

0 Ps
)= ∑

s1+···+sN=n
Tr

(
ρ⊗n

0 Ps E(s1, . . . , sN )Ps
)

= ∑
s1+···+sN=n

n!

s1! · · · sN !
Tr

(
ρ⊗n

0 Ps |e(s1, . . . , sN )〉〈e(s1, . . . , sN )|Ps
)

= ∑
s1+···+sN=n

n!

s1! · · · sN !
〈e(s1, . . . , sN )|ρ⊗n

0 Ps |e(s1, . . . , sN )〉

= ∑
s1+···+sN=n

n!

s1! · · · sN !
p s1

1 · · ·p sN
N 〈e(s1, . . . , sN )|Ps |e(s1, . . . , sN )〉

= ∑
s1+···+sN=n

1

s1! · · · sN !
p s1

1 · · ·p sN
N

∑
σ∈Sn

〈e(s1, . . . , sN )|Π(σ) |e(s1, . . . , sN )〉

= ∑
s1+···+sN=n

1

s1! · · · sN !
p s1

1 · · ·p sN
N s1! · · · sN !

= ∑
s1+···+sN=n

p s1
1 · · ·p sN

N .

(c) The calculation of the previous item already shows that

Tr
(
ρ⊗n

0 Es (r1, . . . ,rN )
)= pr1

1 · · ·prN
N .

Therefore,

Tr
(
ρ⊗n

s Es (r1, . . . ,rN )
)= pr1

1 · · ·prN
N∑

s1+···+sN=n p s1
1 · · ·p sN

N

as claimed.

¦

5. Statistics of occupancy III: Fermi-Dirac. Let the Hilbert space now be the antisymmetrized tensor product H⊗n
a .

We define the state ρ⊗n
a as

ρ⊗n
a :=

ρ⊗n
0

∣∣
H⊗n

a

Tr
(
ρ⊗n

0 Ea
) .

A system of n indistinguishable fermions may be defined by the quantum probability space

(
H⊗n

a ,P
(
H⊗n

a

)
,ρ⊗n

a

)
.

We now wish to obtain the probability of the event that the n fermions are distributed over the N urns according

to the occupation numbers (r1, . . . ,rN ). Imposing the symmetry on the event E(r1, . . . ,rN ), we have

Ea(r1, . . . ,rN ) := PaE(r1, . . . ,rN )Pa .

(a) Show that Ea(r1, . . . ,rN ) is the orthogonal projection to the one-dimensional subspace of H⊗n
a spanned by

the vector
p

n!Pa |e(r1, . . . ,rN )〉 where r j ∈ {0,1},r1 +·· ·+ rN = n. Alternatively, we may write this vector as

p
n!Pa | j1 . . . jn〉 , j1 < j2 < ·· · < jn .
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(b) Show that

c := Tr
(
ρ⊗n

0 Pa
)= ∑

1≤ j1<···< jn≤N
p j1 · · ·p jn .

(c) Show that the probability of the event Ea(r1, . . . ,rN ) in the fermionic state ρ⊗n
a = c−1 ρ⊗n

0

∣∣
H⊗n

a
is

Tr
(
ρ⊗n

0 Ea(r1, . . . ,rN )
)= p j1 · · ·p jn∑

1≤i1<···<in≤N pi1 · · ·pin

.

In this case, the indistinguishable particles are said to obey the Fermi-Dirac statistics.

Solution.

(a) We have

Ea(r1, . . . ,rN ) = PaE(r1, . . . ,rN )Pa

= ∑
|{i : ji= j }|=r j : j=1,...,N

Pa | j1 · · · jn〉〈 j1 · · · jn |Pa

= ∑
|{i : ji= j }|=r j : j=1,...,N

Pa |e(r1, . . . ,rN )〉〈e(r1, . . . ,eN )|Pa .

Note that Pae(r1, . . . ,rN ) = 0 if r j ≥ 2 for some j . In fact, if ei ⊗ ·· · ⊗ ei is a block in e(r1, . . . ,rN ) with at

least 2 factors and σ ∈ Sn is a transposition which exchanges two equal factors in this tensor product, then

Π(σ)e(r1, . . . ,rN ) = e(r1, . . . ,rN ). Since alsoΠ(σ)Pa = sgn(σ)Pa , we have

Pae(r1, . . . ,rN ) = PaΠ(σ)e(r1, . . . ,rN ) =Π(σ)Pae(r1, . . . ,rN ) =−Pae(r1, . . . ,rN ).

Therefore

Ea(r1, . . . ,rN ) = ∑
|{i : ji= j }|=r j ∈{0,1}: j=1,...,N

Pa |e(r1, . . . ,rN )〉〈e(r1, . . . ,eN )|Pa .

The number of terms in the above summation is the number of n-tuples ( j1, . . . , jn) consisting of distinct

ji , one for each urn that are occupied (corresponding to a r j = 1). This is the number of all permutations

of the entries of ( j1, . . . , jn), which is n!. Therefore,

Ea(r1, . . . ,rN ) = n!Pa |e(r1, . . . ,rN )〉〈e(r1, . . . ,eN )|Pa =
(p

n!Pa |e(r1, . . . ,rN )〉
)(p

n!〈e(r1, . . . ,rN )|
)

Pa .

(b) We have

Tr
(
ρ⊗n

0 Ea(r1, . . . ,rN )
)= n!Tr

(
ρ⊗n

0 Pa | j1 · · · jn〉〈 j1 · · · jn |Pa
)

= n!〈 j1 · · · jn |Paρ
n⊗
0 | j1 · · · jn〉

= p j1 · · ·p jn n!〈 j1 · · · jn |Pa | j1 · · · jn〉
= p j1 · · ·p jn .

The probability of Pa in state ρ⊗n
0 is the sum of the above probabilities over all the i1 < ·· · < in :

Tr
(
ρ⊗n

0 Pa
)= ∑

1≤i1<···<in≤N
pi1 · · ·pin .

Thus we conclude that

Tr
(
ρ⊗n

0 Ea(r1, . . . ,rN )
)= p j1 · · ·p jn∑

1≤i1<···<in≤N pi1 · · ·pin

.
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¦

6. In order to compare the above three distributions, consider the case of n particles and 2 urns. Let the single

particle state be

ρ0 = 1

2
|0〉〈0|+ 1

2
|1〉〈1| .

Show the following:

(a) According to the Maxwell-Boltzmann statistics the number of particles in urn 1 has a binomial distribution

given by

Pr
(
urn 1 has k particles

)= (
n

k

)
2−n , 0 ≤ k ≤ n.

In particular, the probability that all the balls occupy the first urn is 2−n .

(b) According to the Bose-Einstein statistics

Pr
(
urn 1 has k particles

)= 1

n +1
, 0 ≤ k ≤ n.

In particular, the probability that all the balls occupy the first urn is 1/(n +1).

(c) According to the Fermi-Dirac statistics it is not possible to have more than two particles when there are

only two urns. Two particles cannot occupy the same urn. This is the so-called Pauli exclusion principle.

¦

Time evolution of quantum states and the Schrödinger equation. Let us begin with a few remarks about the

dynamics of states in the classical setting. Let X be a set whose elements represent the classical (pure) states of the

system. Here, we mean by a state something more than we meant previously. We suppose that the system can evolve in

time in a deterministic way and that the state contains all the information we need in principle to uniquely determine

the system’s future (and past) at any given time. Thus there exists a mapϕ such that, if x0 ∈ X is the state of the system

at time t0, then at the time t0 +∆t the state will be ϕ∆t (x0, t0). At the time t0 +∆t +∆t ′, the system will evolve from its

state at time t0 +∆t to the new state ϕ∆t ′ (ϕ∆t (x0, t0), t0 +∆t ). By uniqueness of the time evolution (determinism), this

is the same state we obtain by starting from x0 at t0 and letting the system evolve over the time interval ∆t +∆t ′. Thus

ϕ∆t+∆t ′ (x0, t0) =ϕ∆t ′ (ϕ∆t (x0, t0), t0 +∆t ).

For simplicity, we will only consider the case in which the law governing the evolution of the system does not change

in time (time homogeneity). This means that

ϕ∆t (x0, t0) =ϕ∆t (x0, t ′0) =:ϕ∆t (x0).

In other words, the state of the system only depends on the initial state and the time elapsed, but not on the initial

time. In this case,

ϕ∆t+∆t ′ (x0) =ϕ∆t ′ (ϕ∆t (x0))

and ϕ0(x0) = x0, since the state should remain the same if it is given no time to change. This condition defines a flow.

Definition 0.1 (Flow). A flow on a set X is a family of maps ϕt : X → X such that ϕ0 is the identity map and

ϕt+s (x) =ϕt (ϕs (x))
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for all t , s ∈R and x ∈ X .

Suppose now that we have a measure space (X ,F,µ) (think of Rn with the standard volume measure) and that the

flow is (measurable and) measure preserving. We may say in this case that the flow is conservative. To say that the flow

is measure preserving means that for any (measurable) subset A ⊆ X and t ∈R,

µ(ϕt (A)) =µ(A).

Note that this is equivalent to

1A ◦ϕt =1A .

(Check this!) Taking linear combinations (and limits), we obtain the equivalent characterization of measure invari-

ance: for all (measurable, integrable) functions f : X →C,∫
X

f ◦ϕt dµ=
∫

X
f dµ.

The flow on X then defines a family of operators on the Hilbert space L2(X ,F,µ) given by composition of functions:

Tt f := f ◦ϕ−t

and these operators are unitary:

〈
Tt f ,Tt g

〉= ∫
X

f ◦ϕ−t g ◦ϕ−t dµ=
∫

X

(
f g

)
◦ϕt dµ=

∫
X

f g dµ= 〈 f , g 〉.

Note in addition that T−t = T ∗
t :

〈
T−t f , g

〉= ∫
X

f ◦ϕt g dµ=
∫

X
f g ◦ϕ−t dµ= 〈

f ,Tt g
〉= 〈

T ∗
t f , g

〉
.

Since Tt is unitary, we have a right to expect (with things properly stated, this would be Stone’s theorem) that there

exists a self-adjoint operator H on the Hilbert space such that

Tt = e−i t H .

We will refer to H as the generator of the time evolution of the system or as the system Hamiltonian. Let us denote by

H the Hilbert space L2(X ,H,µ). If X = {1, . . . ,n} is a finite set with n elements, then H is simply Cn with the standard

inner product and orthonormal basis {|1〉 , . . . , |n〉}. Given any u ∈ H we have that the vector ut := Tt u satisfies the

differential equation
dut

d t
=−i Hut

since we can expect (at least in finite dimensions, but actually true fairly generally once the basic theory of self-adjoint

operators in Hilbert spaces is properly spelled out) that

d

d t
Tt u = d

d t
e−i t H u =−i He−i t H u =−i HTt u.

The conclusion here is that, already classically, it is natural to think that the time evolution of a conservative deter-

ministic system defines a unitary flow on a Hilbert space and that this evolution is generated by a self-adjoint operator.

We take this as the starting point in the quantum setting.

We thus assume that the time evolution of quantum system with Hilbert space H is generated by a self-adjoint
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operator H , called the system’s Hamiltonian, and that H gives rise to a flow (or 1-parameter group) of unitary operators

Ut = e−i t H .

If u is a unit vector in H representing an initial state pure state, then u evolves in time according to

ut =Ut u

and ut satisfies the Schr"odinger equation
dut

d t
=−i Hut .

The state itself, ρ = |u〉〈u|, has a time evolution given by the family ρt which satisfies

dρt

d t
= d

d t
|ut 〉〈ut | = d

d t
e−i t H |u〉〈u|e i t H =−i H |ut 〉〈ut |+ |ut 〉〈ut | i H =−i [H ,ρt ].

Thus
dρt

d t
=−i [H ,ρt ].

We wish now to explore these ideas in the context of a single qubit system.

1. Let H = C2. The self-adjoint matrices constitute a 4-dimensional space of 2×2-matrices spanned by the Pauli

matrices

σ0 =
(

1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

Thus any self-adjoint operator on H can be written as

H = a0σ0 +a1σ1 +a2σ2 +a3σ3.

Let us write a ·σ := a1σ1 +a2σ2 +a3σ3 so that H = a0I +a ·σ. Suppose a is a unit vector in R3. Show that

e−i t H = e−i t a0 [(cos t )I − i (sin t )a ·σ] .

(Exercise 4.18 in the notes.)

2. As an example, let H =σ1. Find the unit vector ut that solves the Schrödinger equation with the Hamiltonian H

and u0 = |0〉.

3. Describe geometrically the states ρt = |ut 〉〈ut | obtained in the previous item as a subset of the Block sphere.

(You may use the result from Exercise 4.17 in the notes.)
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