Homework set 12
Math 5031

1. (Jacobson, page 188 exercise 1.) Determine the structure of \(\mathbb{Z}^3/K \), where \(K \) is generated by \(f_1 = (2, 1, -3), f_2 = (1, -1, 2) \).

2. Let \(G \) be the abelian group determined by generators \(V, W, X, Y, Z \) and relations

\[
\begin{align*}
V - 7W + 14Y - 21Z &= 0 \\
15V - 7W - 2X + 10Y - 5Z &= 0 \\
7V - 3W - 2X + 6Y - 9Z &= 0 \\
V - 3W + 2Y - 9Z &= 0.
\end{align*}
\]

Find the rank and torsion invariants (invariant factors) by putting an appropriate matrix in normal form. Write \(G \) in the form

\[
\mathbb{Z}^{d_1} \oplus \cdots \oplus \mathbb{Z}^{d_k} \oplus \mathbb{Z}^r.
\]

Here \(G/G_{\text{tor}} = \mathbb{Z}^r \) and \(r \) is the rank of \(G \).

3. (Jacobson, page 181 exercise 2.) Find a base for the submodule \(K \) of \(\mathbb{Q}[\lambda]^3 \) generated by

\[
f_1 = (2\lambda - 1, \lambda, \lambda^2 + 3), \ f_2 = (\lambda, \lambda, \lambda^2), \ f_3 = (\lambda + 1, 2\lambda, 2\lambda^2 - 3).
\]

4. Find a normal form for the matrix

\[
A = \begin{pmatrix}
\lambda^2 - 3\lambda + 2 & \lambda - 2 \\
(\lambda - 1)^3 & \lambda^2 - 3\lambda + 2
\end{pmatrix}
\]

in \(M_2(\mathbb{Q}[\lambda]) \), \(\lambda \) an indeterminate. Also find invertible matrices \(P \) and \(Q \) such that \(PAQ \) is in normal form.

5. (Jacobson, page 186 exercise 3.) Determine the invariant factors of

\[
A = \begin{pmatrix}
\lambda + 1 & 2 & -6 \\
1 & \lambda & -3 \\
1 & 1 & \lambda - 4
\end{pmatrix}
\]

both by putting it in normal form (to get the \(d_i \) directly), and by using \(d_1 = \Delta_1, d_2 = \frac{\Delta_2}{\Delta_1}, d_3 = \frac{\Delta_3}{\Delta_2} \) (without putting \(A \) in normal form.)

6. Prove the Cayley-Hamilton Theorem: If \(B \in M_n(\mathbb{F}) \) and \(p_B(\lambda) := \det(\lambda \mathbb{1} - B) \) is the characteristic polynomial of \(B \), then \(p_B(B) = 0 \).
7. In Exercise 5, \(A = \lambda \mathbb{1} - B \) for \(B \in M_3(\mathbb{Q}) \). Determine the minimal polynomial of \(B \) as well as its rational and Jordan canonical forms.

8. (Jacobson, page 186 exercise 10.) Let \(R \) be a (not necessarily commutative) ring and define the elementary matrix \(T_{ij}(a) := T_{ij}^{(a)}(a) := \mathbb{1}_{n + a} e_{ij}, i \neq j \). Here \(a \in R \) and \(e_{ij} \) is the matrix having 1 at the \((i, j)\)-entry and zeros everywhere else. Verify the four Steinberg relations:

(a) \((T_{ij}(a))^{-1} = T_{ij}(-a)\);

(b) \(T_{ij}(a) T_{ij}(b) = T_{ij}(a + b) \);

(c) \([T_{ij}(a), T_{jk}(b)] = T_{ik}(ab)\) if \(k \neq i \) (where the commutator is \([x, y] := x^{-1} y^{-1} xy\));

(d) \([T_{ij}(a), T_{k\ell}(b)] = 1\) if \(j \neq k \) and \(i \neq \ell \).

9. (Jacobson, page 202 exercise 8.) Prove that any nilpotent matrix in \(M_n(\mathbb{F}) \) is similar to

\[
\begin{pmatrix}
N_1 & 0 \\
& \ddots \\
0 & N_k
\end{pmatrix}
\]

where the \(N_i \) are blocks of the form

\[
\begin{pmatrix}
0 & 1 \\
& \ddots \\
0 & 1
\end{pmatrix}
\]

10. (Jacobson, page 202 exercise 4.) Verify that the characteristic polynomial of

\[
A = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 1 \\
-2 & 0 & -1 & -2
\end{pmatrix}
\]

is a product of linear factors in \(\mathbb{Q}[\lambda] \). Determine the rational and Jordan canonical forms for \(A \) in \(M_4(\mathbb{Q}) \). Also find a matrix \(S \) such that \(SAS^{-1} \) equals the Jordan canonical form.

11. (Jacobson, page 193 exercise 1.) Let \(R = \mathbb{R}[\lambda] \) and suppose \(M \) is a direct sum of cyclic \(R \)-modules of the following form:

\[
M = R/(\lambda - 1)^3 \oplus R/(\lambda^2 + 1)^2 \oplus R/(\lambda - 1)(\lambda^2 + 1)^4 \oplus R/(\lambda + 2)(\lambda^2 + 1)^2.
\]

Determine the elementary divisors and invariant factors of \(M \).

12. (Jacobson, page 188 exercise 2.) Determine the structure of \(M = \mathbb{Z}[i]^3 / K \) where \(K \) is generated by

\[
f_1 = (1, 3, 6), \ f_2 = (2 + 3i, -3i, 12 - 18i), \ f_3 = (2 - 3i, 6 + 9i, -18i).
\]

(This is similar to the above Exercise 2 in that you need to write down a matrix \(A \) and reduce it to normal form. Note that \(\mathbb{Z}[i] \) is Euclidean; you can simply use the absolute value.)

13. Determine the number of non-isomorphic abelian groups of order 900, and find the invariant factors \(d_i \) (in the structure theorem) for each group. (Hint: use IV.C.13-14, then convert to the form IV.C.10.)