The below problems are all from Tu’s book.

1. Read sections §1 and §2 of Chapter 1 of Tu’s book.

2. Tu, Problem 1.2, page 8. A C^∞ function very flat at 0. Let $f(x)$ be the function on \mathbb{R} defined in Example 1.3.

 (a) Show by induction that for $x > 0$ and $k \geq 0$, the kth derivative $f^{(k)}(x)$ is of the form $p_{2k}(1/x)e^{-1/x}$ for some polynomial $p_{2k}(y)$ of degree $2k$ in y.

 (b) Prove that f is C^∞ on \mathbb{R} and that $f^{(k)}(0) = 0$ for all $k \geq 0$.

3. Problem 1.5, page 8. A diffeomorphism of an open ball with \mathbb{R}^n. Let 0 = (0, 0) be the origin and $B(0, 1)$ the open unit disk in \mathbb{R}^3. To find a diffeomorphism between $B(0, 1)$ and \mathbb{R}^2, we identify \mathbb{R}^2 with the xy-plane in \mathbb{R}^3 and introduce the lower open hemisphere

 \[S : x^2 + y^2 + (z-1)^2 = 1, \quad z < 1, \]

 in \mathbb{R}^3 as an intermediate space (Figure 1.4, page 9 in text.) First note that the map

 \[f : B(0,1) \to S, \quad (a, b) \mapsto (a, b, 1 - \sqrt{1 - a^2 - b^2}) \]

 is a bijection.

 (a) The stereographic projection $g : S \to \mathbb{R}^2$ from (0, 0, 1) is the map that sends a point $(a, b, c) \in S$ to the intersection of the line through (0, 0, 1) and (a, b, c) with the xy-plane. Show that it is given by

 \[(a, b, c) \mapsto (u, v) = \left(\frac{a}{1 - c}, \frac{b}{1 - c}, 1 - \sqrt{1 - a^2 - b^2} \right), \quad c = 1 - \sqrt{1 - a^2 - b^2}, \]

 with inverse

 \[(u, v) \mapsto \left(\frac{u}{\sqrt{1 + u^2 + v^2}}, \frac{v}{\sqrt{1 + u^2 + v^2}}, 1 - \frac{1}{\sqrt{1 + u^2 + v^2}} \right). \]

 (b) Composing the two maps f and g gives the map

 \[h = g \circ f : B(0,1) \to \mathbb{R}^2, \quad h(a,b) = \left(\frac{a}{\sqrt{1 - a^2 - b^2}}, \frac{b}{\sqrt{1 - a^2 - b^2}} \right). \]

 (c) Generalize part (b) to \mathbb{R}^n.

4. Problem 2.1, page 17. Vector fields. Let X be the vector field $x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ and $f(x, y, z)$ the function $x^2 + y^2 + z^2$ on \mathbb{R}^3. Compute Xf.

5. **Problem 2.2, page 17. Algebra structure on** C_p^∞. Define carefully addition, multiplication, and scalar multiplication in C_p^∞. Prove that addition in C_p^∞ is commutative.

6. **Problem 2.3, page 17. Vector space structure on derivations at a point.** Let D and D' be derivations at p in \mathbb{R}^n, and $c \in \mathbb{R}$. Prove that

 (a) the sum $D + D'$ is a derivation at p.
 (b) the scalar multiple cD is a derivation at p.

7. **Problem 2.4, page 17. Product of derivations.** Let A be an algebra over a field K. If D_1 and D_2 are derivations of A, show that $D_1 \circ D_2$ is not necessarily a derivation (it is if D_1 or D_2 is 0), but $D_1 \circ D_2 - D_2 \circ D_1$ is always a derivation of A.