1. **The Pfaffian.** Let $\mathfrak{so}(2m)$ denote the vector space of $2m \times 2m$ skew-symmetric real matrices (the Lie algebra of the special orthogonal group $SO(2m)$). We define a map

$$\text{Pf}: \mathfrak{so}(2m) \to \mathbb{R}$$

as follows. Let e_1, \ldots, e_{2m} be a basis of \mathbb{R}^{2m} and consider for each $A = (a_{ij}) \in \mathfrak{so}(2m)$ the alternating tensor

$$\alpha = \sum_{i < j} a_{ij} e_i \wedge e_j = \frac{1}{2} \sum_{i,j=1}^{2m} a_{ij} e_i \wedge e_j.$$

Then the Pfaffian $\text{Pf}(A)$ is the real number such that

$$\alpha^m = \alpha \wedge \cdots \wedge \alpha = m! \text{Pf}(A) e_1 \wedge e_2 \wedge \cdots \wedge e_{2m}.$$

(a) Using the definition, show that the Pfaffian of the 4×4 matrix

$$A = \begin{pmatrix}
0 & a_{12} & a_{13} & a_{14} \\
-a_{12} & 0 & a_{23} & a_{24} \\
-a_{13} & -a_{23} & 0 & a_{34} \\
-a_{14} & -a_{24} & -a_{34} & 0
\end{pmatrix}$$

is given by

$$\text{Pf}(A) = a_{12}a_{34} - a_{13}a_{24} + a_{23}a_{14}.$$

Observe that the value of the Pfaffian does not depend on the choice of basis of \mathbb{R}^{2m}.

(b) Let $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and consider the block-diagonal matrix

$$A = \text{diag}(a_1 J, \ldots, a_m J).$$

Find the associated alternating 2-vector α and show that

$$\text{Pf}(A) = a_1 \cdots a_m.$$

(c) If $A \in \mathfrak{so}(2m)$ and B is any $2m \times 2m$ matrix, show that

$$\text{Pf}(B^T AB) = \text{Pf}(A) \det(B).$$

It follows that the Pfaffian is an $SO(2m)$-invariant polynomial on $\mathfrak{so}(2m)$.
(d) Show that if \(A \in \text{so}(2m) \), then
\[
(Pf(A))^2 = \det(A).
\]
You may take for granted the following fact from matrix algebra (which I encourage you to try to prove for yourself). There exists an orthogonal matrix \(B \in O(2n) \) such that
\[
B^\top A B = \text{diag}(a_1, \ldots, a_m).
\]

(e) Convince yourself (no need to write it down) that
\[
Pf(A) = \frac{1}{2^m m!} \sum_{\sigma \in S_{2m}} \text{sign}(\sigma) a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(2m-1)} a_{\sigma(2m)}.
\]

Solution.

(a) The associated form \(\alpha \) is
\[
\alpha = a_{12} e_1 \wedge e_2 + a_{13} e_1 \wedge e_3 + a_{14} e_1 \wedge e_4 + a_{23} e_2 \wedge e_3 + a_{24} e_2 \wedge e_4 + a_{34} e_3 \wedge e_4.
\]
The Pfaffian is then
\[
Pf(A) e_1 \wedge e_2 \wedge e_3 \wedge e_4 = \frac{1}{2} \alpha \wedge \alpha = (a_{12} a_{34} - a_{13} a_{24} + a_{23} a_{14}) e_1 \wedge e_2 \wedge e_3 \wedge e_4.
\]
So
\[
Pf(A) = a_{12} a_{34} - a_{13} a_{24} + a_{23} a_{14}.
\]

(b) The 2-form \(\alpha \) for this \(A \) is
\[
\alpha = a_1 e_1 \wedge e_2 + a_2 e_3 \wedge e_4 + \cdots + a_m e_{2m-1} \wedge e_{2m}.
\]
It follows that
\[
a_m = m! a_1 \cdots a_m e_1 \wedge \cdots \wedge e_{2m}.
\]
Therefore \(Pf(A) = a_1 \cdots a_m \).

(c) We may assume that \(B \) is invertible. Since invertible matrices are dense in the set of \(2m \times 2m \) matrices, we will be able to conclude that \(Pf(B^\top A B) = 0 \) when \(B \) is not invertible (so that the identity still holds). Let
\[
u_k = \sum_l b_{k,l}.
\]
Then
\[
\sum_{i,j} (B^\top A B)_{ij} e_i \wedge e_j = \sum_{i,j,k,\ell} b_{k,i} a_{k,\ell} b_{\ell,j} e_i \wedge e_j = \sum_{k,\ell} a_{k,\ell} u_k \wedge u_\ell.
\]
Then, as \(u_1 \wedge \cdots \wedge u_{2m} = \det(B) e_1 \wedge \cdots \wedge e_{2m} \), we obtain
\[
Pf(B^\top A B) e_1 \wedge \cdots \wedge e_{2m} = Pf(A) u_1 \wedge \cdots \wedge u_{2m} = Pf(A) \det(B) e_1 \wedge \cdots \wedge e_{2m}.
\]
The desired identity follows.

(d) By the previous part of this exercise, if \(B \) is special orthogonal, then \(Pf(B^\top A B) = Pf(A) \). From the second part, we conclude \(Pf(A) = a_1 \cdots a_m \). But it is a simple verification to check that \(\det(B^\top A B) = a_1^2 \cdots a_m^2 \). So we conclude that \((Pf(A))^2 = \det(A) \).

\[\diamond \]
2. **Exterior derivative expressed in terms of a connection.** If ω is a differential k-form on a smooth manifold M equipped with a torsion-free (i.e., symmetric) connection ∇, show that

$$d\omega(X_0,\ldots,X_k) = \sum_{i=0}^{k} (-1)^i \{ \nabla_{X_i} \omega \} \{ X_0,\ldots,\hat{X}_i,\ldots,X_k \},$$

where $X_0, X_1,\ldots, X_k \in \mathfrak{X}(M)$ and the hat symbol \hat{X} indicates that the corresponding vector field is dropped. Note: We have seen in an earlier homework assignment special cases of the following general formula:

$$(d\omega)(X_0,\ldots,X_k) = \sum_{i=0}^{k} (-1)^i X_i \{ \omega \{ X_0,\ldots,\hat{X}_i,\ldots,X_k \} \}$$

$$+ \sum_{i<j} \omega \{ [X_i,X_j],X_0,\ldots,\hat{X}_i,\ldots,\hat{X}_j,\ldots,X_k \},$$

which you may take for granted. You may also need to recall from a previous assignment the covariant derivative of a tensor field.

Solution. First observe that

$$D_i := (\nabla_{X_i} \omega) \{ X_0,\ldots,\hat{X}_i,\ldots,X_k \} = X_i \{ \omega \{ X_0,\ldots,\hat{X}_i,\ldots,X_k \} \}$$

$$- \sum_{j=0}^{i} \omega \{ X_0,\ldots,\nabla_{X_j} X_j,\ldots,\hat{X}_i,\ldots,X_k \},$$

$$- \sum_{j>i}^{k} \omega \{ X_0, X_j,\ldots,\hat{X}_i,\ldots,\nabla_{X_j} X_j,\ldots,X_k \}.$$

So

$$\sum_{i=0}^{k} (-1)^i D_i = \sum_{i=0}^{k} (-1)^i X_i \{ \omega \{ X_0,\ldots,\hat{X}_i,\ldots,X_k \} \}$$

$$- \sum_{j<i} (-1)^i \omega \{ X_0,\ldots,\nabla_{X_j} X_j,\ldots,\hat{X}_i,\ldots,X_k \}$$

$$- \sum_{j>i} (-1)^j \omega \{ X_0, X_j,\ldots,\hat{X}_i,\ldots,\nabla_{X_j} X_j,\ldots,X_k \}$$

$$= \sum_{i=0}^{k} (-1)^i X_i \{ \omega \{ X_0,\ldots,\hat{X}_i,\ldots,X_k \} \}$$

$$- \sum_{j<i} (-1)^i+j \omega \{ \nabla_{X_j} X_j, X_0,\ldots,\hat{X}_i,\ldots,X_k \}$$

$$+ \sum_{j>i} (-1)^j+j \omega \{ \nabla_{X_j} X_j, X_0,\ldots,\hat{X}_i,\ldots,X_k \}$$

$$= \sum_{i=0}^{k} (-1)^i X_i \{ \omega \{ X_0,\ldots,\hat{X}_i,\ldots,X_k \} \}$$

$$+ \sum_{i<j} (-1)^{j} \omega \{ \nabla_{X_j} X_j - \nabla_{X_j} X_i, X_0,\ldots,\hat{X}_i,\ldots,X_k \}$$

$$= \sum_{i=0}^{k} (-1)^i X_i \{ \omega \{ X_0,\ldots,\hat{X}_i,\ldots,X_k \} \}$$

$$+ \sum_{i<j} (-1)^{j} \omega \{ [X_i,X_j], X_0,\ldots,\hat{X}_i,\ldots,X_k \}$$

$$= d\omega(X_0,\ldots,X_k).$$

\diamondsuit
3. Differential forms with coefficients in a vector bundle. Let M be a smooth manifold and $\pi : E \to M$ a smooth vector bundle. We consider the vector bundle of alternating forms with values in E: $\bigwedge^k(T^*M) \otimes E$ and its smooth sections

$$
\Omega^k_M(E) := \Gamma\left(\bigwedge^k(T^*M) \otimes E\right) = \Omega^k(M) \otimes \Gamma(E).
$$

Note that the second symbol \otimes is the tensor product of modules. Elements of $\Omega^k_M(E)$ are, locally, linear combinations of terms of the form $\omega \otimes \xi$ where ω is a smooth k-form on M and ξ is a local section of E. An example of an element of $\Omega^2_M(E)$ is given by the curvature tensor $R(\cdot, \cdot)$ of a connection on a vector bundle F, where $E = F \otimes F^* \cong \text{End}(F)$.

Given a connection ∇ on E, we define the covariant exterior derivative on $\Omega^*_M(E)$ as the map

$$
d^\nabla : \Omega^k_M(E) \to \Omega^{k+1}_M(E)
$$

that satisfies

(a) $d^\nabla = \nabla$ for $k = 0$; thus $(d^\nabla \xi)(X) = \nabla_X \xi$ for $X \in \mathfrak{X}(M)$.

(b) $d^\nabla (\omega \otimes \xi) = d \omega \otimes \xi + (-1)^k \omega \wedge d^\nabla \xi$.

Show the following:

(a) If $\psi \in \Omega^1_M(E)$ and $X_0, \ldots, X_k \in \mathfrak{X}(M)$, then

$$
(d^\nabla \psi)(X_0, \ldots, X_k) = \sum_t ((-1)^t \nabla_{X_t} \psi (X_0, \ldots, \hat{X}_t, \ldots, X_k))
$$

$$
+ \sum_{i<j} (-1)^{i+j} \psi ([X_i, X_j], X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_k).
$$

(b) If $\psi \in \Omega^0_M(E)$ (that is, a smooth section of E), then

$$
d^\nabla \circ d^\nabla \xi = R(\cdot, \cdot) \xi
$$

where R is the curvature tensor of ∇.

Solution.

(a) It suffices to check the identity for separable forms of the type $\psi = \omega \otimes \xi$, where ω is an ordinary k-form and ξ is a section of E. In this case, the expression to be proved takes the following form:

$$
I := \sum_t ((-1)^t \nabla_{X_t} \omega (X_0, \ldots, \hat{X}_t, \ldots, X_k) \xi) + \sum_{i<j} (-1)^{i+j} \omega ([X_i, X_j], X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_k) \xi
$$

$$
= \left(\sum_t ((-1)^t X_t \omega (X_0, \ldots, \hat{X}_t, \ldots, X_k) + \sum_{i<j} (-1)^{i+j} \omega ([X_i, X_j], X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_k) \right) \xi
$$

$$
+ \sum_t (-1)^t \omega (X_0, \ldots, \hat{X}_t, \ldots, X_k) \nabla_{X_t} \xi
$$

$$
= (d \omega \otimes \xi)(X_0, \ldots, X_k) + \sum_t (-1)^t \omega (X_0, \ldots, \hat{X}_t, \ldots, X_k) \nabla_{X_t} \xi
$$

Now observe the following. If θ is a 1-form,

$$
(\omega \wedge \theta)(X_0, \ldots, X_k) = \sum_t (-1)^{i+k} \omega (X_0, \ldots, \hat{X}_i, \ldots, X_k) \theta(X_t).
$$
This identity is easily obtained by using the expression for the wedge product in terms of shuffles, as in Proposition 19.15 of the textbook.

Thus we obtain

\[I = ((d\omega \otimes \xi)(X_0, \ldots, X_k) + (-1)^k (\omega \wedge d^V \xi)(X_0, \ldots, X_k)). \]

From the defining two properties of \(d^V \) we obtain the following.

\[
\left(d^V (\omega \otimes \xi)\right)(X_0, \ldots, X_k) = \left(d\omega \otimes \xi + (-1)^k \omega \wedge d^V \xi \right)(X_0, \ldots, X_k) = d\omega (X_0, \ldots, X_k) \xi + (-1)^k (\omega \wedge d^V \xi)(X_0, \ldots, X_k).
\]

Therefore we can conclude that \(d^V \psi \) can be written as claimed.

(b) It is convenient to express \(d^V \xi \) in terms of a local frame for \(TM \): let \(\{X_1, \ldots, X_n\} \) be such a frame and \(\{\theta_1, \ldots, \theta_n\} \) its dual frame. Then

\[d^V \xi = \nabla \xi = \sum_i \theta_i \otimes \nabla_{X_i} \xi. \]

From this and the properties of \(d^V \) we obtain

\[d^V \circ d^V \xi = \sum_i d\theta_i \otimes \nabla_{X_i} \xi - \sum_{i,j} \theta_i \wedge \nabla_{X_i} \xi = \sum_i d\theta_i \otimes \nabla_{X_i} \xi - \sum_{i,j} \theta_i \wedge \theta_j \otimes \nabla_{X_i} \nabla_{X_j} \xi. \]

Therefore, given vector fields \(X, Y \) on \(M \),

\[
\left(d^V \circ d^V \xi\right)(X, Y) = \sum_i d\theta_i (X, Y) \nabla_{X_i} \xi - \sum_{i,j} \theta_i \wedge \theta_j (X, Y) \nabla_{X_i} \nabla_{X_j} \xi
\]

\[= \sum_i \left(X \theta_i (Y) - Y \theta_i (X) - \theta_i ([X, Y]) \right) \nabla_{X_i} \xi - \sum_{i,j} \theta_i (X) \theta_j (Y) \nabla_{X_i} \nabla_{X_j} \xi + \sum_i \theta_i (Y) \theta_j (X) \nabla_{X_i} \nabla_{X_j} \xi
\]

\[= \sum_i \left(X \theta_i (Y) \right) \nabla_{X_i} \xi + \theta_i (Y) \nabla_{X_i} \nabla_{X_i} \xi - \sum_{i,j} \theta_i (X) \nabla_{Y} \nabla_{X_j} \xi + \sum_i \theta_i (Y) \nabla_{X_i} \nabla_{X_i} \xi - \nabla_{[X, Y]} \xi
\]

\[= \sum_i \nabla_{X_i} \theta_i (Y) \nabla_{X_i} \xi - \sum_{i,j} \nabla_{Y} \theta_i (X) \nabla_{X_i} \xi - \nabla_{[X, Y]} \xi
\]

\[= \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X, Y]} \xi
\]

\[= R(X, Y) \xi. \]