Homework set 4 - due 10/02/22

Math 5047

1. Read do Carmo's text, Chapter 3. (I believe up to page 66 should be enough for this assignment.)
2. (do Carmo, Exercise 1, page 77: Geodesics of a surface of revolution.) Denote by (u, v) the Cartesian coordinates of \mathbb{R}^{2}. Define the function $\varphi: U \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
\varphi(u, v)=(f(v) \cos u, f(v) \sin u, g(v))
$$

where $U=\left(u_{0}, u_{1}\right) \times\left(v_{0}, v_{1}\right), f$ and g are differentiable functions with $f^{\prime}(\nu)^{2}+g^{\prime}(\nu)^{2} \neq 0$ and $f(\nu) \neq 0$.
(a) Show that φ is an immersion. (The image $\varphi(U)$ is the surface generated by the rotation of the curve $(f(\nu), g(\nu))$ around the axis $0 z$ and is called a surface of revolution S. The image by φ of the curves $u=$ constant and $v=$ constant are called meridians and parallels, respectively, of S.)
(b) Show that the induced metric in the coordinates (u, v) is given by

$$
g_{11}=f^{2}, \quad g_{12}=0, \quad g_{22}=f^{\prime 2}+g^{\prime 2}
$$

(c) Show that local equations of a geodesic γ are

$$
\begin{array}{r}
\frac{d^{2} u}{d t^{2}}+\frac{2 f f^{\prime}}{f^{2}} \frac{d u}{d t} \frac{d v}{d t}
\end{array}=0 .
$$

(d) Obtain the following geometric meaning of the equations above: the second equation is, except for meridians and parallels, equivalent to the fact that the "energy" $\left|\gamma^{\prime}(t)\right|^{2}$ of a geodesic is constant along γ; the first equation signifies that if $\beta(t)$ is the oriented angle, $\beta(t)<\pi$, of γ with a parallel P intersecting γ at $\gamma(t)$, then

$$
r \cos \beta=\text { constant }
$$

where r is the radius of the parallel P. (The equation above is called Clairaut's relation.)
(e) (You don't have to do this part. If you are curious, see do Carmo's Differential Geometry of Curves and Surfaces, Dover Publications, 2016, page 262.) Use Clairaut's relation to show that a geodesic of the paraboloid

$$
\left(f(v)=v, g(v)=v^{2}, v>0,-\epsilon<u<2 \pi+\epsilon\right)
$$

which is not a meridian, intersects itself an infinite number of times. (See Figure 6 on page 79.)
3. (do Carmo, Exercise 2, page 78.) It is possible to introduce a Riemannian metric in the tangent bundle $T M$ of a Riemannian manifold M in the following manner. Let $(p, \nu) \in T M$ and V, W be tangent vectors in $T M$ at (p, ν). Choose curves in $T M$

$$
\alpha: t \mapsto(p(t), v(t)), \beta: s \mapsto(q(s), w(s)),
$$

with $p(0)=q(0)=p, v(0)=w(0)=v$, and $V=\alpha^{\prime}(0), W=\beta^{\prime}(0)$. Define an inner product on $T M$ by

$$
\langle V, W\rangle_{(p, v)}=\langle d \pi(V), d \pi(W)\rangle_{p}+\left\langle\frac{D v}{d t}(0), \frac{D w}{d t}(0)\right\rangle_{p},
$$

where $d \pi$ is the differential of $\pi: T M \rightarrow M$.
(a) Prove that this inner product is well-defined and introduces a Riemannian metric on $T M$.
(b) A vector at $(p, v) \in T M$ that is orthogonal (for the metric above) to the fiber $\pi^{-1}(p) \cong T_{p} M$ is called a horizontal vector. A curve $t \mapsto(p(t), v(t))$ in $T M$ is horizontal if its tangent vector is horizontal for all t. Prove that the curve

$$
t \mapsto(p(t), v(t))
$$

is horizontal if and only if the vector field $v(t)$ is parallel along $p(t)$ in M.
(c) Prove that the geodesic field is a horizontal vector field (i.e., it is horizontal at every point).
(d) Prove that the trajectories of the geodesic field are geodesic on $T M$ in the metric above. Hint: Let $\bar{\alpha}(t)=$ $(\alpha(t), v(t))$ be a curve in $T M$. Show that $\ell(\bar{\alpha}) \geq \ell(\alpha)$ and that the equality is verified if v is parallel along α. Consider a trajectory of the geodesic flow passing through (p, v) which is locally of the form $\bar{\gamma}(t)=$ $\left(\gamma(t), \gamma^{\prime}(t)\right.$), where $\gamma(t)$ is a geodesic on M. Choose convex neighborhoods $W \subseteq T M$ of (p, v) and $V \subseteq M$ of p such that $\pi(W)=V$. Take two points $Q_{1}=\left(q_{1}, v_{1}\right), Q_{2}=\left(q_{2}, v_{2}\right)$ in $\bar{\gamma} \cap W$. If $\bar{\gamma}$ is not a geodesic, there exists a curve $\bar{\alpha}$ in W passing through Q_{1} and Q_{2} such that $\ell(\bar{\alpha})<\ell(\bar{\gamma})=\ell(\gamma)$. Let $\alpha=\pi(\bar{\alpha})$; since $\ell(\alpha) \leq \ell(\bar{\alpha})$, this contradicts the fact that γ is a geodesic.
(e) A vector at $(p, v) \in T M$ is called vertical if it is tangent to the fiber $\pi^{-1}(p) \cong T_{p} M$. Show that

$$
\begin{aligned}
& \langle W, W\rangle_{(p, v)}=\langle d \pi(W), d \pi(W)\rangle_{p}, \quad \text { if } W \text { is horizontal } \\
& \langle W, W\rangle_{(p, v)}=\langle W, W\rangle_{p}, \quad \text { if } W \text { is vertical, }
\end{aligned}
$$

where we are identifying the tangent space to the fiber with $T_{p} M$.
4. (do Carmo, Exercise 3, page 80.) Let G be a Lie group, \mathfrak{g} its Lie algebra and let $X \in \mathfrak{g}$. (See Example 2.6, Chapter 1.) The trajectories of X determine a mapping $\varphi:(-\epsilon, \epsilon) \rightarrow G$ with $\varphi(0)=e, \varphi^{\prime}(t)=X(\varphi(t))$.
(a) Prove that $\varphi(t)$ is defined for all $t \in \mathbb{R}$ and that $\varphi(t+s)=\varphi(t) \varphi(s) .(\varphi: \mathbb{R} \rightarrow G$ is then called a 1-parameter subgroup of G.)
(b) Prove that if G has a bi-invariant metric $\langle\cdot, \cdot\rangle$ then the geodesics of G that start from e are 1-parameter subgroups of G.

Hints:
(a) Let $\varphi\left(t_{0}\right)=y, t_{0} \in(-\epsilon, \epsilon)$. Show that, from the left invariance, $t \mapsto y^{-1} \varphi(t), t \in(-\epsilon, \epsilon)$, is also an integral curve of X passing through e for $t=t_{0}$. By uniqueness, $\varphi\left(t_{0}\right)^{-1} \varphi(t)=\varphi\left(t-t_{0}\right)$, hence φ can be extended out from t_{0} in an interval of radius ϵ. This shows that $\varphi(t)$ is defined for all $t \in \mathbb{R}$. In addition $\varphi\left(t_{0}\right)^{-1}=\varphi\left(-t_{0}\right)$ and, since t_{0} is arbitrary, we obtain $\varphi(t+s)=\varphi(t) \varphi(s)$.
(b) Use the relation (see Eq. (9) of Chap. 2)

$$
\begin{aligned}
2\left\langle X, \nabla_{Z} Y\right\rangle=Z\langle X, Y\rangle & +Y\langle X, Z\rangle-X\langle Y, Z\rangle \\
& +\langle Z,[X, Y]\rangle+\langle Y,[X, Z]\rangle-\langle X,[Y, Z]\rangle
\end{aligned}
$$

and the fact that the metric is left-invariant to prove that $\left\langle X, \nabla_{Y} Y\right\rangle=\langle Y,[X, Y]\rangle$, where X, Y and Z are leftinvariant fields. Use also the fact that the bi-invariance of the metric implies that (Equation (3) on page 40)

$$
\langle[U, X], V\rangle=-\langle U,[V, X]\rangle,
$$

for $X, U, V \in \mathfrak{g}$. It follows that $\nabla_{Y} Y=0$ for all $Y \in \mathfrak{g}$. Thus 1-parameter subgroups are geodesics. By uniqueness, geodesics are 1-parameter subgroups.

