
Homework set 4 - due 10/02/22

Math 5047

1. Read do Carmo’s text, Chapter 3. (I believe up to page 66 should be enough for this assignment.)

2. (do Carmo, Exercise 1, page 77: Geodesics of a surface of revolution.) Denote by (u, v) the Cartesian coordinates

of R2. Define the function ϕ : U ⊆R2 →R3 given by

ϕ(u, v) = ( f (v)cosu, f (v)sinu, g (v))

where U = (u0,u1)× (v0, v1), f and g are differentiable functions with f ′(v)2 + g ′(v)2 6= 0 and f (v) 6= 0.

(a) Show that ϕ is an immersion. (The image ϕ(U ) is the surface generated by the rotation of the curve

( f (v), g (v)) around the axis 0z and is called a surface of revolution S. The image by ϕ of the curves u =
constant and v = constant are called meridians and parallels, respectively, of S.)

(b) Show that the induced metric in the coordinates (u, v) is given by

g11 = f 2, g12 = 0, g22 = f ′2 + g ′2.

(c) Show that local equations of a geodesic γ are
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(d) Obtain the following geometric meaning of the equations above: the second equation is, except for merid-

ians and parallels, equivalent to the fact that the “energy” |γ′(t )|2 of a geodesic is constant along γ; the first

equation signifies that if β(t ) is the oriented angle, β(t ) < π, of γ with a parallel P intersecting γ at γ(t ),

then

r cosβ= constant,

where r is the radius of the parallel P . (The equation above is called Clairaut’s relation.)

(e) (You don’t have to do this part. If you are curious, see do Carmo’s Differential Geometry of Curves and Sur-

faces, Dover Publications, 2016, page 262.) Use Clairaut’s relation to show that a geodesic of the paraboloid

(
f (v) = v, g (v) = v2, v > 0,−ε< u < 2π+ε)

which is not a meridian, intersects itself an infinite number of times. (See Figure 6 on page 79.)
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3. (do Carmo, Exercise 2, page 78.) It is possible to introduce a Riemannian metric in the tangent bundle T M of a

Riemannian manifold M in the following manner. Let (p, v) ∈ T M and V ,W be tangent vectors in T M at (p, v).

Choose curves in T M

α : t 7→ (p(t ), v(t )), β : s 7→ (q(s), w(s)),

with p(0) = q(0) = p, v(0) = w(0) = v , and V =α′(0), W =β′(0). Define an inner product on T M by

〈V ,W 〉(p,v) = 〈dπ(V ),dπ(W )〉p +
〈
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where dπ is the differential of π : T M → M .

(a) Prove that this inner product is well-defined and introduces a Riemannian metric on T M .

(b) A vector at (p, v) ∈ T M that is orthogonal (for the metric above) to the fiber π−1(p) ∼= Tp M is called a

horizontal vector. A curve t 7→ (p(t ), v(t )) in T M is horizontal if its tangent vector is horizontal for all t .

Prove that the curve

t 7→ (p(t ), v(t ))

is horizontal if and only if the vector field v(t ) is parallel along p(t ) in M .

(c) Prove that the geodesic field is a horizontal vector field (i.e., it is horizontal at every point).

(d) Prove that the trajectories of the geodesic field are geodesic on T M in the metric above. Hint: Let α(t ) =
(α(t ), v(t )) be a curve in T M . Show that `(α) ≥ `(α) and that the equality is verified if v is parallel along

α. Consider a trajectory of the geodesic flow passing through (p, v) which is locally of the form γ(t ) =
(γ(t ),γ′(t )), where γ(t ) is a geodesic on M . Choose convex neighborhoods W ⊆ T M of (p, v) and V ⊆ M of

p such thatπ(W ) =V . Take two points Q1 = (q1, v1), Q2 = (q2, v2) in γ∩W . If γ is not a geodesic, there exists

a curveα in W passing through Q1 and Q2 such that `(α) < `(γ) = `(γ). Letα=π(α); since `(α) ≤ `(α), this

contradicts the fact that γ is a geodesic.

(e) A vector at (p, v) ∈ T M is called vertical if it is tangent to the fiber π−1(p) ∼= Tp M . Show that

〈W,W 〉(p,v) = 〈dπ(W ),dπ(W )〉p , if W is horizontal

〈W,W 〉(p,v) = 〈W,W 〉p , if W is vertical,

where we are identifying the tangent space to the fiber with Tp M .

4. (do Carmo, Exercise 3, page 80.) Let G be a Lie group, g its Lie algebra and let X ∈ g. (See Example 2.6, Chapter

1.) The trajectories of X determine a mapping ϕ : (−ε,ε) →G with ϕ(0) = e, ϕ′(t ) = X (ϕ(t )).

(a) Prove that ϕ(t ) is defined for all t ∈ R and that ϕ(t + s) = ϕ(t )ϕ(s). (ϕ : R→ G is then called a 1-parameter

subgroup of G .)

(b) Prove that if G has a bi-invariant metric 〈·, ·〉 then the geodesics of G that start from e are 1-parameter

subgroups of G .

Hints:

(a) Let ϕ(t0) = y , t0 ∈ (−ε,ε). Show that, from the left invariance, t 7→ y−1ϕ(t ), t ∈ (−ε,ε), is also an integral

curve of X passing through e for t = t0. By uniqueness,ϕ(t0)−1ϕ(t ) =ϕ(t−t0), henceϕ can be extended out

from t0 in an interval of radius ε. This shows that ϕ(t ) is defined for all t ∈ R. In addition ϕ(t0)−1 =ϕ(−t0)

and, since t0 is arbitrary, we obtain ϕ(t + s) =ϕ(t )ϕ(s).
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(b) Use the relation (see Eq. (9) of Chap. 2)

2〈X ,∇Z Y 〉 = Z 〈X ,Y 〉+Y 〈X , Z 〉−X 〈Y , Z 〉
+〈Z , [X ,Y ]〉+〈Y , [X , Z ]〉−〈X , [Y , Z ]〉

and the fact that the metric is left-invariant to prove that 〈X ,∇Y Y 〉 = 〈Y , [X ,Y ]〉, where X ,Y and Z are left-

invariant fields. Use also the fact that the bi-invariance of the metric implies that (Equation (3) on page

40)

〈[U , X ],V 〉 =−〈U , [V , X ]〉,

for X ,U ,V ∈ g. It follows that ∇Y Y = 0 for all Y ∈ g. Thus 1-parameter subgroups are geodesics. By unique-

ness, geodesics are 1-parameter subgroups.
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