Homework set 4 - due 10/02/22

Math 5047

1. Read do Carmo’s text, Chapter 3. (I believe up to page 66 should be enough for this assignment.)

2. (do Carmo, Exercise 1, page 77: Geodesics of a surface of revolution.) Denote by (u, v) the Cartesian coordinates
of R?. Define the function ¢ : U < R? — R3 given by

¢, v)=(f(v)cosu, f(v)sinu, g(v))

where U = (uy, u1) x (vg, V1), f and g are differentiable functions with f’(v)2 + g’(v)2 #0and f(v) #0.

(@)

(b)

(©

(d

(e

Show that ¢ is an immersion. (The image ¢(U) is the surface generated by the rotation of the curve
(f(v), g(v) around the axis 0z and is called a surface of revolution S. The image by ¢ of the curves u =
constant and v = constant are called meridians and parallels, respectively, of S.)

Show that the induced metric in the coordinates (u, v) is given by
g =r% g12=0 gn=f*+g"

Show that local equations of a geodesic y are

d’u fo’dudv

az " f2 dtdt
dzl/ ff/ du 2 ff”+g’g" dv
W_f/2+g/2 (E) R e f/2+g/2 (dt) =0.

Obtain the following geometric meaning of the equations above: the second equation is, except for merid-
ians and parallels, equivalent to the fact that the “energy” |y’ (£)|? of a geodesic is constant along y; the first
equation signifies that if §(#) is the oriented angle, 5(f) < 7, of y with a parallel P intersecting y at y(?),
then

rcos 8 = constant,

where r is the radius of the parallel P. (The equation above is called Clairaut’s relation.)

(You don'’t have to do this part. If you are curious, see do Carmo’s Differential Geometry of Curves and Sur-
faces, Dover Publications, 2016, page 262.) Use Clairaut’s relation to show that a geodesic of the paraboloid

(fw=vgWw) = 1/2,1/>0,—€<u<27'[+€)

which is not a meridian, intersects itself an infinite number of times. (See Figure 6 on page 79.)



3. (do Carmo, Exercise 2, page 78.) It is possible to introduce a Riemannian metric in the tangent bundle TM of a
Riemannian manifold M in the following manner. Let (p, v) € TM and V, W be tangent vectors in TM at (p, v).
Choose curves in TM

a:t—(p®),v(), B:s—(q(s), w(s)),

with p(0) = g(0) = p, v(0) = w(0) = v,and V = a'(0), W = §/(0). Define an inner product on TM by

(V,W)p,v) = dn(V),dr(W)) +<Q(0) %(0)>
i) (p,l})_ 4 » /4 p dt ’ dt p)

where d is the differential of 7 : TM — M.

(@) Prove that this inner product is well-defined and introduces a Riemannian metric on T M.

(b) A vector at (p,v) € TM that is orthogonal (for the metric above) to the fiber ﬂ’l(p) = TpM is called a
horizontal vector. A curve t — (p(1),v(t)) in TM is horizontal if its tangent vector is horizontal for all .
Prove that the curve

t—(p(1), v(1)

is horizontal if and only if the vector field v(z) is parallel along p(¢) in M.
(c) Prove that the geodesic field is a horizontal vector field (i.e., it is horizontal at every point).

(d) Prove that the trajectories of the geodesic field are geodesic on T M in the metric above. Hint: Let a(t) =
(a(1),v(?)) be a curve in TM. Show that ¢(a) = ¢(a) and that the equality is verified if v is parallel along
a. Consider a trajectory of the geodesic flow passing through (p, v) which is locally of the form y(#) =
(y(1),7'(1)), where y () is a geodesic on M. Choose convex neighborhoods W € TM of (p,v) and V € M of
p such that 7 (W) = V. Take two points Q; = (g1, V1), Q2 = (2, v2) in ynW. If ¥ is not a geodesic, there exists
acurve @ in W passing through Q; and Q; such that /(@) < 4(y) = £(y). Let @ = n(@); since ¢(a) < ¢(a), this
contradicts the fact that y is a geodesic.

(e) Avector at (p,v) € TM is called vertical if it is tangent to the fiber 77! (p) = Ty, M. Show that

(W, W) p,v) = dr(W),drn(W)),, if W ishorizontal
(W, W)p,v) =W, W),, if W isvertical,

where we are identifying the tangent space to the fiber with T}, M.

4. (do Carmo, Exercise 3, page 80.) Let G be a Lie group, g its Lie algebra and let X € g. (See Example 2.6, Chapter
1.) The trajectories of X determine a mapping ¢ : (—¢,€) — G with ¢(0) = e, ¢'(£) = X (@(1)).

(a) Prove that ¢(¢) is defined for all # € R and that ¢(t + s) = p()@(s). (¢ : R — G is then called a 1-parameter
subgroup of G.)

(b) Prove that if G has a bi-invariant metric (-,-) then the geodesics of G that start from e are 1-parameter
subgroups of G.

Hints:

(@) Let @(f) =y, tp € (—€,€). Show that, from the left invariance, ¢ — y‘l(p(t), t € (—¢€,¢), is also an integral
curve of X passing through e for ¢ = 5. By uniqueness, (o) "¢(t) = @(t—ty), hence ¢ can be extended out
from ; in an interval of radius €. This shows that ¢(¢) is defined for all f € R. In addition ¢(f)~! = ¢ (1)
and, since fy is arbitrary, we obtain ¢ (t + 5) = (1) @(s).



(b) Use the relation (see Eq. (9) of Chap. 2)

2UX,VzY)Y=Z{X, )+ Y(X,Z)- XY, Z)
+(Z,[X, Y] +(Y,[X, Z]) —(X,[Y, Z])

and the fact that the metric is left-invariant to prove that (X,Vy Y) = (Y, [X, Y]), where X,Y and Z are left-
invariant fields. Use also the fact that the bi-invariance of the metric implies that (Equation (3) on page
40)

(U, X],V)==(U,I[V,XD),

for X, U,V e g. It follows that Vy Y = 0 for all Y € g. Thus 1-parameter subgroups are geodesics. By unique-
ness, geodesics are 1-parameter subgroups.



