Homework set 5 - due 10/16/22

Math 5047

1. (Chapter 3 of do Carmo's text, Exercise 7, page 83. *Geodesic frame*.) Let *M* be a Riemannian manifold of dimension *n* and let $p \in M$. Show that there exists a neighborhood $U \subseteq M$ of *p* and *n* vector fields $E_1, \ldots, En \in \mathfrak{X}(U)$, orthonormal at each point of *U*, such that, at p, $\nabla_{E_i}E_j(p) = 0$. Such a family E_i , $i = 1, \ldots, n$, of vector fields is called a (local) *geodesic frame* at *p*.

Hint: Consider an orthonormal basis $\{e_1, \ldots, e_n\}$ of $T_p M$ and define $E_i(q)$ near p by parallel transporting e_i along the radial geodesic joining p to q.

2. (Chapter 3 of do Carmo's text, Exercise 8, page 83.) Let *M* be a Riemannian manifold. Let $X \in \mathfrak{X}(M)$ and *f* a differentiable function on *M*. Define the *divergence* of *X* as the function div*X* on *M* such that div*X*(*p*) is the trace of the linear mapping $v \mapsto \nabla_v X$, and the *gradient* of *f* as the vector field grad *f* defined by

$$\langle \operatorname{grad} f(p), v \rangle = df_p(v)$$

for $p \in M$, $v \in T_p M$.

(a) Let E_i , $i = 1, ..., n = \dim M$, be a geodesic frame at p. (See the previous exercise.) Show that

grad
$$f(p) = \sum_{i=1}^{n} (E_i f)(p) E_i(p), \text{ div} X(p) = \sum_i E_i(f_i)(p) E_i(p)$$

where $X = \sum_{i} f_i E_i$.

(b) Suppose that $M = \mathbb{R}^n$, with coordinates (x_1, \dots, x_n) and $\frac{\partial}{\partial x_i} = e_i = (0, \dots, 1, \dots, 0)$. Show that

grad
$$f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} e_i$$
, div $X = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}$,

where $X = \sum_{i} f_i e_i$.

3. (Chapter 3 of do Carmo's text, Exercise 9, page 83.) Let *M* be a Riemannian manifold. Define an operator Δ from differentiable functions to differentiable functions on *M* (the *Laplacian* of *M*) by

$$\Delta f := \operatorname{div} \operatorname{grad} f$$
.

(a) Let E_i be a geodesic frame at $p \in M$, $i = 1, ..., n = \dim M$. Prove that

$$\Delta f(p) = \sum_{i} E_i(E_i(f))(p).$$

Conclude that if $M = \mathbb{R}^n$, Δ coincides with the usual Laplacian, $\Delta f = \sum_i \frac{\partial^2 f}{\partial x_i^2}$.

(b) Show that

$$\Delta(fg) = f\Delta g + g\Delta f + 2\langle \text{grad } f, \text{grad } g \rangle.$$

4. (Chapter 3 of do Carmo's text, Exercise 11, page 84.) Let M be an oriented Riemannian manifold. Let v be a differential form of degree $n = \dim M$ defined in the following way:

$$v(v_1,...,v_n)(p) = \pm \sqrt{\det(\langle v_i, v_j \rangle)}$$
 = oriented volume of $\{v_1,...,v_n\}, p \in M,$

where $v_1, ..., v_n \in T_p M$ are linearly independent, and the oriented volume is affected by the sign + or – depending on whether or not the basis $\{v_1, ..., v_n\}$ belongs to the orientation of M. The form v is called the *volume element* of M. For a vector field $X \in \mathfrak{X}(M)$ define the *interior product* i(X)v of X with v as the (n-1)-form

$$i(X)v(Y_2,...,Y_n) = v(X, Y_2,...,Y_n), Y_2,...,Y_n \in \mathfrak{X}(M).$$

Prove that

$$d(i(X)v) = (\operatorname{div} X)v.$$

Note: do Carmo offers a long hint on page 85, which I don't reproduce here. You may take for granted the property of interior product:

$$i(X)\alpha \wedge \beta = (i(X)\alpha) \wedge \beta + (-1)^k \alpha i(X)\beta$$

where α is a *k*-form.

5. Read the statements of Exercises 12 and 14. You don't have to write down the proofs.