## Homework set 8 - due 11/22/22

Math 5047

1. (Exercise 1, do Carmo, Chapter 6, page 139.) Let $M_{1}$ and $M_{2}$ be Riemannian manifolds, and consider the product $M_{1} \times M_{2}$, with the product metric. Let $\nabla^{1}$ be the Riemannian connection on $M_{1}$ and let $\nabla^{2}$ be the Riemannian connection on $M_{2}$.
(a) Show that the Riemannian connection $\nabla$ of $M_{1} \times M_{2}$ is given by

$$
\nabla_{Y_{1}+Y_{2}}\left(X_{1}+X_{2}\right)=\nabla_{Y_{1}}^{1} X_{1}+\nabla_{Y_{2}}^{2} X_{2}
$$

where $X_{1}, Y_{1} \in \mathfrak{X}\left(M_{1}\right), X_{2}, Y_{2} \in \mathfrak{X}\left(M_{2}\right)$.
(b) For every $p \in M_{1}$, the set

$$
\left(M_{2}\right)_{p}=\left\{(p, q) \in M_{1} \times M_{2}: q \in M_{2}\right\}
$$

is a submanifold of $M_{1} \times M_{2}$, naturally diffeomorphic to $M_{2}$. Prove that $\left(M_{2}\right)_{p}$ is a totally geodesic submanifold of $M_{1} \times M_{2}$.
(c) Let $\sigma(x, y) \subseteq T_{(p, q)}\left(M_{1} \times M_{2}\right)$ be a plane such that $x \in T_{p} M_{1}$ and $y \in T_{q} M_{2}$. Show that $K(\sigma)=0$.
2. (Exercise 2, do Carmo, Chapter 6, page 139.) Show that $\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ given by

$$
\mathbf{x}(\theta, \varphi)=\frac{1}{\sqrt{2}}(\cos \theta, \sin \theta, \cos \varphi, \sin \varphi), \quad(\theta, \varphi) \in \mathbb{R}^{2}
$$

is an immersion of $\mathbb{R}^{2}$ into the unit sphere $S^{3}(1) \subseteq \mathbb{R}^{4}$, whose image $\mathbf{x}\left(\mathbb{R}^{2}\right)$ is a torus $\mathbb{T}^{2}$ with sectional curvature zero in the induced metric.
3. (Exercise 5, do Carmo, Chapter 6, page 139.) Prove that the sectional curvature of the Riemannian manifold $S^{2} \times S^{2}$ with the product metric, where $S^{2}$ is the unit sphere in $\mathbb{R}^{3}$, is non-negative. Find a totally geodesic, flat torus, $\mathbb{T}^{2}$, embedded in $S^{2} \times S^{2}$. (You may use the result of any of the other exercises from this chapter of the textbook that seem relevant.)
4. (Exercise 6, do Carmo, Chapter 6, page 140.) Let $G$ be a Lie group with a bi-invariant metric. Let $H$ be a Lie group and let $h: H \rightarrow G$ be an immersion that is also a homomorphism of groups (that is, $H$ is a Lie subgroup of $G$ ). Show that $h$ is a totally geodesic immersion.
5. (Exercise 11, do Carmo, Chapter 6, page 141.) Let $f: \bar{M}^{n+1} \rightarrow \mathbb{R}$ be a differentiable function. Define the Hessian, Hess $f$ of $F$ at $p \in \bar{M}$ as the linear operator

$$
\text { Hess } f: T_{p} \bar{M} \rightarrow T_{p} \bar{M},(\text { Hess } f) Y=\bar{\nabla}_{Y} \operatorname{grad} f, Y \in T_{p} \bar{M}
$$

where $\bar{\nabla}$ is the Riemannian connection of $\bar{M}$. Let $a$ be a regular value of $f$ and let $M^{n} \subseteq \bar{M}^{n+1}$ be the hypersurface in $\bar{M}$ defined by $M=\{p \in \bar{M}: f(p)=1\}$. Prove that:
(a) The Laplacian $\bar{\Delta} f$ is given by

$$
\bar{\Delta} f=\operatorname{trace} \text { Hess } f
$$

(For the definition of the Laplacian, see Exercise 9, Chapter 3, page 83.)
(b) If $X, Y \in \mathfrak{X}(\bar{M})$, then

$$
\langle(\text { Hess } f) Y, X\rangle=\langle Y,(\text { Hess } f) X\rangle .
$$

Conclude that Hess $f$ is self-adjoint, hence determines a symmetric bilinear form on $T_{p} \bar{M}, p \in \bar{M}$, given by (Hess $f)(X, Y)=\langle($ Hess $f) X, Y\rangle, X, Y \in T_{p} \bar{M}$.
(c) The mean curvature $H$ of $M \subseteq \bar{M} \subseteq M$ is given by

$$
H=-\frac{1}{n} \operatorname{div}\left(\frac{\operatorname{grad} f}{|\operatorname{grad} f|}\right)
$$

(See page 142 for hints on this part of the problem.)
(d) Observe that every embedded hypersurface $M^{n} \subseteq \bar{M}^{n+1}$ is locally the inverse image of a regular value. Conclude from the last item of this problem that the mean curvature $H$ of such a hypersurface is given by

$$
H=-\frac{1}{n} \operatorname{div} N
$$

where $N$ is an appropriate local extension of the unit normal field on $M^{n} \subseteq \bar{M}^{n+1}$.

