Homework set 8 - due 11/22/22

Math 5047

- 1. (Exercise 1, do Carmo, Chapter 6, page 139.) Let M_1 and M_2 be Riemannian manifolds, and consider the product $M_1 \times M_2$, with the product metric. Let ∇^1 be the Riemannian connection on M_1 and let ∇^2 be the Riemannian connection on M_2 .
 - (a) Show that the Riemannian connection ∇ of $M_1 \times M_2$ is given by

$$\nabla_{Y_1+Y_2}(X_1+X_2) = \nabla^1_{Y_1}X_1 + \nabla^2_{Y_2}X_2,$$

where $X_1, Y_1 \in \mathfrak{X}(M_1), X_2, Y_2 \in \mathfrak{X}(M_2)$.

(b) For every $p \in M_1$, the set

$$(M_2)_p = \{(p,q) \in M_1 \times M_2 : q \in M_2\}$$

is a submanifold of $M_1 \times M_2$, naturally diffeomorphic to M_2 . Prove that $(M_2)_p$ is a totally geodesic submanifold of $M_1 \times M_2$.

- (c) Let $\sigma(x, y) \subseteq T_{(p,q)}(M_1 \times M_2)$ be a plane such that $x \in T_p M_1$ and $y \in T_q M_2$. Show that $K(\sigma) = 0$.
- 2. (Exercise 2, do Carmo, Chapter 6, page 139.) Show that $\mathbf{x} : \mathbb{R}^2 \to \mathbb{R}^4$ given by

$$\mathbf{x}(\theta,\varphi) = \frac{1}{\sqrt{2}}(\cos\theta,\sin\theta,\cos\varphi,\sin\varphi), \ (\theta,\varphi) \in \mathbb{R}^2$$

is an immersion of \mathbb{R}^2 into the unit sphere $S^3(1) \subseteq \mathbb{R}^4$, whose image $\mathbf{x}(\mathbb{R}^2)$ is a torus \mathbb{T}^2 with sectional curvature zero in the induced metric.

- 3. (Exercise 5, do Carmo, Chapter 6, page 139.) Prove that the sectional curvature of the Riemannian manifold $S^2 \times S^2$ with the product metric, where S^2 is the unit sphere in \mathbb{R}^3 , is non-negative. Find a totally geodesic, flat torus, \mathbb{T}^2 , embedded in $S^2 \times S^2$. (You may use the result of any of the other exercises from this chapter of the textbook that seem relevant.)
- 4. (Exercise 6, do Carmo, Chapter 6, page 140.) Let *G* be a Lie group with a bi-invariant metric. Let *H* be a Lie group and let $h : H \to G$ be an immersion that is also a homomorphism of groups (that is, *H* is a Lie subgroup of *G*). Show that *h* is a totally geodesic immersion.
- 5. (Exercise 11, do Carmo, Chapter 6, page 141.) Let $f: \overline{M}^{n+1} \to \mathbb{R}$ be a differentiable function. Define the *Hessian*, Hess f of F at $p \in \overline{M}$ as the linear operator

Hess
$$f: T_p \overline{M} \to T_p \overline{M}$$
, (Hess $f) Y = \overline{\nabla}_Y \text{grad } f$, $Y \in T_p \overline{M}$,

where $\overline{\nabla}$ is the Riemannian connection of \overline{M} . Let *a* be a regular value of *f* and let $M^n \subseteq \overline{M}^{n+1}$ be the hypersurface in \overline{M} defined by $M = \left\{ p \in \overline{M} : f(p) = 1 \right\}$. Prove that:

(a) The Laplacian $\overline{\Delta}f$ is given by

$$\overline{\Delta}f$$
 = trace Hess f.

(For the definition of the Laplacian, see Exercise 9, Chapter 3, page 83.)

(b) If $X, Y \in \mathfrak{X}(\overline{M})$, then

$$\langle (\text{Hess } f) Y, X \rangle = \langle Y, (\text{Hess } f) X \rangle.$$

Conclude that Hess *f* is self-adjoint, hence determines a symmetric bilinear form on $T_p\overline{M}$, $p \in \overline{M}$, given by (Hess *f*)(*X*, *Y*) = \langle (Hess *f*)*X*, *Y* \rangle , *X*, *Y* \in $T_p\overline{M}$.

(c) The mean curvature *H* of $M \subseteq \overline{M} \subseteq M$ is given by

$$H = -\frac{1}{n} \operatorname{div}\left(\frac{\operatorname{grad} f}{|\operatorname{grad} f|}\right).$$

(See page 142 for hints on this part of the problem.)

(d) Observe that every embedded hypersurface $M^n \subseteq \overline{M}^{n+1}$ is locally the inverse image of a regular value. Conclude from the last item of this problem that the mean curvature *H* of such a hypersurface is given by

$$H = -\frac{1}{n} \operatorname{div} N,$$

where *N* is an appropriate local extension of the unit normal field on $M^n \subseteq \overline{M}^{n+1}$.