Homework set 9 - due 12/11/22

Math 5047

- 1. (do Carmo, Chapter 8, Exercise 2, page 180.) Show that if M^k is a (connected,) closed, totally geodesic submanifold of H^n , $k \le n$, then M^k is isometric to H^k . Determine all the totally geodesic submanifolds of H^n .
- 2. (do Carmo, Chapter 8, Exercise 4, page 181.) Identify \mathbb{R}^4 with \mathbb{C}^2 by letting (x_1, x_2, x_3, x_4) correspond to $(x_1 + ix_2, x_3 + ix_4)$. Let

$$S^{3} = \{(z_{1}, z_{2}) \in \mathbb{C}^{2} : |z_{1}|^{2} + |z_{2}|^{2} = 1\},\$$

and let $h: S^3 \to S^3$ be given by

$$h(z_1, z_2) = \left(e^{\frac{2\pi i}{q}} z_1, e^{\frac{2\pi i r}{q}} z_2\right), \ (z_1, z_2) \in S^3$$

where *q* and *r* are relatively prime integers, q > 2.

- (a) Show that $G = \{id, h, \dots, h^{q-1}\}$ is a group of isometries of the sphere S^3 , with the usual metric, which operates in a totally discontinuous manner. The manifold S^3/G is called a *lens space*.
- (b) Consider S^3/G with the metric induced by the projection $p: S^3 \to S^3/G$. Show that all the geodesics of S^3/G are closed but can have different lengths.
- 3. (do Carmo, Chapter 8, Exercise 8, page 185. *Riemannian submersions.*) A differentiable mapping $f:\overline{M}^{n+k} \to M^n$ is called *submersion* if f is surjective, and for all $\overline{p} \in \overline{M}$, the differential $df_{\overline{p}}: T_{\overline{p}}\overline{M} \to T_{f(\overline{p})}M$ has rank n. In this case, for all $p \in M$, the *fiber* $f^{-1}(p) = F_p$ is a submanifold of \overline{M} and a tangent vector of \overline{M} , tangent to some F_p , $p \in M$, is called a *vertical vector* of the submersion. If, in addition, \overline{M} and M have Riemannian metrics, the submersion f is said to be *Riemannian* if $df_p: T_p\overline{M} \to T_{f(p)}M$ preserves lengths of vectors orthogonal to F_p , for all $p \in \overline{M}$.
 - (a) If $M_1 \times M_2$ is the Riemannian product, then the natural projections $\pi_i : M_1 \times M_2 \rightarrow M_i$, i = 1, 2, are Riemannian submersions.
 - (b) If the tangent bundle *TM* is given the Riemannian metric as in Exercise 2 of Chapter 3, then the projection $\pi: TM \to M$ is a Riemannian submersion.
- 4. (do Carmo, Chapter 8, Exercise 9, page 186. *Connection of a Riemannian submersion.*) Let $f: \overline{M} \to M$ be a Riemannian submersion. A vector $\overline{x} \in T_{\overline{p}}\overline{M}$ is *horizontal* if it is orthogonal to the fiber. The tangent space $T_{\overline{p}}\overline{M}$ then admits a decomposition $T_{\overline{p}}\overline{M} = (T_{\overline{p}}\overline{M})^h \oplus (T_{\overline{p}}\overline{M})^\nu$, where $(T_{\overline{p}}\overline{M})^h$ and $(T_{\overline{p}}\overline{M})^\nu$ denote the subspaces of horizontal and vertical vectors, respectively. If $X \in \mathfrak{X}(M)$, the *horizontal lift* \overline{X} of X is the horizontal field defined by $df_{\overline{p}}(\overline{X}(\overline{p})) = X(f(p))$.
 - (a) Show that \overline{X} is differentiable.
 - (b) Let ∇ and $\overline{\nabla}$ be the Riemannian connections of *M* and \overline{M} , respectively. Show that

$$\overline{\nabla}_{\overline{X}}\overline{Y} = \overline{\nabla_X Y} + \frac{1}{2} \left[\overline{X}, \overline{Y}\right]^{\nu}, \quad X, Y \in \mathfrak{X}(M),$$

where Z^{ν} is the vertical component of *Z*.

(c) $\left[\overline{X}, \overline{Y}\right]^{\nu}(\overline{p})$ depends only on $\overline{X}(\overline{p})$ and $\overline{Y}(\overline{p})$.

See hints on page 186 of the textbook.

- 5. (do Carmo, Chapter 8, Exercises 10 and 11. These won't be collected. They are needed for the next exercise.)
- 6. (do Carmo, Chapter 8, Exercise 12, page 188. *Curvature of the complex projective space.*) Define a Riemannian metric on $\mathbb{C}^{n+1} \setminus \{0\}$ in the following way: If $Z \in \mathbb{C}^{n+1} \setminus \{0\}$ and $V, W \in T_Z(\mathbb{C}^{n+1} \setminus \{0\})$,

$$\langle V, W \rangle_Z = \frac{\operatorname{Real}(V, W)}{(Z, Z)}.$$

Observe that the metric $\langle \cdot, \cdot \rangle$ restricted to $S^{2n+1} \subseteq \mathbb{C}^{n+1} \setminus \{0\}$ coincides with the metric induced from \mathbb{R}^{2n+2} .

- (a) Show that, for all $0 \le \theta \le 2\pi$, $e^{i\theta} : S^{2n+1} \to S^{2n+1}$ is an isometry, and that, therefore, it is possible to define a Riemannian metric on $P^n(\mathbb{C})$ in such a way that the submersion f is Riemannian.
- (b) Show that, in this metric, the sectional curvature of $P^n(\mathbb{C})$ is given by

$$K(\sigma) = 1 + 3\cos^2\varphi,$$

where σ is generated by the orthonormal pair *X*, *Y*, $\cos \varphi = \langle \overline{X}, i \overline{Y} \rangle$, and $\overline{X}, \overline{Y}$ are the horizontal lifts of *X* and *Y*, respectively. In particular, $1 \le K(\sigma) \le 4$.

See hints on page 189.