Homework set 9 - due 12/11/22

Math 5047

1. (do Carmo, Chapter 8, Exercise 2, page 180.) Show that if M^{k} is a (connected,) closed, totally geodesic submanifold of $H^{n}, k \leq n$, then M^{k} is isometric to H^{k}. Determine all the totally geodesic submanifolds of H^{n}.
2. (do Carmo, Chapter 8 , Exercise 4, page 181.) Identify \mathbb{R}^{4} with \mathbb{C}^{2} by letting ($x_{1}, x_{2}, x_{3}, x_{4}$) correspond to ($x_{1}+$ $\left.i x_{2}, x_{3}+i x_{4}\right)$. Let

$$
S^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}
$$

and let $h: S^{3} \rightarrow S^{3}$ be given by

$$
h\left(z_{1}, z_{2}\right)=\left(e^{\frac{2 \pi i}{q}} z_{1}, e^{\frac{2 \pi i r}{q}} z_{2}\right),\left(z_{1}, z_{2}\right) \in S^{3}
$$

where q and r are relatively prime integers, $q>2$.
(a) Show that $G=\left\{\mathrm{id}, h, \cdots, h^{q-1}\right\}$ is a group of isometries of the sphere S^{3}, with the usual metric, which operates in a totally discontinuous manner. The manifold S^{3} / G is called a lens space.
(b) Consider S^{3} / G with the metric induced by the projection $p: S^{3} \rightarrow S^{3} / G$. Show that all the geodesics of S^{3} / G are closed but can have different lengths.
3. (do Carmo, Chapter 8, Exercise 8, page 185. Riemannian submersions.) A differentiable mapping $f: \bar{M}^{n+k} \rightarrow M^{n}$ is called submersion if f is surjective, and for all $\bar{p} \in \bar{M}$, the differential $d f_{\bar{p}}: T_{\bar{p}} \bar{M} \rightarrow T_{f(\bar{p})} M$ has rank n. In this case, for all $p \in M$, the fiber $f^{-1}(p)=F_{p}$ is a submanifold of \bar{M} and a tangent vector of \bar{M}, tangent to some F_{p}, $p \in M$, is called a vertical vector of the submersion. If, in addition, \bar{M} and M have Riemannian metrics, the submersion f is said to be Riemannian if $d f_{p}: T_{p} \bar{M} \rightarrow T_{f(p)} M$ preserves lengths of vectors orthogonal to F_{p}, for all $p \in \bar{M}$.
(a) If $M_{1} \times M_{2}$ is the Riemannian product, then the natural projections $\pi_{i}: M_{1} \times M_{2} \rightarrow M_{i}, i=1,2$, are Riemannian submersions.
(b) If the tangent bundle $T M$ is given the Riemannian metric as in Exercise 2 of Chapter 3, then the projection $\pi: T M \rightarrow M$ is a Riemannian submersion.
4. (do Carmo, Chapter 8, Exercise 9, page 186. Connection of a Riemannian submersion.) Let $f: \bar{M} \rightarrow M$ be a Riemannian submersion. A vector $\bar{x} \in T_{\bar{p}} \bar{M}$ is horizontal if it is orthogonal to the fiber. The tangent space $T_{\bar{p}} \bar{M}$ then admits a decomposition $T_{\bar{p}} \bar{M}=\left(T_{\bar{p}} \bar{M}\right)^{h} \oplus\left(T_{\bar{p}} \bar{M}\right)^{v}$, where $\left(T_{\bar{p}} \bar{M}\right)^{h}$ and $\left(T_{\bar{p}} \bar{M}\right)^{v}$ denote the subspaces of horizontal and vertical vectors, respectively. If $X \in \mathfrak{X}(M)$, the horizontal lift \bar{X} of X is the horizontal field defined by $d f_{\bar{p}}(\bar{X}(\bar{p}))=X(f(p))$.
(a) Show that \bar{X} is differentiable.
(b) Let ∇ and $\bar{\nabla}$ be the Riemannian connections of M and \bar{M}, respectively. Show that

$$
\bar{\nabla} \bar{X} \bar{Y}=\overline{\nabla_{X} Y}+\frac{1}{2}[\bar{X}, \bar{Y}]^{v}, \quad X, Y \in \mathfrak{X}(M),
$$

where Z^{ν} is the vertical component of Z.
(c) $[\bar{X}, \bar{Y}]^{\nu}(\bar{p})$ depends only on $\bar{X}(\bar{p})$ and $\bar{Y}(\bar{p})$.

See hints on page 186 of the textbook.
5. (do Carmo, Chapter 8, Exercises 10 and 11. These won't be collected. They are needed for the next exercise.)
6. (do Carmo, Chapter 8, Exercise 12, page 188. Curvature of the complex projective space.) Define a Riemannian metric on $\mathbb{C}^{n+1} \backslash\{0\}$ in the following way: If $Z \in \mathbb{C}^{n+1} \backslash\{0\}$ and $V, W \in T_{Z}\left(\mathbb{C}^{n+1} \backslash\{0\}\right)$,

$$
\langle V, W\rangle_{Z}=\frac{\operatorname{Real}(V, W)}{(Z, Z)}
$$

Observe that the metric $\langle\cdot, \cdot\rangle$ restricted to $S^{2 n+1} \subseteq \mathbb{C}^{n+1} \backslash\{0\}$ coincides with the metric induced from $\mathbb{R}^{2 n+2}$.
(a) Show that, for all $0 \leq \theta \leq 2 \pi, e^{i \theta}: S^{2 n+1} \rightarrow S^{2 n+1}$ is an isometry, and that, therefore, it is possible to define a Riemannian metric on $P^{n}(\mathbb{C})$ in such a way that the submersion f is Riemannian.
(b) Show that, in this metric, the sectional curvature of $P^{n}(\mathbb{C})$ is given by

$$
K(\sigma)=1+3 \cos ^{2} \varphi
$$

where σ is generated by the orthonormal pair $X, Y, \cos \varphi=\langle\bar{X}, i \bar{Y}\rangle$, and \bar{X}, \bar{Y} are the horizontal lifts of X and Y, respectively. In particular, $1 \leq K(\sigma) \leq 4$.

See hints on page 189.

