1. The point $P = (2, 35)$ is on the graph of $f(x) = 3x^2 + \frac{46}{x}$. What is the equation of the line perpendicular to the tangent line to the graph at P?

A) $y = -2x + 39$ B) $y = 2x + 31$ C) $y = \frac{1}{2}x + 34$

D) $y = -\frac{1}{2}x + 36$ E) $y = x + 33$ F) $y = -2x + 36$

G) $y = 4x + 27$ H) $y = -\frac{1}{4}x + 37$ I) $y = 5x + 25$

J) $y = 3x + 29$
2. Suppose \(h(x) = \sin(\pi f(x)) \) and that
\[
f(0) = 1 \quad f'(0) = 3
\]
What is \(h'(0) \)?

A) \(-4\pi\) B) \(-3\pi\) C) \(-2\pi\) D) \(\pi\) E) 0
F) \(\pi\) G) \(2\pi\) H) \(3\pi\) I) \(4\pi\) J) \(5\pi\)

3. The point \(P = (1, 0) \) is on the graph of \(xe^y + y = 1 \). What is the slope of the tangent line at \(P \)?

A) 0 B) 1 C) 2 D) \(e\) E) \(e^2\)
F) \(-e\) G) \(-\frac{1}{2}\) H) \(-e^2\) I) \(2e\) J) \(\frac{1}{4}\)
4. The graph shows two functions $f(x)$ and $g(x)$:

Let $h(x) = f(x)g(x)$. What is $h'(2)$?

A) 5 B) 4 C) 3 D) 2 E) 1
F) 0 G) −1 H) −2 I) −3 J) −4

5. If $y = g(x) = \log_{10}(x^3 + x^2 + 2x + 1)$, what is $g'(1)$?

A) $\frac{7}{50}$ B) $\frac{1}{5 \ln(10)}$ C) $\frac{7}{5 \ln 10}$ D) $\frac{7}{5}$ E) $\frac{1}{5}$
F) $\frac{1}{2 \ln(10)}$ G) $\frac{7}{5 \log_{10}(10)}$ H) $\frac{1}{5 \log_{10}(10)}$ I) 0 J) 1
6. A particle is moving along the x-axis. Its position at time t is
\[s = f(t) = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 4t + 1. \] For what times t is the particle moving to the left?

A) $t > 0$
B) $t > 1$
C) $0 < t < 2$
D) $1 < t < 4$

E) $t > 4$
F) $-1 < t < 0$
G) $-2 < t$
H) $-4 < t < -1$

I) $-2 < t < 2$
J) $-4 < t < 4$

7. What is $\lim_{h \to 0} \frac{\arctan(2 + h) - \arctan(2)}{h}$?

A) 0
B) 1
C) 2
D) 4
E) π

F) $\frac{\pi}{4}$
G) $\frac{\pi}{2}$
H) $-\frac{1}{2}$
I) $\frac{1}{5}$
J) DNE
8. We start with 10 g of a radioactive substance unobtainium. It decays into other isotopes at a rate proportional to the amount the amount of unobtainium present. After 1 minute, only 5g of unobtainium remains. How much unobtainium remains after 3.4 minutes?

A) $2^{-3.4}$ g
B) $2^{-6.8}$ g
C) $2^{-1.7}$ g
D) $5 \cdot 2^{-3.4}$ g
E) $5 \cdot 2^{-6.8}$ g
F) $5 \cdot 2^{-1.7}$ g
G) $10 \cdot 2^{-3.4}$ g
H) $10 \cdot 2^{-6.8}$ g
I) $10 \cdot 2^{-1.7}$ g
J) $\frac{e}{2}$ g

9. What is $\lim_{x \to 0} \frac{\sin^{2}x \sin 6x}{8x^{2}}$?

A) $\frac{1}{4}$
B) $\frac{3}{4}$
C) $\frac{3}{2}$
D) 1
E) $\frac{5}{2}$
F) 2
G) 6
H) 8
I) 12
J) DNE

10. For times $t > 0$ (sec), a particle moving along a straight line has position $s = \frac{3t^{3}-2t^{2}+t}{t}$ (ft). What is its velocity at time $t = 2$?

A) 0 ft/sec
B) $\frac{1}{4}$ ft/sec
C) 2 ft/sec
D) $\frac{10}{4}$ ft/sec
E) 3 ft/sec
F) $\frac{35}{4}$ ft/sec
G) 10 ft/sec
H) 11 ft/sec
I) $\frac{23}{2}$ ft/sec
J) 13 ft/sec
11. If \(f(t) = \ln \left(\frac{t^2}{(t+1)e^t} \right) \), what is \(f'(1) \)?

A) 0
B) 1
C) 2
D) 3
E) 4
F) \(\frac{1}{2} \)
G) \(\frac{1}{3} \)
H) \(\frac{1}{4} \)
I) \(\frac{1}{5} \)
J) \(-1 \)

12. Simplify \(\cos^2(\arctan b) \)

A) \(b^2 \)
B) \(1 + b^2 \)
C) \(2b^2 \)
D) \(\frac{1}{1+b^2} \)
E) \(\frac{b}{1+b^2} \)
F) \(\frac{b^2}{1+b^2} \)
G) \(\frac{b}{b^2 - 1} \)
H) \(\frac{4b}{4+b^2} \)
I) \(\frac{b}{\sqrt{1+b^2}} \)
J) \(\frac{2b}{\sqrt{1+2b^2}} \)
13. If \(f(x) = \sin^2 x \), what is \(f'(\frac{\pi}{6}) \) ?

A) \(\frac{\sqrt{3}}{2} \)
B) \(\frac{\sqrt{2}}{2} \)
C) \(\frac{1}{2} \)
D) 1
E) 0
F) \(-\frac{\sqrt{3}}{2} \)
G) \(-\frac{\sqrt{2}}{2} \)
H) \(-\frac{1}{2} \)
I) \(-\frac{1}{3} \)
J) \(-\frac{1}{4} \)

14. The function \(y = f(x) = \ln\left(\frac{4a+x^2}{e^x}\right) \) has a horizontal tangent line at \(x = 1 \). What is the value of \(a \) ?

A) 4
B) 2
C) \(\frac{1}{2} \)
D) \(\frac{1}{4} \)
E) 0
F) \(\frac{5}{e} \)
G) \(\frac{1}{e} \)
H) \(\frac{4}{e^2} \)
I) \(-\frac{1}{2} \)
J) \(-2 \)

Questions 15 - 19 are “true/false” questions (worth 1 point each)

15. \(\frac{d}{dx} \ln(\pi) = \frac{1}{\pi} \)

A) True
B) False

16. If \(f(x) \) is not differentiable at \(a \), then \(f(x) \) cannot be continuous at \(a \).

A) True
B) False

17. If \(f'(x) = g'(x) \) for every \(x \), then it must be that \(f(x) = g(x) \) for every \(x \).

A) True
B) False
18. A cubic polynomial function \(y = ax^3 + bx^2 + cx + d \) must have at least one horizontal tangent line to its graph.

A) True B) False

19. A point moves along the \(x \)-axis with position \(s = t^3 - 3t^2 \) at time \(t \). For \(0 < t < 1 \), its speed is increasing.

A) True B) False
PART II (25 points)

Name ________________________________ WUSTL ID __________

Circle the time of your discussion section on the line that has your TA's name:

Mr. Gong Cheng, 8 a.m. 9 a.m. 10 a.m. 11 a.m.
Mr. Cody Stockdale, 8 a.m. 9 a.m. 10 a.m. 12 p.m.
Ms. Wei Wang, 10 a.m. 11 a.m. 12 p.m.

For each problem, clearly show your solution in the space provided. “Show your solution” does not simply mean “show your scratch work” — you should cross out any scratch work that turned out to be wrong or irrelevant and, where appropriate, present a readable, orderly sequence of steps showing how you got the answer. A correct answer without supporting work may not receive full credit.
1. Here is the graph of a function $y = f(x)$. The grid lines on both axes in the picture are one unit apart.

a) For $-8 < x < 8$:

List all the x's for which $f'(x)$ does not exist:

For what x's is $f'(x) > 0$?

For what x's is $f'(x) = 0$?

b) On the same grid, draw a reasonable graph for $y = f'(x)$. Use an solid dot • where needed to emphasize that a point is on the graph, and an open dot o to indicate that a point is not included on the graph.
2. Find each derivative. You do not need to simplify after you have finished differentiating, BUT

\[\text{DRAW A BOX AROUND YOUR FINAL ANSWER IN EACH PART} \]

a) If \(s = f(t) = 2(t^2 - 3t)^3 \), then

\[\frac{ds}{dt} = \]

b) If \(y = f(x) = \arcsin(3x^2) + \arctan(x^2) \), then

\[f'(x) = \]

c) If \(y = \tan(\sin x) + 3x^2 \), then

\[f'(x) = \]

d) If \(y = x^{\cos x} \), then \(\ln(y) = \ln(x^{\cos x}) = \cos x \ln x \).

Therefore \(\frac{y'}{y} = (\cos x) \cdot \frac{1}{x} - (\sin x)\ln x \), so

\[y' = \]
3. The picture shows the graph of $x^2 + 3xy + 4y^2 = 1$. It is an ellipse that contains the point (1, 0).

\[y \]

\[-1.5 \quad -1.0 \quad -0.5 \quad 0.5 \quad 1.0 \quad 1.5 \]

\[-0.5 \quad 0.5 \]

a) Let m be the slope of the tangent line at (1, 0). Write the equation of the tangent line (in terms of m). Put your final answer in the box below.

Tangent line at (1, 0):

b) m is the value of the derivative $y' = \frac{dy}{dx}$ at the point (1, 0). Find the value of m. Put your final value for m in the box below.

$x^2 + 3xy + 4y^2 = 1$. Differentiate both sides with respect to x to get:

\[2x + 3x'y + 3y + 8yy' = 0. \]

Setting $x = 1$ and $y = 0$ we get

\[2 + 3y' + 0 + 0 = 0, \text{ so } y' = -\frac{2}{3}. \]

Final answer: $m =$
DO NOT WRITE ON THIS PAGE. IT IS FOR SCORING PURPOSES ONLY:

Part II Scores

Q1: / 9

Q2: / 8

Q3: / 8

TOTAL PART II: / 25