
Diagonalization and Fibonacci Numbers

The famous Fibonacci sequence begins:   + ß + ß + ß + ß + ß + ß + ß + ß + ß ÞÞÞ! " # $ % & ' ( )
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After the first two 's each term of the sequence is the sum of the two preceding numbers." ß
This is a recursive definition of the Fibonacci numbers:  each number (after the first two) is

defined   Precisely,in terms of numbers that have been previously defined.

    œ + œ + œ "
+ œ + � +
! "

5�# 5�" 5

The Fibonacci numbers can be pictured in a spiral of squares that fit neatly together:

    

Fibonacci numbers have many interesting properties, and they frequently occur in patterns found

in the natural world.  A Google search for a phrase like “Fibonacci numbers in nature” will

produce a lot of hits.  For example, there's a wealth of information at

 http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html

We will look at a few interesting mathematical properties of Fibonacci numbers that are related

to this course.  In particular, using eigenvalues, eigenvectors, and a bit of algebra, we can find an

explicit formula for each that is, a formula that doesn't depend on the previously defined+ �5

Fibonacci numbers. We can also determine the value of  lim
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We begin by defining vectors in  that have two successive Fibonacci numbers as entries:B ‘#
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from one B5  to the next:
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We can find a basis for  that consists of eigenvectors of  (‘# E that is,  is diagonalizableE ).

First,  of find the eigenvalues E À
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Next, .  To illustrate, solvefind an eigenvector for each eigenvalue  ÐE � MÑ-" B œ ! to find the
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       look at the characteristic equation)

So the eigenspace for  is  real  (-
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.  However, we make find a “better looking” eigenvector if

instead we choose  to get> œ -"
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      (again, just look at the characteristic equation)

For the eigenvalue ,  perfectly similar calculations give an eigenvector .
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Note: we could have substituted the numeric values for  and at the beginning and used- -" #

them throughout the calculations, but the work would actually look messier! Specific numeric  

values are not always your best friends.



Now we have an eigenvector basis for :   , , and we can write
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factorization.   However, we  make use of , so we compute it:can T�"

 T œ œ
� " � "

� " � "
�" " "

�
# #

" "&- -# "
” • ” •- -

- -È
            Æ

    because  check!)- -# "� œ & ÐÈ

Now, we return to our examination of the Fibonacci sequence. We begin by writing as aB! 

linear combination of the eigenvectors:  we want
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Since and  are eigenvectors with eigenvalues and , we get, ," # - -" #
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Continuing in the way, we get
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Equating the first entries of the last two vectors gives
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 This is a explicit formula for the Fibonacci number :  it doesn't refer to any+5

 previous Fibonacci numbers,  Interestingly, just to look at it, it's not even obvious that

 the expression on the right side of the equation is an integer!
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.  so  as  and therefore
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The number  is called the 
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Golden Ratio Golden Section or , often denoted by Its decimal9Þ

value is     For more information, look atapproximately "Þ'")!Þ

 http://mathworld.wolfram.com/GoldenRatio.html.

Notice that the “classical” geometric definition for  given there leads to the same quadratic9
equation that was the characteristic equation in the earlier discussion.

For some illustrations of the use of the “golden ratio” or “divine proportion” in art, look at

 http://www.goldennumber.net/art-composition-design/

 


