
Example: A Markov Process

Divide the greater metro region into three parts: city (such as St. Louis), suburbs (to include such
areas as Clayton, University City, Richmond Heights, Maplewood, Kirkwood,...) and exurbs (the
far out areas where people associated with the metro area might live:  for example St. Charles
county, Jefferson County, ...)

In this oversimplified model, we ignore people entering/leaving the region; we ignore
births/deaths. We assume that the total population is constant and that people move around
between the city, suburbs and exurbs. Data collection lets us estimate how the population shifts
from year to year:

Suppose the   is:transition matrix E
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Going down Column 1 tells us what proportion (%) of the C population will move to C, S, E
during the year.  Column 1 accounts for where the whole city population lives at the end of a
year, so Column 1 adds up to  (100%).  Similarly, Sum(Column 2)  and" œ "
Sum(Column 3) œ "Þ

Suppose the metro region has a total population of 2,000,000 distributed as:
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After one year the new distribution is
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To avoid working with such large numbers, we will use a “population state vector” written
instead with :  for the initial state vector the 2000000 people in the region the areproportions B!ß
distributed in proportions as
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Then              is next
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year's population distribution.  After 2 years, the population state distribution is
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and so on:

 (**)B B B Ñ B B8" 8 8" 8# !œ E œ EÐE œ EÐEÐE ÑÑ œ ÞÞÞ œ E8"    

Each  , after the initial vector  is obtained from the preceding one bystate vector B B8 !ß
multiplication by .E

Notice that:

 1) We can also think of the proportions in  and in as :  for example, theE B! probabilities
probability is  that a randomly chosen person from the suburbs will move to the exurbs by!Þ$!
next year.  The  in the second row of tells us that the probability is 0.70 that a randomly!Þ(! B! 

chosen person (out of the 2000000 in the region) lives in the suburbs.

 2) The entries in and  are nonnegative numbers, and the columns add up to . AE "B!

square matrix  satisfying these two conditions is called a  matrix, and such a vector E stochastic B!

is called a .  As we compute, each succeeding state vector isprobability vector B B B" # 8ß ß ÞÞÞß ß ÞÞÞ
still a probability vector (we check this for the  case, but the argument in the case of an$ ‚ $
8 ‚ 8 stochastic matrix is completely similar):

     If  is a stochastic matrix and is a probability vector, thenE œ
+ , - B
. / 0 C
1 2 3 D

   
   

    . The entries are still 0, and they still sum to 
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+ , - B +B  ,C  -D
. / 0 C .B  /C  0D
1 2 3 D 1B  2C  3D
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     Ð+  .  1ÑB  Ð,  /  2ÑC  Ð-  0  3ÑD œ " † B  " † C  " † D
               œ B  C  D œ "

A system consisting of a stochastic matrix, an initial state probability vector and an equationB! 
B œ B8" 8E  is called a .Markov process

In a Markov process, each successive state depends only on the preceding stateB B8" 8  Þ
An important question about a Markov process is “What happens in the long-run?”, that is, “what
happens to as  ?”B8 8 Ä ∞

In our example,  we can start with a good guess. Using Matlab, I (quickly) computed



   B B B B"! ! "!! !œ E œ ÞÞÞ ß œ E œ
Þ#)%' Þ#)&(
Þ#)'# Þ#)&(
Þ%#*# Þ%#)'

"! "!!
   
   ,  and that
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 
  (The  results are rounded to 4 decimal places;  duringdisplayed

the calculations, Matlab carried along many more decimal places although even then small
roundoffs were made.)

Assuming the transition matrix and other modeling assumptions remain valid as time passes, it

seems like the population distribution moves toward a  withsteady state B œ 
Þ#)&(
Þ#)&(
Þ%#)'

 
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#)Þ&( %#Þ)'% of the population in each of the city and suburbs, and with % in the exurbs.

Using our knowledge of linear algebra, we can actually find this steady state without repeatedB
computations and guessing. Is there a    for which  ?steady state probability vector B B BE œ
equivalently, for which  ?  We begin by finding   that satisfy the equation.ÐE  MÑB œ ! Ball
Then among those solutions, we find an that is .B also a probability vector

Here,   To avoid any roundoff error, we can convert toE M œ Þ
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The general solution is where  is free.   A more convenient (rescaled) form isB œ B B
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to This is  that is a solution to so is the steady"Þ E œthe one and only probability vector B B 
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state vector for the Markov process in our example.



Rounded to 4 decimal places   , the result estimated using Matlab.:
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This is exactly what happens in many cases with a Markov process.  The following is a result
proven in courses that treat Markov processes in detail.

Definition  An  stochastic matrix  is called  if for some positive integer ,8 ‚ 8 E regular
the entries in the power  are all   ( ).E  !5 not merely 0 

In the example above,  is regular because  has all entriesE E œ E  !Þ"

Theorem  If  is a regular stochastic matrix, thenE 8 ‚ 8

 i)  there  a  steady state probability vector , that is, aexists unique B
 probability vector for which  andE œB B 

 ii)   as   (and this is true no matterB B B8" 8œ E Ä 8 Ä ∞
 which  .probability vector is used as the initial state B!



The little that we already know about diagonalization and eigenvectors also sheds some light 
on this Markov process because the matrix happens to be diagonalizable. E

Recall that:

Definition   A  vector  is called an  of the  matrix nonzero eigenvector@ 8 ‚ 8 E
if for some scalar .  The scalar  is called an  of associatedE œ E Ð@ @- - - eigenvalue
with the eigenvector @ÑÞ

Suppose  is an eigenvector of (any  matrix)  with eigenvalue .@ 8 ‚ 8 E -

Then    E œ@ @-
   E œ EÐE Ñ œ EÐ Ñ œ EÐ Ñ œ Ð Ñ œ# #@ @ @ @ @ @- - - - -
   E œ EÐE Ñ œ EÐ Ñ œ EÐ Ñ œ œ$ # # # # $@ @ @ @ @ @- - - - -
      ã
   E œ ÞÞÞ œ8 8@ @-

For our example,  has eigenvectors , and withE œ
Þ(& Þ"! Þ"!
Þ"! Þ'! Þ#!
Þ"& Þ$! Þ(!

 
  @ @ @" # $,  

corresponding eigenvalues ,      these eigenvectors- - -" # $
"$ #
#! &œ œ !Þ'& œ "ß œ œ !Þ%! and

form  for so  is diagonalizable.a basis ‘$  E

 In the recent supplementary homework, we saw a method for finding eigenvalues :  find-
 the 's (if any) that make det  Actually applying the method for a - -ÐE  MÑ œ !Þ $ ‚ $
 matrix  leads to a cubic equation that must be solved for this can be done, but mayE -
 be difficult depending on the matrix  in general.  If we find any eigenvalues , then weE -
 can solve to find the corresponding eigenvectors.E œB B-

For the example, I used Matlab to help find the “diagonal factorization” for :E
 

 E œ œ T T
Þ(& Þ"! Þ"! Þ'& ! !
Þ"! Þ'! Þ#! ! " !
Þ"& Þ$! Þ(! ! ! Þ%!
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    ",  where

    (T œ
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Þ$#%% Þ%)&"  Þ("("
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 
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The  of  are (approximately) the eigenvectors and that form a basis for columns T ß ß@ @ @" # $ ‘$,
and the eigenvalues for  and are the entries in the diagonal matrix:  and @ @ @" # $ß ß Þ'&ß "ß Þ% 
Since the eigenvectors are a  for , the initial state vector  can be written as a linearbasis ‘$ B!

combination of the basis eigenvectors:
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Therefore

 B B @ @ @ @ @ @" ! " # $ " # $œ E œ EÐ-  -  - Ñ œ - E  - E  - E" # $ " # $

     œ @ @  @-  - -" " # # $ $- - -" # $

  B E EÐ-  - - Ñ# " " # # $ $
#œ B œ @ @  @! " # $- - -

  œ - E  - E - E" " # # $ $- - -@ @  @" # $

  
  œ @ @  @-  - -" # $" # $

# # #- - -" # $

     ã
 B B œ @ @  @8 ! " # $œ E ÞÞÞ ÞÞÞ œ -  - -8 8 8 8

" # $" # $  - - -

     œ - ÐÞ'&Ñ  - Ð"Ñ  - ÐÞ%!Ñ" # $
8 8 8@ @ @" # $

Therefore we can see that

  lim lim
8Ä∞ 8Ä∞

" # $
8 8 8B œ @ @ @8 " # $  Ð- ÐÞ'&Ñ  - Ð"Ñ  - ÐÞ%!Ñ Ñ
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If we had actually found the weights  above then we would now know the steady state- ß - ß -" # $

probability vector B @œ - Ð# # because we would know - Ñ#
Þ
But, instead, we can still find , because we know is supposed to be a probability vector:B B 

  is (approximately) the second column of and@# T œ
Þ%)&"
Þ%)&"
Þ(#('

 
 

  for to be a probability vector, the sum of the entries must be B @œ - " À# # 

  this requires use to choose - œ#
"

sum of the entries of @#

  œ Þ&)*!"
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  So rounded to 4 decimal places)B ¸ Þ&)*! œ Ð
Þ%)&" Þ#)&(
Þ%)&" Þ#)&(
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   

        the same steady state we found earlier.œ B 

So:  diagonalization can help in understanding Markov Processes and similar kinds of linear
difference equations.


