
The Rational Numbers

Fields

The system  of integers that we formally defined  is an improvement algebraically on ™ =
(we can subtract in ).  But  still has some serious deficiencies:  for example,  a simple™ ™
equation like  has no solution in .   We want to build a larger number$B  % œ # ™
system, the rational numbers, to improve the situation.

In Chapter 3, we introduced the idea of an algebraic structure called a field and we
proved, for example, that  is a field iff  is a prime number.™: :

The fields axioms, as we stated them in Chapter 3, are repeated here for convenience.

Definition  Suppose  is a set with two operations (called addition and multiplication)J
defined inside .   is called a  if the following “field axioms” are true.J J field

 1)  There are elements  and  (and ! − J " − J ! Á "Ñ

2    2  )Ñ aB aC aD ÐB  CÑ  D œ B  ÐC  DÑ Ñ aBaC aD ÐB C D œ B ÐC DÑw † † † †
       (addition and multiplication are associative)

3      3Ñ aB aC B  C œ C  B Ñ aBaC B C œ C Bw † †
      (addition and multiplication are commutative)

  4     Ñ aB aC aD B ÐC  DÑ œ B C  B D† † †
        (the distributive law connects addition and multiplication)
 
5         5 )  Ñ aB B  ! œ B aB ÐB Á ! Ê B † " œ BÑw

 (0 and 1 are “neutral” elements for addition and multiplication.   is called!
the  and  is called the  inadditive identity element multiplicative identity element"
J )

6       6Ñ aB bC B  C œ ! Ñ aB ÐB Á ! Ê ÐbCÑ B C œ "Ñw †
(  is called an  of )  for each , such a  is called aC B Ð B Á ! Cadditive inverse
       of multiplicative inverse BÑ

In any field , multiplication “ ” is often written as just “ ”.J B † C BC

The (still informal) systems , , and  are other examples of fields.  So is the ‘ ‚

collection , as you proved in a homework assignment.Ö+  , # À +ß , − ×È 

Much of the material about fields in the next few pages is material you've seen before.
It's just collected in a systematic way here, partly for review.



Any particular field such as ,   and  is called a  for the field axioms.  There™  ‘: model
are significant differences between these models.  For example,

    has only 3 elements, while  has 5 elements and  and  areñ ™ ™  ‘$ &

 infinite fields.
   In ,  in ;  in  and , noñ "  "  " œ !à ß "  "  "  "  " œ !™ ™  ‘$ &

 finite sum of 's has  for a sum. ." !

In other words, we  say that “all fields look alike.”   In that respect, the fieldcannot
axioms are quite different from the axioms P1-P5) for a Peano system:  there, we were
able to argue that “all Peano systems look alike” or, in more formal language, that any
two Peano systems are isomorphic.

 An axiom system for which “all models are isomorphic” is called a categorical
 axiom system.  The field axioms are  categorical.not

Some useful theorems can be proved just using the field axioms: these theorems therefore
apply in  fields.  Proving them in the abstract is efficient;  it saves the effort of provingall
them over and over each time a new field comes up.  For example, the statements in the
following theorem are true in every field  a prime)   . Ð: ß ß ß ß ÞÞÞ™  ‘ ‚:

Theorem 1   Suppose  are a members of a field .Bß ?ß @ J

  a) (Cancellation for addition)  If , then .B  ? œ B  @ ? œ @
  b) (Cancellation for multiplication)  If  and , thenB Á ! B? œ B@
   ? œ @Þ
  c)  The additive inverse of  is unique.B
  d)  If , then the multiplicative inverse of  is unique.B Á ! B
  e)  The additive identity, , is unique and the multiplicative identity, , are! "
  unique.
  f) aB − Jß B † ! œ !
  g)  If , then  or .?@ œ ! ? œ ! @ œ !
  
Proof  
 a) Suppose By Axiom 5),  has an additive inverse .  ThenB  ? œ B  @Þ B C

 C  ÐB  ?Ñ œ C  ÐB  @Ñ
   (using Axiom 2)ÐC  BÑ  ? œ ÐC  BÑ  @
   (using Axiom 3)ÐB  CÑ  ? œ ÐB  CÑ  @
     (since  is an additive inverse for )!  ? œ !  @ C B
     (using Axiom 3)?  ! œ @  !
      (using Axiom 5)? œ @Þ



 b) If then  has a multiplicative inverse (Axiom 6 ).  So if ,B Á !ß B C B? œ B@w

then

   CÐB?Ñ œ CÐB@Ñ
 )    (using Axiom 2 )ÐCBÑ? œ ÐCB @ w

    (using Axiom 3 )ÐBCÑ? œ ÐBCÑ@ w

     (since  is a multiplicative inverse" † ? œ " † @ C
       for )B
     (using Axiom 3 )? † " œ @ † " w

      (using Axiom 5 )? œ @ w

  
 c) Suppose .  If  and   are true,Cß C − J B  C œ ! B  C œ !w w both
 then    Adding   to both sides, we get  B  C œ B  C Þ Cw

 C  ÐB  CÑ œ C  ÐB  C Ñw

   (using Axiom 2)ÐC  BÑ  C œ ÐC  BÑ  Cw

   (using Axiom 3)ÐB  CÑ  C œ ÐB  CÑ  Cw

    (because  is an additive inverse!  C œ !  C Cw

       for )B
    (using Axiom 3)C  ! œ C  !w

      (using Axiom 5).C œ Cw

Since  has a  additive inverse, we can talk about  additive inverse of  andB Bunique the
give it a name:   Then  and (using Axiom 3)  Ð  BÑÞ B  Ð  BÑ œ ! Ð  BÑ  B œ !Þ

The last equation says that  is the additive inverse for  that is B  B À  Ð  BÑ œ BÞ
This is  some profound fact;  it's just a consequence of the notation we chose for thenot
additive inverse.

 d) Suppose , that .  If  and   are true,B Á ! Cß C − J BC œ " BC œ "w w both
 then   Multiplying both sides by , we getBC œ BC Þ Cw

 CÐBCÑ œ CÐBC Ñw

    (using Axiom 2 )ÐCBÑC œ ÐCBÑCw w

    (using Axiom 23)ÐBCÑC œ ÐBCÑCw

     (since  is a multiplicative inverse" † C œ " † C Cw

       for )B
     (using Axiom 3 )C † " œ C † "w w

      (using Axiom 5 )C œ Cw w

If , then  has a  multiplicative inverse, so we can talk about B Á ! B unique the
multiplicative inverse of  and give it a name: Then  andB B Þ B † B œ "" "

(using Axiom 3 )  w "B † B œ "Þ



The latter equation says that  is the multiplicative inverse for that is B B À ÐB Ñ œ BÞ" " "

e) Suppose and that  is an additive identity, that is, D − J D aB
B  D œ B œ B  !Þ B D œ !Þ   Using part a) to cancel the 's, we get 
.

    Suppose  and that  is a multiplicative identity, that is,A − J A
aB Á !ß BA œ B œ B † "Þ B A œ "ÞUsing part b) to cancel the 's, we get 

f) Suppose  0 is the additive identity in , so B − JÞ J !  ! œ !Þ
Therefore
  B † Ð!  !Ñ œ B † !
    (using Axiom 4)B † !  B † ! œ B † !

Let  be the additive inverse of  , that is C B † ! C œ  Ð! † BÑ

  Ð! † BÑ  ÐB † !  B † !Ñ œ  Ð! † BÑ  B † !
 0)Ð  Ð! † BÑ  B †  B † ! œ  Ð! † BÑ  B † !
   !  B † ! œ !
   B † ! œ !

 Part g) is left as an exercise.    ñ

In a field, we can also define subtraction and division.

Definition   Suppose  and  are members of a field .B C J

 a) We define the  difference B  C œ B  Ð  CÑÞ
 So subtraction is defined in terms of addition (adding the additive inverse).

 b)  If , we define the  B Á ! C ƒ B œ CB Þquotient "

 So division is defined in terms of multiplication (multiplying by the multiplicative
 inverse .)

Example  Consider the field    (™( œ Ö!ß "ß #ß $ß %ß &ß '×  where  are"ß #ß ÞÞÞß '
abbreviations for the equivalence classes Ò"Óß Ò#Óß ÞÞÞß Ò'Ó)

 a)  The additive inverse of  is 3 because  (and only % %  $ œ ! $
 has this property).  Therefore we write . % œ $

 b)  Subtraction:  #  % œ #  Ð  %Ñ œ #  $ œ &Þ



 c)  The multiplicative inverse of is  because  (and only  has this$ & $ † & œ " &
 property).  Therefore we write    (and $ œ & & œ $ÑÞ" "

 d)  Division:   # ƒ $ œ # † $ œ # † & œ $Þ"

  " ƒ $ œ " † $ œ " † & œ &Þ"

Example  If  are members of  field and , then the equation +ß ,ß - J + Á ! +B  , œ -any
has a unique solution in .  We can simply use the “algebra of fields” contained in theJ
axioms and theorems to solve the equation (some detailed justifications like references
to the repeated use of associativity and commutativity in are omitted).™

 +B  , œ -
   Using the additive+B  ,  Ð  ,Ñ œ -  Ð  ,Ñ
        inverse of ,
 +B  ! œ -  Ð  ,Ñ
 +B œ -  ,
    so  has a+ Ð+BÑ œ + Ð-  ,Ñ + Á ! +" "

        multiplicative inverse
 " † B œ + Ð-  ,Ñ"

 B œ + Ð-  ,Ñ"

For a more specific example, we solve the equation 2 in .  ($B  % œ ™( See the
preceding example.)
   $B  % œ #
   $B  %  % œ #  %
   $B  %  $ œ #  $
   $B œ &
   & † $B œ & † &
   " † B œ %
   B œ %Þ



Constructing 

The preceding example shows that if we can enlarge the numbers system  to a field,™
there will no longer be an issue about solving linear equations like We will$B  % œ #Þ
try to enlarge  in the most economical way we can.  (Of course, what we are after is to™
formally informal construct a field that acts just like the , familiar field of rational
numbers.)

In the work that follows, we can use all the properties of the integers that we have already
proven  for example, that addition and  multiplication are commutative and associative,
the distributive law, that every integer has a unique additive inverse, that there are
cancellation rules for addition and multiplication (by a nonzero integer) in , etc.  We™
will often use these facts about integer arithmetic without actually citing the “chapter and
verse” reasons.

Think of a rational number   ( ).   To name a rational number we need two integers+
, , Á !

+ß , , Á !Þ where So, starting with ,  we could try to create  by defining a rational™ 
number to be a pair of integers  in which Ð+ß ,Ñ , Á !Þ

However, that attempt would give us “too many” different rationals.  After all, we think
of   as being the same rational number.  In the informal system of rationals," # $

# % 'ß ß
+ -
, .œ +. œ ,-   iff .  So if rational numbers are to be represented using pairs of
integers, we would want the pairs  and  to represent the same rational numberÐ+ß ,Ñ Ð-ß .Ñ
iff .   +. œ ,- We can accomplish this by using an equivalence relation.

Definition   For  and ,  letÐ+ß ,Ñ Ð-ß .Ñ − ‚ Ð  Ö!×Ñ™ ™

      iff   Ð+ß ,Ñ ¶ Ð-ß .Ñ +. œ ,-

Theorem 2   is an equivalence relation on ¶ ‚ Ð  Ö!×ÑÞ™ ™

Proof i)   because in  (the formal system) .  Therefore  isÐ+ß ,Ñ ¶ Ð+ß ,Ñ +, œ ,+ ¶™
reflexive.

 ii)  If , then , so in  But that meansÐ+ß ,Ñ ¶ Ð-ß .Ñ +. œ ,- -, œ .+ Þ™
 ,  so  is symmetric.Ð-ß .Ñ ¶ Ð+ß ,Ñ ¶

 iii) Suppose          so that      (2)
     (1)  œ œÐ+ß ,Ñ ¶ Ð-ß .Ñ +. œ ,-

Ð-ß .Ñ ¶ Ð/ß 0Ñ -0 œ ./

 
 
 We want to show that Ð+ß ,Ñ ¶ Ð/ß 0ÑÞ



  Since , we know Ð-ß .Ñ − ‚ Ð  Ö!×Ñ . Á !™ ™

  )  If , then , and canceling theCase i - œ ! +. œ ,- œ ,Ð!Ñ œ ! œ Ð!Ñ.
  nonzero  gives . + œ !Þ
    Similarly, , and canceling the./ œ -0 œ Ð!Ñ0 œ ! œ .Ð!Ñ
  nonzero  gives .. / œ !
    Then Ð+ß ,Ñ œ Ð!ß ,Ñ ¶ Ð!ß 0Ñ œ Ð/ß 0ÑÞ

  ) If , then multiplying equations (1), (2) and usingCase ii - Á !
  commutativity and associativity gives Ð+0ÑÐ-.Ñ œ Ð,/ÑÐ-.ÑÞ
  Since  (a theorem we proved in ), we can cancel  from both-. Á ! Ð-.Ñ™
  sides leaving   Therefore +0 œ ,/Þ Ð+ß ,Ñ ¶ Ð/ß 0ÑÞ

 Therefore is transitive.   ¶ ñ

Definition     A member of  is called a rational number. ™ ™ œ ‚ Ð  Ö!×ÑÎ ¶ Þ

According to the definition, a rational number is an equivalence class containing certain
pairs of integers.  What do some of the equivalence classes look like?

 ÞÞÞ œ ÒÐ  #  #ÑÓ œ ÒÐ  "ß  "ÑÓ œ ÒÐ"ß "ÑÓ œ ÒÐ#ß #ÑÓ œ ÞÞÞ

Going back to the intuitive motivation, we think of this  as the/;?3@+6/8-/ -6+==
rational number 1.

Similarly, in the intuitive motivation, we think of the equivalence class

... œ ÒÐ  #ß %ÑÓ œ ÒÐ  "ß #ÑÓ œ ÒÐ  "ß #ÑÓ œ ÒÐ  #ß %ÑÓ œ ÞÞÞ œ ÒÐ  "(ß $%ÑÓ œ ÞÞÞ

... œ ÒÐ#ß  %ÑÓ œ ÒÐ"ß  #ÑÓ œ ÒÐ"ß  #ÑÓ œ ÒÐ#ß  %ÑÓ œ ÞÞÞ œ ÒÐ"(ß  $%ÑÓ œ ÞÞÞ

 as the  .rational number  "
#



Arithmetic in 

We want to define addition and multiplication in :  that is, we want to define addition
and multiplication of these equivalence classes.  The definitions make use of
representatives of the equivalence classes so, as always, we will have to check that the
addition and multiplication are well-defined.

Definition   Suppose and are in .   LetÒÐ+ß ,ÑÓ ÒÐ-ß .ÑÓ 

  i) ÒÐ+ß ,ÑÓ  ÒÐ-ß .ÑÓ œ ÒÐ+.  ,-ß ,.ÑÓ
  Of course, the definition of addition is motivated by the way, informally,
  that we think addition in the rationals should behave:  + -

, . ,.
Ð+.  ,-Ñ œ

  
  ii)  ÒÐ+ß ,ÑÓ † ÒÐ-ß .ÑÓ œ ÒÐ+-ß ,.ÑÓ
  Again, the definition is motivated by the fact that in the informal system of
  rationals,  .+ -

, . ,.† œ ac

  
Notice that since and , we know that neither  nor  is , andÒÐ+ß ,ÑÓ ÒÐ-ß .ÑÓ − , . !
therefore    Therefore  and  are also in  .   Adding,. Á !Þ ÒÐ+.  ,-ß ,.ÑÓ ÒÐ+.  ,-ß ,.ÑÓ 
or multiplying two rational numbers gives another rational number.

Since  and   applying theÒÐ"ß  #ÑÓ œ ÒÐ  #ß %ÑÓ ÒÐ#ß $ÑÓ œ ÒÐ  %ß  'ÑÓß
         definitions to

   and      should produce the sameÒÐ"ß  #ÑÓ  ÒÐ#ß $ÑÓ ÒÐ"ß  #ÑÓ † ÒÐ#ß $ÑÓ
            answers as applying them to
 andÒÐ  #ß %ÑÓ  ÒÐ  %ß  'ÑÓ ÒÐ  #ß %ÑÓ † ÒÐ  %ß  'ÑÓ

The next theorem guarantees that this is true.

Theorem 3  Addition and multiplication in  are well-defined.

Proof  Suppose    that is, suppose  and       (1)  and
     (2)œ œÐ+ß ,Ñ ¶ Ð-ß .Ñ +. œ ,-

Ð/ß 0Ñ ¶ Ð1ß 2Ñ /2 œ 01

1)    We need to show thatAddition

  .      This is true iffÒÐ+ß ,ÑÓ  ÒÐ/ß 0ÑÓ œ ÒÐ-ß .ÑÓ  ÒÐ1ß 2ÑÓ
    iffÐ+0  ,/ß ,0Ñ ¶ Ð-2  .1ß .2Ñ
     iff.2Ð+0  ,/Ñ œ ,0Ð-2  .1Ñ
   (*)+.20  ,./2 œ ,-02  ,.01
But   and ,  so the equation (*) just says+. œ ,- /2 œ 01

 , which is true.,-20  ,.01 œ ,-02  ,.01



2)   We need to show thatMultiplication

        This is true  iffÒÐ+ß ,ÑÓ † ÒÐ/ß 0ÑÓ œ ÒÐ-ß .ÑÓ † ÒÐ1ß 2ÑÓ
       iffÒÐ+/ß ,0ÑÓ œ ÒÐ-1ß .2ÑÓ
      (**)+/.2 œ ,0-1

But equation (**)  is true:   it is just the result of multiplying together
the equations (1) and (2) in the hypothesis.     ñ

Theorem 4  With addition and multiplication so defined,    is a field.

Proof   We will prove that some of the field axioms are true for .  The others (all just as
easy) are left as exercises.  Suppose and  are in ÒÐ+ß ,ÑÓ ÒÐ-ß .ÑÓ 

 Axiom 3)  :Addition is commutative

     ÒÐ+ß ,ÑÓ  ÒÐ-ß .ÑÓ œ ÒÐ+.  ,-ß ,.ÑÓ
        (because addition and multiplicationœ ÒÐ-,  .+ß .,ÑÓ
           in  are commutative)™
    œ ÒÐ-ß .ÑÓ  ÒÐ+ß ,ÑÓ

 Axioms 5 and 5 )  w Existence of identity elements
 
 The equivalence classes  and  are the identity elements forÒÐ!ß "ÑÓ ÒÐ"ß "ÑÓ
 addition and multiplication in .  For any  ÒÐ+ß ,ÑÓ − À

      andÒÐ+ß ,ÑÓ  ÒÐ!ß "ÑÓ œ ÒÐ+ † "  , † !ß , † "ÑÓ œ ÒÐ+ß ,ÑÓ

  ÒÐ+ß ,ÑÓ † ÒÐ"ß "ÑÓ œ ÒÐ+ † "ß , † "ÑÓ œ ÒÐ+ß ,ÑÓ

 6 and 6 )  For any w Existence of inverses ÒÐ+ß ,ÑÓ − À

  ÒÐ+ß ,ÑÓ  ÒÐ  +ß ,ÑÓ œ ÒÐ+ † ,  , † Ð  +Ñß , † ,ÑÓ
    œ ÒÐ!ß , † ,ÑÓ œ ÒÐ!ß !ÑÓ
  so has an additive inverse in    ÒÐ+ß ,ÑÓ À ÒÐ  +ß ,ÑÓ Þ

  If , then  so ( ) andÒÐ+ß ,ÑÓ Á ÒÐ!ß !ÑÓ + Á ! Ð,ß +Ñ − ‚  Ö!×™ ™
  .  Then ÒÐ,ß +ÑÓ − ÒÐ+ß ,ÑÓ † ÒÐ,ß +ÑÓ œ ÒÐ+,ß +,ÑÓ œ ÒÐ"ß "ÑÓÞ
  Therefore  has a multiplicative inverse in  ÒÐ+ß ,ÑÓ À ÒÐ,ß +ÑÓÞ



Just for convenience, we now assign some handy (and suggestive) names to the
equivalence classes.

Definition  For any integers with , the rational number  is denoted+ß , Ð , Á !Ñ ÒÐ+ß ,ÑÓ
using  In addition, we will also write an equivalence classfraction notation +

, Þ
+
" œ ÒÐ+ß "ÑÓ +Þsimply as 

Thus, a fractional notation like, say,  is nothing but a convenient, handy definition of a$
(

name for an equivalence class.  It is a single, one-piece symbol standing for the
equivalence class   The  here of the symbol  “ ” has nothing to do withÒÐ$ß (ÑÓÞ definition $

(

division.

 However:   As in any field,  means $ ƒ ( $ † ( œ ÒÐ$ß "ÑÓ † ÒÐ(ß "ÑÓ" "

  So it  that theœ ÒÐ$ß "ÑÓ † ÒÐ"ß (ÑÓ œ ÒÐ$ † "ß " † (ÑÓ œ ÒÐ$ß (ÑÓ œ Þ$( then turns out
 symbol “ ” is the answer, in our formal system , to the problem “ ?”.$

(  $ ƒ ( œ

 This is good;  if it didn't turn out that way, then the formal system  that we've
 constructed wouldn't “act just like” the informal system of rationals after all.

Examples

ÒÐ"ß "ÑÓ œ "" "
" ".  The equivalence class  is also just written as the  .rational number

The “ ” 's in the pair  are the   this integer, constructed earlier, is used" Ð"ß "Ñ " Àinteger
to construct a new object the rational number .  Strictly speaking, the  " rational
number integer  is different from the  " "Þ

We saw a similar phenomenon earlier: when we constructed we saw that the  ™ß "integer
was not the same as the  1  (they are quite literally defined by differentwhole number
sets).  There are some additional comments about this at the conclusion of these notes.

ÒÐ!ß "ÑÓ œ !! !
" ".  The equivalence class  is also just written as the   .rational number

Since  for any nonzero integer , we have ÒÐ!ß "ÑÓ œ ÒÐ!ß ,ÑÓ , œ !Þ!
,

Since ,   we have because theseÒÐ#ß "ÑÓ œ ÒÐ%ß #ÑÓ œ ÒÐ  "!ß  &ÑÓ œ œ À# % "!
" # &

fractions are all just names agreed upon names for the same equivalence class.  An
equivalence class like  is also written more simply as the  #

" rational number #Þ

"
# œ Ö ÞÞÞß Ð  $ß  'Ñß Ð  #ß  %Ñß Ð  "ß  #Ñß Ð"ß #Ñß Ð#ß %Ñß Ð$ß 'Ñß ÞÞÞ×        and
#
% œ Ö ÞÞÞß Ð  $ß  'Ñß Ð  #ß  %Ñß Ð  "ß  #Ñß Ð"ß #Ñß Ð#ß %Ñß Ð$ß 'Ñß ÞÞÞ×        and

$
' œ Ö ÞÞÞß Ð  $ß  'Ñß Ð  #ß  %Ñß Ð  "ß  #Ñß Ð"ß #Ñß Ð#ß %Ñß Ð$ß 'Ñß ÞÞÞ×     
     etc.
" # $ " # $
# % ' # % ',  , and  are names for   equivalence class:    .the same œ œ



Notice that, in fraction notation,   iff  + -
, .œ ÒÐ+ß ,ÑÓ œ ÒÐ-ß .ÑÓ

     iff  iff Ð+ß ,Ñ ¶ Ð-ß .Ñ +. œ ,-Þ

Examples  Here once again are the  of addition and multiplication in butdefinitions 
this time restated in terms of fractions.  There is nothing to prove here.  We are just
rewriting the  in a different notation. :definitions

 1)  + - +.  ,-
, . +. œ

      ÒÐ$ß %ÑÓ  ÒÐ#ß %ÑÓ œ ÒÐ#!ß "'ÑÓ œ ÒÐ&ß %ÑÓ

In  fraction notation,
   $ # $†%#†% #! &

% % "' "' % œ œ œ

    ÒÐ$ß %ÑÓ  ÒÐ  "ß &ÑÓ œ ÒÐ"&  %ß #!ÑÓ œ ÒÐ""ß #!ÑÓ

In fraction notation,
   $ " "&% ""

% & #! #! œ œ

 2)  + - +-
, . ,.† œ

    ÒÐ  $ß %ÑÓ † ÒÐ"ß '!ÑÓ œ ÒÐ  $ß #%!ÑÓ œ ÒÐ  "ß )!ÑÓ

In fraction notation,
   $ " $ "

% '! #%! )!† œ œ Þ

Examples

1)   because   because +, ,
+- -œ ÒÐ+,ß +-ÑÓ œ ÒÐ,ß -ÑÓ Ð+,ß +-Ñ ¶ Ð,ß -Ñ

     because +,- œ +-,
So, in fraction notation, a common factor can be “canceled” from numerator and
denominator

2) (+ - +, ,- + -
, , ,†, ,†, ,

,Ð+ -Ñ œ œ œ canceling a common factor)

3)  We proved that an object (in any field) has a  additive inverse.  As in any field,unique
we write the  of   as so additive inverse + + + +

, , , , ß  Ð  Ñ œ !Þ

    Since , we see that+ + !
, , , , ,

+, Ð+Ñ, ,Ð+ Ð+ÑÑ Ð Ñ œ œ œ œ !# # #



+ + +
, , ,is an additive inverse for But  is the  in  which addedÞ  one and only element 

to  produces .  Therefore it must be that  in .+ + +
, , ,!  œ 

     Moreover,   (because we proved, in ,  that .+ +
, ,œ +, œ Ð  +ÑÐ  ,ÑÑ™

     Therefore  for any  œ œ −+ + + +
, , , , 

4)  since + +
, ,œ Ð+ß ,Ñ ¶ Ð  +ß  ,ÑÞ

5) Subtraction:   + - + - + - +.  ,-
, . , . , . ,. œ  Ð  Ñ œ  œ

  Å
  subtraction is defined in any field by
      “add the additive inverse”

6)  We proved that a nonzero object (in any field) has a  multiplication inverse. Ifunique
! Á − ß Ð Ñ+ + +

, , ,
"  then the multiplicative inverse of  is denoted (as in any field) by .

Since ,   is a multiplicative inverse for  in .  Since  is the + , , + +
, + + , ,

"† œ " Ð Ñ one and
only rational which multiplied times  produces , it must be that in .+ , +

, + ,
"" œ Ð Ñ 

      For example:  ,    andÐ Ñ œ # œ Ð Ñ œ# $ # "
$ # " #

" " "

         If ,    , Á ! , œ Ð Ñ œ" ", "
" ,

  

7) Division:  If ,  then - + - + - + . +.
. , . , . , - ,-

"Á ! ƒ œ † Ð Ñ œ † œ

 ( ).the old “invert and multiply" rule”
     Since we already observed that a rational number, in fractional form, can be
thought of as a division, we can also write this computation as

   +,
-
.
œ ƒ œ+ - +.

, . ,-

 
     As illustrated earlier:   $ ƒ ( œ ƒ œ † œ Þ$ ( $ " $

" " " ( (

  
    

#
$
%
(

œ ƒ œ † œ œ# % # ( "% (
$ ( $ % "# '

All the familiar manipulations involving addition, subtraction, multiplication and division
from the informal system of rationals can be shown to be true in the formal system .

At this point, we will assume that all such rules have been proven and we will use them
freely, without further comment.  However, rules for manipulating inequalities in  still
need to be explored and justified.



Inequalities in 

Of course, we have an idea in the  system of rationals what “positive” andinformal
“negative” mean, and how relations like  and  work.  But in the formal system  Ÿ 
that we have defined, we need to give  for positive, negative, and definitions  ß Ÿ
show see what properties they have (hopefully, they will “act just like” our informal
notions).

Definition  A  rational number  is called  if it is possible to write nonzero positive+ + -
, , .œ

where  and  are  in .- . both 
                  Equivalently,  we can say that is positive if it is possible to write + + -

, , .œ

where the integers  are both  because, in that case, we have  where-ß .  œnot in  + -
, .

 -ß  . are  ,both in 

Definition  A  rational number is called  if it is possible to write nonzero negative+ + -
, , .œ

where  of the two integers  is in .exactly one -ß . 

The rational  is by definition,  positive nor negative.! neither

Theorem 5  For every , exactly one of the following statements is true:+
, − 

   +
, œ !

   is positive+
,

   is negative+
,

Proof   If  and  is not positive, then it must be that exactly one of  or  is in  so+ +
, ,Á ! + , 

+
, is negative.  Therefore one of the three statements must be true.

By definition, if , then  is neither positive nor negative.  So we only need to+ +
, ,œ !

consider whether it is possible for to be both positive  negative.+
, and

 Suppose  is positive, where Suppose .   It cannot be that exactly+ + -
, , .+ß , − Þ œ

 one of  is in  because then the equation  would have member of -ß . +. œ ,- 
on
 one side but not the other.   Therefore  is not also negative.+

,

  holds in .  This is impossible since one side of the equation is in  but-0 œ ./ ™ 
 the other isn't.   ñ
 
Example , and  are all positive,  and# œ œ ß ß# # " $

" " # %

   ,  ,  and    are all negative." " $ $ $ #
# # ( ( ( "œ  œ œ œ  #



Theorem 6  Suppose   Then  is positive iff  is negative.B œ − Þ B  B+
, 

Proof   If   is positive, then we can write  where both   ThenB B œ œ -ß . − Þ+ -
, . 

  where  and .  Therefore B œ  œ . −  - Â- -
. .  

  is negative. B

The proof of the converse is left as an exercise.    ñ

Theorem 7  If and  are positive rationals,  then  and  are positive.B C B  C BC

Proof   We can write  and  where all of ThenB œ C œ +ß ,ß -ß . − Þ+ -
, . 

  , andB  C œ + - +.  ,-
, . ,. œ

  BC œ + - +-
, . ,.† œ Þ

Since and  , the sum and product are positive.   +.  ,-ß ,.ß +- − ñ

In the discussion that follows, the notation is cleaner if we simply refer to rationals as
Bß Cß Dß ÞÞÞ − B œ ß ÞÞÞ Þ.  We don't need the  “fractional forms” +

,

We can use the term “positive” to define order relations and  in . Ÿ 

Definition  For , we sayBß C − 

     iff    is positive B  C C  B
     iff    is positive or   B Ÿ C C  B B œ C

(We also write  and  as  and B  C B Ÿ C C  B C   BÞÑ

In particular, this means ( ) that  fortunately for our intuition

   iff  is positive !  B B  ! œ B
 
        and     iff  is positiveB  ! !  B
    iff  is positive B
    iff   is negativeÐ  BÑ
    iff   is negativeB

Example  Using , we can rewrite some of our previous observations ( ) in which ones?
a new way:



 )  Since  is not positive,   is false." ! !  !

 2)   exactly one of the following is true:aB − ß

   B  !ß B œ !ß B  !
 
 3)       iff   aB − B  !  B  !Þ
 
  Note,  just for emphasis: this statement implies that
    iff  B  !  Ð  BÑ œ B  !ÞÑ

 4)  if  and , then  and .aBa C − ß B  ! C  ! B  C  ! BC  !

Some of the most important facts about are listed in the following theorem.  You can
also formulate an analogous theorem for .Ÿ

Theorem 8   For all Bß Cß Dß A − ß

 a)  If  and , then    (the relation “ ” is transitive)B  C C  D B  D 
 b)  If , then B  C B  D  C  D
 c)  If  and , then B  C D  ! BD  CD
 d)  If  and , then B  C D  ! BD  CD
 e)  If , then  B Á ! B  !#

 f)  If , then .B  C  B   C
 g)  If , then both  are positive or both are negativeBC  ! Bß C
 h)  If  and , then B  C D  A B  D  C  AÞ

Proof  We will prove a few of the statements to indicate how the arguments go.

 a) Suppose  and .B  C C  D
     Then  and  are both positive.    C  B D  C ÐDefinition of “ ”  Ñ
     So  is positive.    ÐC  BÑ  ÐD  CÑ œ D  B Ð Theorem 7 Ñ
     Therefore      B  DÞ ÐDefinition of “ ” Ñ

 d) If , then  is positive   B  C C  B ÐDefinition of “ ” Ñ
 If , then   is positive  D  ! !  D œ  D ÐDefinition of “ ” Ñ
      Therefore  is positive   DÐC  BÑ Ð ÑTheorem 7
               is positiveDÐB  CÑ
    is positiveBD  BC
       BD  CD Ð ÑDefinition of  “ ”

 e) If  is positive, then  is positive,B B † B œ B#

 that is,       B  !Þ Ð# Theorem (Ñ
 If  is negative, then  is positive  B  B Ð 'ÑTheorem 



  so is positive.  Ð  BÑ † Ð  BÑ œ B Ð# Theorem (Ñ

 g) The proof is by contraposition.
         If  is positive and  is negative, then  and  are bothB C B  C
  positive     ß Ð ÑTheorem '
         so  is positive     BC ÐTheorem (Ñ
         Then  is negative             Ð  BCÑ œ BC Ð ÑTheorem '
         so     BC Î !Þ Ð ÑDefinition of “ ”

 In a similar way, you can also show that it is impossible to have  negative and B C
 positive.

 The remaining parts of the theorem are left as exercises.    ñ

Definition  A relation  on a set  is called  iffV \ antisymmetric

     (aB aC − \ BVC • CVBÑ Ê B œ C

“Antisymmetry” for a relation  means more than “not symmetric.”  It is theV
extreme opposite of “symmetry” in the following sense:   À

 “symmetric”             aBaC − \ ÐBVC Ê CVBÑ

 “not symmetric”     µ ÐaBaC − \ ÐBVC Ê CVBÑÑ
    which is equivalent to          bB bC − \ ÐBVC • CVBÑÎ

 “antisymmetric”           aBaC − \ ÐBVC Ê CVBÑÎ

Definition  A relation  on  is called a   (or ) iff  isV \ Vlinear ordering total ordering

  i)  reflexive, transitive, and antisymmetric, and
  ii)    aB aC − \ ÐBVC ” CVB Ñ

The pair  is then called a .Ð\ßVÑ linearly ordered set

It is easy to show that is a linear ordering on .  ( )Ÿ  What about ?

Theorem   * Ÿ is a linear ordering on .

Proof   Exercise.

Concluding Comments



1) We constructed the rationals from the integers, the integers from the whole numbers,
and whole numbers from sets.  If everything is “unpacked,”  each rational number is a
(complicated) set.   For example, what is the rational number “2”  ?

The  rational number # œ ÒÐ#ß "ÑÓ
          ...,œ Ö Ð  %ß  #Ñß Ð  #ß  "Ñß Ð#ß "Ñß Ð%ß #Ñß ÞÞÞ×

(the 's in the ordered pairs are  's # #integer )

Each member of this equivalence class is an ordered pair of , and each integers
ordered pair is a set .  We will “unpack”  of those orderedÐ+ß ,Ñ ÖÖ+×ß Ö+ß ,×× just one
pairs, say Ð#ß "Ñ À

Ð#ß "Ñ œ ÖÖ#×ß Ö#ß "×× # " #, where  and  here represent the  and 1.integers

Descending deeper (see the similar comments in the notes “Constructing the
Integers”): the integer  and are certain equivalence classes of pairs of = # " whole
numbers:

The integer 2 is the set (equivalence class)  ÒÐ#ß !ÑÓ œ ÖÐ#ß !Ñß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ ×
The integer " is the set (equivalence class)  ÒÐ"ß !ÑÓ œ ÖÐ"ß !Ñß Ð#ß "Ñß Ð$ß #Ñß ÞÞÞ ×

So the ordered pair of integers

Ð#ß "Ñ œ ÖÖ#×ß Ö#ß "×× œ ÖÖÒÐ#ß !ÑÓ×ß ÖÒÐ#ß !ÑÓß ÒÐ"ß !ÑÓ××

œ ÖÖÖÐ#ß !Ñß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ ××ß ÖÖÐ#ß !Ñß Ð$ß "Ñß Ð%ß #Ñß ÞÞÞ ×ß ÖÐ"ß !Ñß Ð#ß "Ñß Ð$ß #Ñß ÞÞÞ ×××  (*)

(where on the preceding line, the numbers in the ordered pairs are whole numbers.

So  of the ordered pairs of integers in the  2 is really a set like (*)each one rational number

But to go further,  of the ordered pairs in   like (*) can be furthereach one each set
unpacked:  for example, consider the single ordered pair  of  thatÐ#ß "Ñ whole numbers
occurs in (*).  Each whole number was defined earlier as a set, so

whole number pair Ð#ß "Ñ œ ÖÖ#×ß Ö#ß "×× œ ÖÖÖgß Ög×××ß ÖÖgß Ög××ß Ög×××

 
“What is ?” can rapidly become mind-boggling.  The thing to remember in years to#
come is  the details of how each rational number is constructed but thatnot
 i) each rational can be built up from sets so sets, as far as we have gone, are
proving to be an adequate set of building blocks for mathematics, and
 ii) beyond that, all we need to know about “ ” to do mathematics is “how does 2#
behave?”



2)  As we constructed them, the  are not members of  .  r, it is not hardintegers Howeve
to see that

  the system of rational numbers ÖÞÞÞß  #ß  "ß !ß "ß #ß ÞÞÞ×

“acts just like”

   the system of integers ÖÞÞÞß  #ß  "ß !ß "ß #ß ÞÞÞ×
    
(the more technical language is that the two systems are isomorphic).

So we can think of the system of rationals   as beingÖÞÞÞß  #ß  "ß !ß "ß #ß ÞÞÞ× inside 
an “exact photocopy” of the system of integers .  If we agreeÖÞÞÞß  #ß  "ß !ß "ß #ß ÞÞÞ×
to ignore the difference between the photocopy and the real thing, then we can write
™ © .

3) Of course the number system  is for many purposes a big improvement over .  For ™
example, it's a field and  isn't, and linear equations in , but not in , can always be™  ™
solved.  But  still has some major algebraic shortcomings.  For example, such a simple
equation as  cannot be solved in .  ( )B œ ##  Why not?

To deal with this difficulty requires enlarging the number system again to include new
number(s) with square .  The informal number system  has such numbers: # „ # Þ‘ È

Unfortunately won't have time in this course to formally construct   It turns out,‘Þ
in that construction, that a real number is an ordered pair , where  andÐEßFÑ E
F are two special subsets of  that form a “cut” in .  For example, È# œ ÐEßFÑ E œ Ö; − À ;  #× F œ Ö; − À ;  #×Þ where  and # #

Informally,  is a field just as  is but, in , there is a solution for .   must‘  ‘ ‘  B œ ##

have some additional property(s) making it  a “more special” field than :  some
property that guarantees that there are also “irrational” numbers.

The number system  is a very powerful system:  it's all you needed to be able to do‘
calculus.  But even  is not completely satisfactory algebraically.  Such as simple‘
equation as  has no solution in .B  " œ !# ‘

For a very substantial part of mathematics, one more enlargement finally does the trick:
the field  is enlarged to the set of complex numbers .  Each element of is an ordered‘ ‚ ‚
pair of real numbers , and addition and multiplication are defined in  in such aÐ+ß ,Ñ ‚
way as to make  into a field.‚
 
 In high school, you probably learned to write complex number in a form like
  and  and you probably we told to compute+  ,3 -  .3ß



  Ð+  ,3ÑÐ-  .3Ñ œ +-  ,-3  +.3  ,.3#

      because œ Ð+-  ,.Ñ  Ð,-  +.Ñ3 3 œ  "#

 This is the informal motivation  for the definition of multiplication in a formal
 construction of ‚ À

  Ð+ß ,Ñ † Ð-ß .Ñ œ Ð+-  ,.ß ,-  +.Ñ

In , it turns out (and it's  easy to prove) that‚ not
every polynomial equation

   + D  ÞÞÞ  + D  + œ !8 " !
8

has a solution.

This result is called the Fundamental Theorem of Algebra.


