Transcendental Numbers: An Extended Example

The relatively simple facts about countable and uncountable sets that we know are enough to prove an interesting fact about the real numbers.

Definition A real number r is called <u>algebraic</u> if there is a polynomial

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where the coefficients $a_0.a_1, ..., a_n$ are all <u>integers</u> and for which P(r) = 0.

Loosely paraphrasing, an algebraic real number is one that's a root of some polynomial equation with integer coefficients. [What's slightly "loose" about the paraphrase"?]

It is clearly equivalent to say "<u>rational</u>" instead of "<u>integers</u>" in the definition of an algebraic number. If r is a root of a polynomial equation with rational coefficients (for example, $\frac{3}{4}x^2 + \frac{1}{7}x + \frac{1}{2} = 0$), then r is also the root of a polynomial equation with integer coefficients (for example, $21x^2 + 4x + 14 = 0$). Multiplying an equation by a nonzero constant (to clear the fractions) doesn't change the roots.

Complex roots a + bi of the equation P(x) = 0 are also called (complex) algebraic numbers. Although everything that follows is about real algebraic numbers, the arguments work just as well if we allow complex algebraic numbers.

A real number is <u>rational</u> iff it is the root of a <u>first degree</u> polynomial equation with integer coefficients : the rational $\frac{p}{q}$ is a root of the equation qx - p = 0. Therefore the algebraic numbers are a natural generalization of rational numbers : the algebraic numbers include all numbers that are roots of <u>higher degree</u> polynomial equations with integer coefficients. For example, $\sqrt{2}$ is algebraic, because it is a root of $x^2 - 2 = 0$. A reasonable question would be: are there any nonalgebraic real numbers?

Theorem The set $\mathbb{A} = \{r \in \mathbb{R} : r \text{ is algebraic}\}$ is countable.

Proof For each $n \ge 1$, let $\mathcal{P}_n = \{a_n x^n + ... + a_1 x + a_0 : a_n, ..., a_1, a_0 \in \mathbb{Z}\}$ = the set of all polynomials of degree $\le n$ with integer coefficients (the degree will be < n if the coefficient a_n happens to be 0).

Each polynomial in \mathcal{P}_n is completely identified by a list of its coefficients. Such a list is an (n+1)-tuple of integers : $(a_n, a_{n-1}, \dots, a_0) \in \mathbb{Z} \times \dots \times \mathbb{Z} = \mathbb{Z}^{n+1}$, so

 $a_n x^n + ... + a_1 x + a_0 \quad \leftrightarrow \quad (a_n, a_{n-1}, \, ... \, , a_0)$

is a one-to-one correspondence between \mathcal{P}_n and \mathbb{Z}^{n+1} . \mathbb{Z}^{n+1} is a finite product of countable sets, so \mathbb{Z}^{n+1} is countable and therefore \mathcal{P}_n is countable – which means there exists a bijection $f: \mathbb{N} \to \mathcal{P}_n$.

Thus the set \mathcal{P}_n can be listed as a sequence: $\mathcal{P}_n = \{P_{n,1}(x), P_{n,2}(x), ..., P_{n,k}(x), ... \}$ (Here, $P_{n,k} = f(k) = the \ k^{th} \ term \ of \ the \ sequence \ f.$) Each polynomial $P_{n,k}$ in \mathcal{P}_n has at most n roots (since $P_{n,k}(x)$ has degree $\leq n$), so

$$R_{n,k} = \{r \in \mathbb{R} : P_{n,k}(r) = 0\} = \{r : r \text{ is a root of } P_{n,k}(x) = 0\} \text{ is } \underline{\text{finite}} \text{ (so, countable).}$$

Now we put all this together using our earlier theorems about countable sets.

$$A_n = \bigcup_{k=1}^{\infty} R_{n,k} = R_{n,1} \cup R_{n,2} \cup \dots \cup R_{n,k} \cup \dots$$

= {r : r is a root of a polynomial of degree < n with integer coefficients}

is a countable union of countable sets; so A_n is countable.

Then $\bigcup_{n=1}^{\infty} \mathbb{A}_n$ is countable, since it is a countable union of countable sets. But $\bigcup_{n=1}^{\infty} \mathbb{A}_n = \mathbb{A}$ = the set of all algebraic numbers. •

Definition A real number which is <u>not</u> algebraic is called <u>transcendental</u>. (*Euler called these numbers "transcendental" because they "transcend the power of algebraic methods." To be more politically correct, we might call them "polynomially challenged."*)

Corollary Transcendental numbers exist.

Proof Let \mathbb{T} be the set of (real) transcendental numbers. Then $\mathbb{R} = \mathbb{A} \cup \mathbb{T}$. Since \mathbb{A} is countable and \mathbb{R} is uncountable, \mathbb{T} cannot be empty.

In fact, this two-line argument actually proves much more: not only is \mathbb{T} <u>nonempty</u>, but \mathbb{T} must be <u>uncountable</u>! In the sense of one-to-one correspondence, there are "more" transcendental numbers than algebraic numbers on the real line \mathbb{R} .

This is an example of a "pure existence" proof - it does not exhibit any particular transcendental number, nor give any computational hints about how to find one. To do that is harder. Transcendental numbers were first shown to <u>exist</u> by Liouville in 1844. (*Liouville used other (more difficult) methods. The ideas about countable and uncountable sets were not developed until the early 1870's by Georg Cantor. See the biography on the course website.)*

Two famous examples of transcendental numbers are e (proven to be transcendental by Hermite in 1873) and π (Lindemann, 1882).

One method for producing many transcendental numbers is contained in a theorem of the Russian mathematician Gelfand (1934). It implies, for example, that $\sqrt{2}^{\sqrt{2}}$ is transcendental.

Gelfand's Theorem If α is an algebraic number, $\alpha \neq 0$ or 1, and β is algebraic and not rational, then α^{β} is transcendental.

The number e^{π} is also transcendental. This follows from Gelfand's Theorem (which allows complex algebraic numbers) if you know something about the arithmetic of complex numbers:

 $e^{\pi} = e^{-i^2\pi} = (e^{i\pi})^{-i}$ and $e^{i\pi} = \cos \pi + i \sin \pi = -1$. So $e^{\pi} = (-1)^{-i}$, which is transcendental by Gelfand's Theorem.