Chapter VII
Separation Axioms

1. Introduction

“Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in
disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that
appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology..

We have already met some simple separation properties of spaces: the Ty, Ty and T, (Hausdorff)
properties. In this chapter, we look at these and others in more depth. As “more separation” is added
to spaces, they generally become nicer and nicer — especially when “separation” is combined with
other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a
space is metrizable.

“Separation axioms” translates the German term Trennungsaxiome used in the older literature.
Therefore the standard separation axioms were historically named Ty, Ty, T3, T3, and Ty, each stronger
than its predecessors in the list. Once these were common terminology, another separation axiom was
discovered to be useful and “interpolated” into the list: Ty, Itturns out that the T, spaces (also called

Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties.

2. The Basics
Definition 2.1 A topological space X is called a

1) Ty space if, whenever = # y € X, there either exists an open set U withz € U,y ¢ U
or there existsanopenset Vwithy e V,z ¢ V

2) T space if, whenever x # y € X, there exists an open set U withz € U,y ¢ V
and there exists an open set V withz ¢ U,y € V

3) 1T space (or, Hausdorff space) if, whenever x # y € X, there exist disjoint open sets U
and Vin X suchthatz € U andy € V.
It is immediately clear from the definitions that 7, = T, = 1.
Example 2.2
1) X is a Tj space iff whenever x # y, then N, # N, — that is, different points in X have
different neighborhood systems.
2) If | X| > 1and X has the trivial topology, then X is not a Tj, space.

3) A pseudometric space (X, d) is metric iff (X, d) is a T space.
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Clearly, a metric space is 7j. On the other hand, suppose (X, d) is Tj and that x # y.
Then for some € > 0 either = ¢ B.(y) or y ¢ B.(x). Either way, d(z,y) > ¢, S0 d is
a metric.

4) In any topological space X we candefine an equivalence relation =z ~ y iff A, = N,
andletg: X — Y = X/ ~ by g(x) = [z]. Give Y the quotient topology. Then g is continuous, onto,
open (not automatic for a quotient map!) and the quotient is a Ty space:

If O is open in X, we want to show that ¢g[O] is open in Y, and because Y has the
quotient topology this is true iff g~![g[O]] is open in X. But g~*[g[O]]
={reX:g(x)€glO]} ={zre X : forsomey € O, g(x) =g(y)}

= {z € X : xis equivalent to some pointy in O} = O.

If [z] # [y] € Y, then z is not equivalent to y, so there is an open set O C X with
(say) z € Oand y ¢ O. Since g is open, ¢g[O] is open in Y and [z] € ¢g[O]. Moreover,
[y] ¢ g]O] or else y would be equivalent to some point of O — implying y € O.
Y is called the Tj-identification of X. This identification turns any space into a Ty space by identifying
points that have identical neighborhoods. If X is a T space to begin with, then gis1 — 1 and g is a
homeomorphism. Applied to a T; space, the Tp-identification accomplishes nothing. If (X,d)is a
pseudometric space, the Ty-identification is the same as the metric identification discussed in Example
VI1.5.6 : in that case V, = N, iff d(z,y) = 0.
5)Fori=0,1,2: if (X,7)isaT;spaceand 7' O 7T is a new topology on X, then (X,7)
is also a T; space.
Example 2.3

1) (Exercise) It is easy to check that a space X is a 7} space

iff for each x € X, {«} is closed
iff foreachz € X, {z} =(N{O: Oisopenand z € O}

2) A finite T space is discrete.

3) Sierpinski space X = {0, 1} with topology 7 = {0, {1},{0,1}}) is T; but not 71: {1} is
an open set that contains 1 and not 0; but there is no open set containing 0 and not 1.

4) R, with the right-ray topology, is Tj but not 73: if x < y € R, then O = (z, o) is an open
set that contains y and not z; but there is no open set that contains = and not .

5) With the cofinite topology, N is 77 but not 75: in an infinite cofinite space, any two
nonempty open sets have nonempty intersection.

These separation properties are very well-behaved with respect to subspaces and products.

Theorem 2.4 Fori=0,1,2:
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a) A subspace of a T; space is a T; space
b) If X =[[,caXa # 0, then X isa T; space iff each X, is a T; space.

Proof All of the proofs are easy. We consider only the case i = 1, leaving the other cases as an
exercise.

Suppose a # b € A C X, where X is a Ty space. If U’ is an open set in X containing x but not y,
then U = U’ N Aisan open setin A containing = but not 3. Similarly we can find an openset V in A
containing y but not . Therefore Ais a T} space.

Suppose X = [],c4X. is a nonempty T; space. Each X, is homeomorphic to a subspace of X, so
each x, is T (by part a)). Conversely, suppose each X, is7} and that z # y € X. Then z, # y, for
some «. Pick an open set U, in X, containing =, butnot y,. ThenU = < U, > isanopensetin X

containing x but not . Similarly, we find an open set V' in X containing y but not z. Therefore X is a
T space. e

Exercise 2.5 Is a continuous image of a I; space necessarily a T; space? How about a quotient?
A continuous open image?

We now consider a slightly different kind of separation axiom for a space X : formally, the definition
is “just like” the definition of T, but with a closed set replacing one of the points.

Definition 2.6 A topological space X is called reqular if whenever F' is a closed set and = ¢ F,
containing z, there exist disjoint open sets U and V suchthatz € U and F C V.

There are some easy variations on the definition of “regular” that are useful to recognize.

Theorem 2.7 The following are equivalent for any space X:
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i) X is regular

ii) if O is an open set containing x, then there exists an open set U C X such that
xeUCclU CO

iii) at each point = € X there exists a neighborhood base consisting of closed
neighborhoods .

Proof i) = ii) Suppose X is regular and O is an open set with = € O. Letting F = X — O, we use
regularity to get disjoint open sets U, V with z € U and F' C V as illustrated below:

vz i

Thenz e U CclU C O (sinceclU C X —V).

ii) = iii) If N € NV, thenz € O =int N. By ii), we can find an open set U so that
xeU CclU C 0. Since clU is a neighborhood of z, the closed neighborhoods of « form a
neighborhood base at x.

iii) = i) Suppose F'is closed and = ¢ F. By ii), there is a closed neighborhood K of x such
thatz € K C X — F. Wecanchoose U = int K and V' = X — K to complete the proof that X is
regular. e

Example 2.8 Every pseudometric space (X, d) is regular. Suppose a ¢ F'and F' is closed. We have
a continuous function f(z) = d(z, F) for which f(a) = ¢ > 0 and f|F = 0. This gives us disjoint
opensetswitha € U = f1[(5,00)]and F C V = f~![( — 00, §)]. Therefore X is regular.

At first glance, one might think that regularity is a stronger condition than 75. But this is false: if
(X, d) is a pseudometric space but not a metric space, then X is regular but not even Tj.

To bring things into line, we make the following definition.
Definition 2.9 A topological space X is called a T3 space if X is regular and 7.

It is easy to show that 75 = T, (= T} = Tp): suppose X is T3 and z #y € X. Then F = {y} is
closed so, by regularity, there are disjoint open sets U, V withz € U andy € {y} C V.
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Caution The terminology varies from book to book. For some authors, the definition of ““regular”
includes 77 : for them, ““regular” means what we have called “T3.”” Check the definitions when
reading other books.

Exercise 2.10 Show that a regular T space must be 73 (so it would have been equivalent to use “75”
instead of ““I7”” in the definition of “T3”).

Example 2.11 T, = T3. We will put a new topology on the set X = R2. At each point z € X, leta
neighborhood base 3, consist of all sets /V of the form

N = B.(x) — (afinite number of straight lines through ) U {z} for some ¢ > 0.

(Check that the conditions in the Neighborhood Base Theorem I11.5.2 are satisfied.) With the resulting
topology, X is called the slotted plane. Note that B.(z) € B, (because “0 is a finite number), so
each B.(x) is among the basic neighborhoods in B, — so the slotted plane topology on R? is contains
the usual Euclidean topology. It follows that X is T5.

The set F' = {(x,0) :  # 0} = “the z-axis with the origin deleted” is a closed set in X (why?).

If U is any open set containing the origin (0, 0), then there is a basic neighborhood N with

(0,0) € N C U. Using the € in the definition of NV, we can choose a point P = (z,0) € F'with

0 < z < e. Any basic neighborhood set of P must intersect N (why?) and therefore must intersect U.
It follows that (0, 0) and F' cannot be separated by disjoint open sets, so the slotted plane is not regular
(and therefore not T3).

Note: The usual topology in R? is regular. This example shows that an “enlargement” of a regular
(or T3 ) topology may not be regular (or T3). Although the enlarged topology has more open sets to
work with, there are also more “point/closed set pairs x, F”” that need to be separated. Of course it is
easy to see that an “‘enlargement” of a T; topology (i = 0, 1,2) is also 7;.
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Example 2.12 The Moore plane I' (Example 111.5.6) is clearly T5. In fact, at each point, there is a
neighborhood base of closed neighborhoods. The figure illustrates this for a point P on the z-axis and
a point () above the z-axis. Therefore I" is 7.

A

=

Theorem 2.13 a) A subspace of a regular (7%) space is regular (73).
b) Suppose X = [],c4Xa # 0. X isregular (T3) iff each X, is regular (7).

Proof a) Let A C X where X isregular. Suppose a € A and that F'is a closed set in A that does not
contain a. There exists a closed set F'/ in X such that /'’ N A = F'. Choose disjoint open sets U’
andV’'in XwithaeU'andV' D F’. ThenU =U'nAandV =V 'nN Aareopenin A, disjoint,
a € U,and F C V. Therefore A is regular.

b) If X = [[,c4Xa # 0 isregular, then part a) implies that each X, is regular — since each
X, is homeomorphic to a subspace of X. Conversely, suppose each X, is regular and that
U= <U,,-..,U,, >isabasic open set containing =. For each «;, we can pick an open setV/,, in
X, suchthatz, €V, CclV,, CU,,. Thenz eV = <V,,...V, > CclV
C <clV,,...,clV, > CU. (Why is the last inclusion true?) Therefore X is regular.

Since “T7” is hereditary and productive, a) and b) also hold for “T3” e

The obvious “next step up” in separation is the following:

Definition 2.14 A topological space X is called normal if, whenever A, B are disjoint closed sets in
X, there exist disjoint open sets U,V in X with A C U and B C V. X s called a T} space if X is
normal and 7.

Example 2.15 a) Every pseudometric space (X, d) is normal (and therefore every metric space is 7).

In fact, if A and B are disjoint closed sets, we can define f(z) = % . Since the
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denominator cannot be 0, f is continuous and f|A =0, f|[B = 1. TheopensetsU = {z : f(z) < %}
and V = {z : f(z) > 1} are disjoint and contain A and B respectively. Therefore X is normal.

Note: the argument given is slick and clean. Can you show (X, d) is normal by constructing directly a
pair of open sets separating A and B ?

b) Let R have the right ray topology 7 = {(z,00);z € R} U {0, R}.

i) (R,7)isnormal : the only possible pair of disjoint closed sets is () and X and
we can separate these using the disjoint opensets U = ) and V' = X.

i) (R,7) is not regular: for example 1 is not in the closed set F' = ( — o0, 0],
but every open set that contains F' also contains 1. So “normal = regular.”

iiz) (R, 7)) is nota 7} space : so Ty is a stronger condition than normality.
But when we combine “normal + 71" into T}, we have a property that fits perfectly into the separation
hierarchy.
Theorem 2.16 T, = T5( = Ty, = 11 = 1)
Proof Suppose X is 7. If F'is a closed set not containing x, then {z} and F" are disjoint closed

sets. By normality, we can find disjoint open sets separating {z} and F'. It follows that X is regular
and therefore 75 . o
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Exercises

E1. A topological space X is called a door space if every subset is either open or closed. Prove that a
T, space is a door space if and only if it has at most one non-isolated point.

E2. A base for the closed sets in a space X is a collection of F of closed subsets such that every
closed set F' is an intersection of sets from F. Clearly, F is a base for the closed sets in X iff
B={0:0=X—F, F e F}isabase for the open sets in X.

For a polynomial P in n real variables, define the zero set of P as

Z(P) = {(.171,.172, "‘agjn) eR": P (z1, 22, ...,ﬂjn) = O}

a) Prove that { Z(P) : P apolynomial in n real variables} is the base for the closed sets of a
topology (called the Zariski topology) on R".

b) Prove that the Zariski topology on R™ is T7 but not T5.

c) Prove that the Zariski topology on R is the cofinite topology, but that if n > 1, the Zariski
topology on R" is not the cofinite topology.

Note: The Zariski topology arises in studying algebraic geometry. After all, the sets Z(P) are rather
special geometric objects—those ““surfaces™ in R” which can be described by polynomial equations
P(xy,x9,...,x,) =0.

E3. A space X is a T5, space if, whenever z # y € X, there exist open sets U and V' such that
reU,yeVandclUnclV =0. (Clearly, T3 = T5, = Ts )

a) Prove that a subspace of a 75, space is a 75, space.

b) Suppose X = [[X, # (). Prove that X is Tj, iff each X, is Ty, .

c) Let S ={(z,y) eR?:y >0} and L = {(x,0) € S:y=0}. Define a topology on S with
the following neighborhood bases:

if pe S—L: B, ={B:(p)NS:e>0}
if pe L: B, ={B:(p)N(S—L)U{p}:e>0}
(You may assume that these B,'s satisfy the axioms for a neighborhood base.)

Prove that Sis Tr, P but not Ts.

E4. If A C X, we can define a topology on X by
T={0OCX:02A}U{0}

Decide whether or not (X, 7) is normal.
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E5. A function f: X — Y is called perfect if f is continuous, closed, onto, and, for each y € Y,
f~Y(y) is compact. Prove that if X is regular and f is perfect, then Y is regular; and that if X is T3,
the Y is also T5.

E6. a) Suppose X is finite. Prove that (X, 7") is regular iff there is a partition 5 of X that is a base for
the topology.
For parts b)-e) assume that X is a T3-space (not necessarily finite).
b) Suppose A is closed in X. Prove that
i) Provethat A = ({O : Oisopenand A C O}.
ii) Define x ~ y iff z = yorz,y € A. Prove that the quotient space X/ ~ is Hausdorff.

¢) Suppose B is an infinite subset of X. Prove that there exists a sequence of open sets U,, such
thateach U, N B # (and thenclU, nclU,, = 0 if n # m.

d) Suppose each point y in a space Y has a neighborhood V' such that cl V' is regular. Prove
that Y is regular.

e) Give an example to show that a compact subset K of a space X need not be closed, but show
that if X is regular then ck K is compact.
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3. Completely Regular Spaces and Tychonoff Spaces

The T3 property is well-behaved. For example, we saw in Theorem 2.13 that the 75 property is
hereditary and productive. However, it is not a strong enough property to give us really nice theorems.

For example, it's very useful in studying a space X if there are a lot of (nonconstant) continuous real
valued functions on X available. Remember how many times we have used the fact that continuous
real-valued functions f can be defined on a metric space (X, d) using formulas like f(x) = d(x, a) or
f(x) =d(z, F); when | X| > 1, we get many nonconstant real functions defined on (X, d). Buta T3
space can be very deficient in continuous real-valued functions — in 1946, Hewett gave an example of
a infinite 73 space H on which the only continuous real-valued functions are the constant functions.

On the other hand, the T, property is strong enough to give some really nice theorems (for example,
see Theorems 5.2 and 5.6 later in this chapter). But T} spaces turn out to also have some very bad
behavior: the T property is not hereditary (explain why a proof analogous to the one given for
Theorem 2.13b doesn't work) and not even finitely productive. Examples of this bad behavior are a
little hard to get right now, but they will appear rather naturally later.

These observations lead us (out of historical order) to look at a class of spaces with separation
somewhere “between T3 and 7.” We want a group of spaces that is well-behaved, but also with
enough separation to give us some very nice theorems. We begin with some notation and a lemma.

Recall that C(X)={f e X®: fiscontinuous} = the collection of continuous real-valued
functions on X
C*(X) ={f € C(X) : f is continuous and bounded}.

Lemma 3.1 Suppose f,g € C(X). Define real-valued functions f VV gand f A g by

(f Vg)(x) = max{f(x),g(x)}
(f Ag)(x) = min{f(z),g(x)}

Then f Vv gand f Agarein C(X).

Proof We want to prove that the max or min of two continuous real-valued functions is continuous.
But this follows immediately from the formulas

(f vg)(z) = f(x);g(‘”) 4+ ‘f(fff);g(x)\

flx)+g(z flx)—g(x
(f A g)(z) = ()29()_| ()20()|

Definition 3.2 A space X is called completely reqular if whenever F'is a closed set and = ¢ F', there
exists a function f € C'(X) such that f(z) = 0and f|F = 1.

Note i) The definition requires only that f|F' = 1, in other words, that f~![{1}] D F. However, the
two sets might not be equal.
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i) If there is such a function f, there is also a continuous g : X — [0, 1] such that g(z) =0
and g|F' = 1. For example, we could use g = (f V 0) A 1 which, by Lemma 3.1, is continuous.

i) If g(x) =0, g|FF =1and g : X — [0, 1], we could compose g with a linear
homeomorphism ¢ : [0, 1] — [a, b] to get a continuous function h = ¢ o g : X — [a, b] where
h(z) = a and h|F' = b (or vice versa). (It must be true that either ¢(0) = a and ¢(1) = b, or vice
versa: why?)

Putting these observations together, we see Definition 3.2 is equivalent to:
Definition 3.2" A space X is called completely reqular if whenever F'is a closed set, = ¢ F', and

a # b are real numbers, then there exists a continuous function f : X — R for which f(z) = a and
fIF =b,and forall z, a < f(x) <b.

Informally, “‘completely regular’” means that ““z and F' can be separated by a bounded continuous
real-valued function.”

The definition of “Tychonoff space” is quite different from the definitions of the other separation
properties since the definition isn't “internal” — it makes use of an “outside” topological space, R, as
part of its definition. Although it is possible to contrive a purely internal definition of “Tychonoff
space,” the definition is complicated and seems completely unnatural: it simply imposes some fairly
unintuitive conditions to force the existence of enough functions in C' (X).

Example 3.3 Suppose a ¢ F' C (X, d) where (X, d) is a pseudometric space. Then f(x) = ‘;gzg is

continuous, f(a) = 1and f|F = 0. So (X,d) is completely regular (and so a completely regular
space might not even be Tp).

Definition 3.4 A completely regular 77 space X is called a Tychonoff space (or T3% space).

Theorem 3.5 Ty = Ty (=T, =T = Tp)

Proof Suppose Fis a closed set in X not containing x. If X is 31, we can choose f € C'(X) with
f(z) =0and f|[F =1. ThenU = f~'[( — 00, })]and V = f*l[(%—, oo)] are disjoint open sets with
x e U, F CV. Therefore X isregular. Since X is7Ty, X isT3. e

Hewitt's example of a 75 space on which every continuous real-valued function is constant is more
than enough to show that a 73 space may not be T3% (the example, in Ann. Math., 47(1946) 503-509, is

rather complicated.). For that purpose, it is a little easier — but still nontrivial — to find a T3 space X
containing two points p, ¢ such that for all f € C'(X), f(p) = f(q). Then pand {¢q} cannot be
separated by a function from C'(X) so X is not Ty (DJ. Thomas, A regular space, not completely
regular, American Mathematical Monthly, 76(1969), 181-182). The space X can then be used to
construct an infinite 73 space H (simpler than Hewitt's example) on which every continuous real-
valued function is constant (see Gantner, A regular space on which every continuous real-valued
function is constant, American Mathematical Monthly, 78(1971), 52.) Although we will not present
these constructions here, we will occasionally refer to H in comments later in this section.
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Note: We have not shown that 7, = T3%. This statement is true (as the notation suggests), but it is not
at all easy to prove: try it! This result will follow as a Corollary in Section 4.

Tychonoff spaces continue the pattern of “good behavior” that we saw earlier and will also turn out to
be a rich class of spaces to study.

Theorem 3.7 a) A subspace of a completely regular (TB%) space is completely regular (TB%).
b) Suppose X = [],c4Xa # 0. X is completely regular (TS%) iff each X, is
completely regular (75.) .

Proof Supposea ¢ FF C A C X, where X is completely regularand F'is a closed setin A. Pick a
closed set K in X suchthat K N A= Fandan f € C(X) suchthat f(a) =0and f|K = 1. Then
g= flA e C(A), g(a) =0and g|FF = 1. Therefore A is completely regular.

If 0 # X =][,c4Xa is completely regular, then each X, is homeomorphic to a subspace of
X so each X, is completely regular. Conversely, suppose each X, is completely regular and that F' is
a closed set in X not containing a. There is a basic open set U such that

acelU= <Uy,.U,>CX—-F

For each i = 1, ..., n we can pick a continuous function f,,. : X,, — [0, 1] with f,.(a.,) = 0 and
fal(Xo, — Us,) = 1. Define f : X — [0, 1] by

flx) =max{(fo, 0oma,)(x) :i=1,...,n} =max{f,(z):i=1,..,n}

Then f is continuous and f(a) = max{f,,(as):i=1,...,n} =0. If z € F,then for some i,
Za, & Uy, and f,,(x4,) = 1,50 f(x) = 1. Therefore f|F' = 1 and X is completely regular.

Since the Ty property is both hereditary and productive, the statements in a) and b) also hold
forT;,. e

Corollary 3.8 [0, 1]™ and all its subspaces are Ty

Since a Tychonoff space X is defined using C'(X), we expect that continuous real-valued functions
have a close relationship to the topology on X. We want to explore that connection.

Definition 3.9 Suppose f € C(X). Then Z(f) = f}[{0}] = {z € X : f(z) = 0} is called the
zero set of f. If A= Z(f) for some f € C(X), we call a a zero set in X. The complement of a zero
setin X is called a cozero set: coz(f) = X — Z(f) ={z € X : f(z) # 0}.

A zero set Z(f)in X is closed because f is continuous. In addition, Z(f) =) _,0,, Where
O,={z€X:|f(z)] <L} Each O, is open. Therefore a zero set is always a closed Gs-set.
Taking complements shows that coz (f) is always an open F,-set in X.

For feC(X), letg=(—1V f)Ale C*(X). Then Z(f) = Z(g). Therefore C'(X)and C*(X)
produce the same zero in X (and therefore also the same cozero sets).
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Example 3.10
1) A closed set F' in a pseudometric space (X, d) is a zero set: F' = Z(f), where f(z) = d(z, F).

2) In general, a closed set might not be a zero set — if fact, a closed set in X might not even be a G
set.

Suppose X is uncountable and p € X. Define a topology on X by letting B, = {{z}} be a
neighborhood at each point = # p and letting B, = {B : p € B and X — B is countable} be
the neighborhood base at p. (Check that the conditions of the Neighborhood Base Theorem
111.5.2 are satisfied. )

All points in X — {p} are isolated and X is clearly 77. In fact, X is T}.

If A and B are disjoint closed sets in X, then one of them (say A)satisfies
A C X —{p} and therefore Ais clopen. We then have open sets U = A and
V = X — A D B that work in the definition of normality.

We do not know, at this point that 7, = Tg%, but we can argue directly that this X is also Tg%.

If F'is a closed set not containing x, then either FF C X — {p}or {z} C X — {p}.
So one of the sets F' or {p} is clopen. The characteristic function of this clopen set is
continuous and works to show that X is completely regular.

The set {p} is a closed set but {p} isnota Gssetin X (so {p} isnota zero setin X).

Suppose {p} =(,—,0, where O, is open. For eachn, pe€ B, C O, for some
B, € B,. Therefore X — {p} = X — (2,0, = U, (X — O,)
C U,—;(X — B,) is a countable set — which is impossible since X is uncountable.

Even when £ is both a closed set and a Gs set, F' might not be a zero set. We will see
examples later.

For technical purposes, it is convenient to notice that zero sets and cozero sets can be described in a
many different forms. For example, if f € C(X), then each set in the left column is a zero set
obtained from some other function g € C'(X) :

Z=Ax: f(x)=r} =Zg), where g(z) = f(z) —r

Z=Ax: f(z) =2 0} = Z(g), where g(z) = f(z) — | f ()]
Z=A{x:f(x) <0} =Z(g) where g(x) = f(z) + [ f ()]

Z=Ax: fx) =1} =Z(g), where g(x) = (f(x) —7) —|f(z) — 7|
Z=Ax: f(x)<rt =Z(g) where g(z) = — (f(z) —r) — |f(z) — 7|
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On the other hand, if g € C'(X), we can write Z(g) in any of the forms listed above by choosing an
appropriate function f € C'(X) :

Z(g) =A{x: f(x) =r} where f(z) =+ g(x) +r
Z(g) =A{x: f(x) 2 0} where f(z) = !9(96)\
Z(g) =A{x: f(x) < 0} where f(z) = Ig(x |
Z(g) =A{x: f(x) =1} where f(z) = r —|g(x)]
Z(g)={x: f(z) <1} where f(z) = + l9()]

Taking complements, we see that if f € C'(X) then a set with any one of the forms {z : f(z) # r},
{z: f(z) <0}, {z: f(z) >0},{z: f(x) <r}, {z: f(x) >r}is acozero set, and that any given
cozero set can be written in any one of these forms.

Using the terminology of cozero sets, we can see a nhice comparison/contrast between regularity and
complete regularity. Suppose x ¢ F', where F'is closed in X. If X is regular, we can find disjoint
open sets U and V with x € U and F' C V. If X is completely regular and we choose f € C(X) with
f(z)=0and f|F =1, then

zeU={z: flzy<itand FCV ={z: f(z) > 1}
Thus, in a completely regular space we can “separate” x and F' with special disjoint open sets: cozero
sets. In fact this observation (according to Theorem 3.12, below) characterizes completely regular
spaces — that is, if a regular space fails to be completely regular, it is because there is a “shortage” of
cozero sets: because C'(X) contains “too few” functions. In the extreme case of a 73 space H on
which the only continuous real valued functions are constant (see the remarks at the beginning of this
section), the only cozero sets are () and H !

The next theorem gives the connections between the cozero sets, C'(X') and the weak topology on X.

Theorem 3.11 For any space (X,7), C(X)and C*(X) induce the same weak topology on X.
A base for this weak topology is the collection of all cozero sets in X.

Proof A subbase for the weak topology generated by C'(X) consists of all sets of the form f~1[U],
where U is open in R and f € C(X). Without loss of generality, we can assume the sets U are
subbasic open sets of the form (a,00) and (—oco,b), so the sets f~'[U] have the form
{reX: f(x) >a}or{ze X: f(zr) <b}. Butthese are cozero sets of X, and every cozero set in
X has this form. So the cozero sets are a subbase for the weak topology generated by C'(X). In fact,
the cozero sets are actually a base because coz (f) N coz (g) = coz (fg): the intersection of two cozero
sets is a cozero set.

The same argument, with C*(X) replacing C'(X'), shows that the cozero sets of C*(.X) are a base for
the weak topology on X generated by C*(X). But C'(X) and C*(X) have the same cozero sets in X,
and therefore generate the same weak topology on X. e

Now we can now see the close connection between X and C'(X) in completely regular spaces. For
any space (X,7), the functions in C'(X) are continuous with respect to 7 (by definition of C'(X)),
but is 7 the smallest topology making this collection of functions continuous? In other words, is 7

296



the weak topology on X generated by C'(X)? The next theorem says that is true precisely when X is
completely regular.

Theorem 3.12 For any space (X, 7), the following are equivalent:

a) X is completely regular

b) The cozero sets of X are a base for the topology on X (equivalently, the zero sets of X
are a base for the closed sets—meaning that every closed set is an intersection of zero sets)
c) X has the weak topology from C'(X) (equivalently, from C*(X))

d) C(X) (equivalently, C*(X) ) separates points from closed sets.

Proof The preceding theorem shows that b) and c) are equivalent.

a) = b) Suppose = € O where O is open. Let F = X — O. Then we can choose f € C'(X)
with f(z)=0 and f|[F=1. Then U = {z: f(z) < 3} is a cozero set for which z € U C O.
Therefore the cozero sets are a base for X.

b) = d) Suppose F'is a closed set not containing z. By b), we can choose f € C'(X) so that
xecoz(f) CX—F. Then f(x)=r#0, so f(z)¢clf[F]={0}. Therefore C'(X) separates
points and closed sets.

d) = a) Suppose F'is a closed set not containing =. For some f € C'(X)we have
f(z) ¢ cl f[F]. Without loss of generality (why?), we can assume f(z) = 0. Then, for some ¢ > 0,
(—e€,€)N f[F] =0, so that for z € F, |f(z)| > e. Define g € C*(X) by g(x) = min{|f(x)],€}.
Then g(x) = 0 and g|F' = ¢, so X is completely regular.

At each step of the proof, C'(X) can be replaced by C*(X) (check!) e

The following corollary is curious and the proof is a good test of whether one understands the idea of
“weak topology.”

Corollary 3.13 Suppose X is a set and let 7+ be the weak topology on X generated by any family of
functions F C R¥. Then (X, 7#) is completely regular.

Proof Give X the topology the weak topology 7 generated by F. Now that X has a topology, the
collection C'(X) makes sense. Let Ti- be the weak topology on X generated by C'(X).

The topology 7 does make all the functions in C'(X') continuous, so 7c C 7.

On the other hand: F C C(X) by definition of 7, and the larger collection of functions C'(X)
generates a (potentially) larger weak topology. Therefore 7r C 7.

Therefore 7r = 7. By Theorem 3.12, (X, 7r) is completely regular. e
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Example 3.14

1) If F = {f € R®: f is nowhere differentiable}, then the weak topology 7+ on R generated
by F is completely regular.

2) If H is an infinite 75 space on which every continuous real-valued function is constant (see
the comments at the beginning of this Section 3), then the weak topology generated by C'(X) has for a
base the collection of cozero sets {(), H}. So the weak topology generated by C'(X) is the trivial
topology, not the original topology on X.

Theorem 3.12 leads to a lovely characterization of Tychonoff spaces.

Corollary 3.15  Suppose X is a Tychonoff space. For each fe C*(X), we have
ran(f) C [as,bs] = Iy for some ay < by € R. The evaluation map e : X — [[{I;: f € C*(X)} is
an embedding.

Proof X is T3, the f's are continuous and the collection of f's (= C*(X)) separates points and
closed sets. By Corollary V1.4.11, e is an embedding. e

Since each Iy is homeomorphic to [0,1], [[{I;:f € C*(X)} is homeomorphic to [0, 1]™, where
m = |C*(X)|. Therefore any Tychonoff space can be embedded in a “cube.” On the other hand
(Corollary 3.8) [0, 1]™ and all its subspaces are Tychonoff. So we have:

Corollary 3.16 A space X is Tychonoff iff X is homeomorphic to a subspace of the cube [0, 1] for
some cardinal number m.

The exponent m = |C™(X)]| in the corollary may not be the smallest possible. In an extreme case, for
example, we have ¢ = |C*(R)|, even though we can embed R in [0,1] = [0, 1]'. However, the
following theorem improves the value for m in certain cases. (We proved a similar result for metric
spaces (X, d): see Example V1.4.5.)

Theorem 3.17 Suppose X is Tychonoff with a base B of cardinality m. Then X can be embedded in
[0,1]™. In particular, X can be embedded in [0, 1]*(*)

Proof Suppose m is finite. Since X is T, {x} = ({B : B is a basic open set containing z}. Only

finitely many such intersections are possible, so X is finite and therefore discrete. Hence
top top
X C[o,1C 0,1

Suppose B is a base of cardinal m where m is infinite. Call a pair (U,V)e Bx B
distinguished if there exists a continuous fy v : X — [0,1] with fy v (z) < 3 for all z € U and
fov(z)=1 for all z€ X —-V. Clearly, U CV for a distinguished pair (U,V). For each
distinguished pair, pick such a function fyy and let F = {fy v : (U, V) € B x Bis distinguished}.
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We note that if z € V' € B, then there must exist U € B such that z € U and (U, V') is distinguished.
To see this, pick an f: X — [0,1] so that f(z) =0and f|X —V = 1. Then choose U € B so that
reUC f0,1)]CV.

We claim that F separates points and closed sets:

Suppose F'is a closed set not containing x. Choose a basicset V e Bwithz e V C X — F.
There is a distinguished pair (U, V) withz € U CV C X — F. Then fy v (z) =7 < § and
fU7v|F =1,s0 ny((E) ¢ cl fU:V[F] = {1}

By Corollary V1411, e:X —[0,1]”! is an embedding. Since m is infinite,
IFI<IBxBl=m?>=m. e

A “metrization theorem” is one that states that certain topological properties of a space X imply that X
is metrizable. Typically the hypotheses of a metrization theorem involve asking that 1) X has “enough
separation” and 2) X has a “sufficiently nice base.” The following theorem is a simple example.

Corollary 3.18 (“Baby Metrization Theorem™) A second countable Tychonoff space X is
metrizable.

top
Proof By the theorem, X C [0, 1]%. Since [0, 1] is metrizable, so is X. e

In Corollary 3.18, X turns out to be metrizable and separable (since X is second countable). On the
other hand [0, 1]™ and all its subspaces are separable metrizable spaces. Thus, the corollary tells us
that, topologically, the separable metrizable spaces are precisely the second countable Tychonoff

sSpaces.
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Exercises

E7. Prove that if X is a countable Tychonoff space, then there is a neighborhood base of clopen sets at
each point. (Such a space X is sometimes called zero-dimensional.)

E8. Prove that in any space X, a countable union of cozero sets is a cozero set — equivalently, that a
countable intersection of zero sets is a zero set.

E9. Prove that the following are equivalent in any Tychonoff space X:

a) every zero set is open

b) every Gy set is open

c) foreach f € C(X) : if f(p) = 0 then there is a neighborhood N of p
suchthat f | N =0

E10. Leti: R — R be the identity map and let
(i) ={f e CMR): f=giforsomege C(R)}.

For those who know a bit of algebra: C(R) (or, more generally, C'(X) ) with addition and
multiplication defined pointwise, is a commutative ring with unit. (7) is called the ideal generated
by the element 5.

a) Prove that (i) = {f € C(R) : f(0) = Oand the derivative f’(0) exists}.
b) Exhibit two functions f, g in C'(R) for which fg € (i) yet f ¢ (i) and g ¢ (i).

c) Let X be a Tychonoff space with more than one point. Prove that there are two functions
f,9€ C(X)suchthat fg = 0on X yet neither f nor g is identically 0 on X.
(So the ring C'(X) has zero divisors.)

d) Prove that there are exactly two functions f € C'(R) for which f2 = f. (Here, f2(x) means

f(@) - f(x), not f(f(x)).)
e) Prove that there are exactly ¢ functions f in C(Q) for which f2 = f.

An element which equals its own square is called an idempotent in C'(X)). Part d) shows that C'(R)
and C(Q) are not isomorphic rings since they have different numbers of idempotents. Is either
isomorphic to C'(N) ?

A classic part of general topology is the exploration of the relationship between the space X and the
rings C'(X) and C*(X). For example, if X and Y are homeomorphic, then C(X) is isomorphic to
C(Y). This necessarily implies that C*(X) is isomorphic to C*(Y") also (why?). The question “when
does isomorphism imply homeomorphism” is more difficult. Another important area of study is how
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the maximal ideals of the ring C'(X) are related to the topology of X. The best introduction to this
material is the classic Rings of Continuous Functions (Gillman-Jerison). )

f) Let D(R) be the set of differentiable functions f : R — R. Are the rings C'(R) and D(R)
isomorphic? Hint: An isomorphism between C'(R) and D(IR) preserves cube roots.

E11. Suppose X is a connected Tychonoff space with more than one point. Prove | X| > c..
E12. Let X be a topological space. Suppose f,g € C(X) and that Z(f) is a neighborhood of Z(g)

(thatis, Z(f) CintZ(g).)

a) Prove that there is a function h € C'(X) such that f(x) = g(x)h(x) for all z € X, i.e., that
fisamultiple of g in C(X). Also,

b) Give an example where Z(f) 2 Z(g) but f is not a multiple of g in C'(X).

E13. Let X be a Tychonoff space. Suppose ', A C X, where F'is closed and A is countable. Prove
that if /N A = (), then A is disjoint from some zero set containing F'.

E14. A space X is called pseudocompact (Definition 1V.8.7) if every continuous f: X — R is
bounded, that is, if C'(X) = C*(X). Consider the following condition on a topological space X:

*) V1 2V, D ... DV, D ...is adecreasing sequence of nonempty open sets,
then ("~ ,clV,, # 0.

a) Prove that if X satisfies (*), then X is pseudocompact.
b) Prove that if X is Tychonoff and pseudocompact, then X satisfies (*).

Note: For Tychonoff spaces, part b) gives an ““internal™ characterization of pseudocompactness — that
is, one that makes no explicit mention of R.
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4. Normal and T, Spaces

We now return to a topic in progress: normal spaces (and 7} spaces). Even though normal spaces are
badly behaved in some ways, there are still some very nice classical (and nontrivial) theorems we can
prove. One of these will have “T; = T3%” as a corollary.

To begin, the following technical variation on the definition of normality is very useful.

Lemma 4.1 A space X is normal iff whenever O is open, A closed, and A C O, then there exists an
openset U withAC U CclU C O.

Proof Suppose X is normal and that Ois an open set containing the closed set A. Then A and
B = X — Oare disjoint closed sets. By normality, there are disjoint open sets U and V with A C U
and BCV. ThenACU CclUCX -V CO.

Conversely, suppose X satisfies the stated condition and that A, B are disjoint closed sets.

Then AC O =X — B, sothereisanopenset U withACU CclUC X —B. LetV=X—clU.
U and V are disjoint closed sets containing A and B respectively, so X isnormal. e
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Theorem 4.2  a) A closed subspace of a normal (T}) space is normal (77).
b) A continuous closed image of a normal (7)) space normal (7}).

Proof a) Suppose F'is a closed subspace of a normal space X and let A and B be disjoint closed sets
in F. Then A, B are also closed in X so we can find disjoint open sets U’ and V'’ in X containing A
and B respectively. Then U =U’'NF and V = V' N F are disjoint open sets in F' that contain A
and B, so F'is normal.

b) Suppose X is normal and that f : X — Y is continuous, closed and onto. If A and Bare
disjoint closed sets in Y, then f~![A]and f~![B] are disjoint closed sets in X. Pick U’ and V'
disjoint open sets in X with f~'[A]CU’and f~'[B]CV'. ThenU =Y — f[X — U] and
V=Y — f[X —V']are opensetsin Y.

If yc U, then y ¢ f[X —U']. Since f is onto, y = f(x)for some x € U’ C X —V’'. Therefore
ye fIX-V']soy¢ V. HenceU NV = 0.

Ify € A, then f~1[{y}] C fHA] CU’,s0 f[{y}] N (X —U"’) = (. Therefore
y¢ fIX-U'lsoyeY — f[X —U'] =U. Therefore A C U and, similarly, B C V' so Y is normal.

Since the T property is hereditary and is preserved by closed onto maps, the statements in a) and b)
hold for T}, as well as normality. e
The next theorem gives us more examples of normal (and 7Ty) spaces.

Theorem 4.3 Every regular Lindel6f space X is normal (and therefore every Lindel6f T3 space
is T4)

Proof Suppose A and B are disjoint closed sets in X. For each x € A, use regularity to pick an open
set U, such that x € U, CclU, € X — B. Since the Lindel6f property is hereditary on closed
subsets, a countable number of the U,'s cover A: relabel these as Uy, Us, ..., U, ... . For each n, we
have cl U, N B = (. Similarly, choose a sequence of open sets V;, Va, ..., V,,, ... covering B such that
clV,, N A = () for each n.

We have that | J,~ U, 2 Aand |J,~,V,, 2 B, but these unions may not be disjoint. So we define

Ui = Ui —cl W Vi=V—dU
Uy = Uy — (cl Vi UclVy) Vot = Vo — (clUy UclUs)
U =U, — (clV;UclVaU...Ucl ;) V=V, — (clU,UclUyU...UclUp)

LetU =,—Urand V =2, V"

If z € A, then = ¢ cl V,, for all n. But z € Uy, for some k, so z € U C U. Therefore A C U and,
similarly, B C V.

To complete the proof, we show that U N V' = (). Suppose =z € U.
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Then z € U; for some k, so z¢clViuclVLu...UclV,
so z¢g ViulhU...UV,
so x ¢ VFUVFU. ..UV
so x ¢ Viforanyn <k.

Since z € U}, thenz € Uy. So, ifn >k, thenx ¢ V) =V, — (clU; U...uclU, U...UclU,)

Sox ¢ V*foralln,sox ¢ V and therefore U NV = (. o

Example 4.4 The Sorgenfrey line S is regular because the sets [a,b) form a base of closed
neighborhoods at each point a. We proved in Example V1.3.2 that S is Lindeldf, so .S is normal.
Since S is T}, we have that S is T4.

5. Urysohn's Lemma and Tietze's Extension Theorem

We now turn our attention to the issue of “T} = T3,”. Proving this is hard because to show that a
space X is TS%, we need to prove that certain continuous functions exist; but the hypothesis “T),” gives
us no continuous functions to work with. As far as we know at this point, there could even be T}
spaces on which every continuous real-valued function is constant! If T} spaces are going to have a
rich supply of continuous real-valued functions, we will have to show that these functions can be “built
from scratch” in a Ty space. This will lead us to two of the most well-known classical theorems of
general topology.

We begin with the following technical lemma. It gives a way to use a certain collection of open sets
{U, : r € Q} to construct a function f € C'(X). The idea in the proof is quite straightforward, but I
attribute its elegant presentation (and that of Urysohn's Lemma which follows) primarily to Leonard
Gillman and Meyer Jerison.

Lemma 5.1 Suppose X is any topological space and let () be any dense subset of R. Suppose open
sets U, € X have been defined, for each r» € @, in such a way that:

) X =U,oUrand N, oUr =10
i) ifr,s e Qandr < s, thenclU, C U,.

For x € X, define f(z) =inf{r e Q:x € U,}. Then f : X — Ris continuous.

We will only use the Lemma once, with Q = Q. So if you like, there is no harm in assuming that
Q = Q in the proof.

Proof First note: suppose z € X. By i) we know that = € U, for some r,so {r € Q : z € U, }

# (. And by ii), we know that = ¢ U, for some s. Forthat s: if x € U,, then (by ii) s <r,sosisa
lower bound for {r € Q : = € U,}. Therefore {r € Q : = € U, } has a greatest lower bound, so the
definition of f(x) = inf{r € @ : x € U, } makes sense.

From the definition of f, we get that for r, s € Q,

a) ifzeclU, thenz € Uy forall s > r so f(x) <r
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b) if f(z) < s, thenz € U,.
We want to prove f is continuous at each point a € X. Since @ is dense in R,
{[r,s]:r,s €@ and r < f(a) < s}

is a neighborhood base at f(a) in R. Therefore it is sufficient to show that whenever r» < f(a) < s,
then there is a neighborhood U of « such that f[U] C [r, s].

Since f(a) < s, we have a € Uy, and f(a) > r gives us that a ¢ clU,. Therefore U = U, —cl U, is
an open neighborhood of a. If z € U, then z € U, C clUs, so f(z) <s; and z ¢ clU,, so z ¢ U,
and f(z) > r. Therefore f[U] C [r,s]. o

Our first major theorem about normal spaces is traditionally referred to as a “lemma” because it was a
lemma in the paper where it originally appeared. (Its author, Paul Urysohn, died at age 26, on the
morning of 17 August 1924, while swimming off the coast of Brittany.)

Theorem 5.2 (Urysohn's Lemma) A space X is normal iff whenever A, B are disjoint closed sets in
X, there exists a function f € C'(X) with f|A =0and f|B = 1. (When such an f exists, we say that
A and B are completely separated.)

Notice: the theorem says that A C f~1(0) and B C f~!(1), but equality might not be true. If fact, if
we had A = f~1(0) and B = f~!(1), then A and B would have been zero sets in the first place.
And in that case, normality would not even be necessary because, in any space X :

... . 2 X
If A= Z(g)and B = Z(h) are disjoint zero sets, then the function f(z) = m
completely separates A and B.

This shows again that zero sets are very special closed sets: disjoint zero sets are always completely
separated. So, given Urysohn's Lemma, we can conclude that every nonnormal space must contain a
closed set that is not a zero set.

Proof The proof of Urysohn's Lemma in one direction is almost trivial. If such a function f exists,
thenU = {z: f(z) < 3}and V = {z: f(z) > 1} are disjoint open sets (in fact, cozero sets)
containing A and B respectively. It is the other half of Urysohn's Lemma for which Urysohn deserves
credit.

Let A and B be disjoint closed sets in a normal space X. We will define sets open sets U, (r € Q) in
such a way that the Lemma 5.1 applies. To start, let U, = () forr < 0and U, = X forr > 1.

Enumerate the remaining rationals in Q N [0, 1] as ry, 79, ..., 7, ..., beginning the listwith - = 1and
ro = 0. We begin by defining U,, = U; = X — B. Then use normality to define U,,( = Uy) : since
A CU, =X — B, we can pick U,, so that

ACU,CclU, CU, =X-B
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Then 0 = ry < r3 < r; = 1, and we use normality to pick an open set U,., so that
ACU,CclU,CcU,CclU,CU,=X—-B

We continue by induction. Suppose n > 3 and that we have already defined open sets U,., U,,, ..., U,,
in such a way that whenever r; < r; <r (i,7,k < n), then

clU, CcU, CclU, C U, (x)

We need to define U,

Tn+1

so that (x) holds fori,j,k <n+ 1.
Sincery =landr, =0,and r,; € (0,1), it makes sense to define

rr = the largest among r1, ro, ..., r, that is smaller than r,,.;, and
r; = the smallest among ry, o, ..., 7, that is larger than r,, ;.

By the induction hypothesis, we already have clU,, C U,,. Then use normality to pick an open set
U, ., sothat

Tn+1

cdv, CU,,, Ccll,

Tn+1

n+1 g Url'

The U,'s defined in this way satisfy the conditions of Lemma 5.1, so the function f : X — R defined
by f(z) =inf{r € Q:z € U,}iscontinuous. Ifz € A, thenz € U,, =Upand z ¢ U, if r <0, S0
f(z)=0. Ifx e Bthenx ¢ Uy,butx € U, = X forr > 1,50 f(z) =1. e

Once we have the function f we can replace it, if we like, by ¢ = (0V f) A 1 sothat A and B are
completely separated by a function g € C*(X). Itis also clear that we can modify g further to get an
h € C*(X) for which h|A = a and h|B = b where a and b are any two real numbers.

With Urysohn's Lemma, the proof of the following corollary is obvious.

Corollary 5.3 T} = T3,

There is another famous characterization of normal spaces in terms of C'(X). It is a result about
“extending” continuous real-valued functions defined on closed subspaces.

We begin with the following two lemmas. Lemma 5.4, called the “Weierstrass M-Test” is a slight
generalization of a theorem with the same name in advanced calculus. It can be useful in “piecing
together” infinitely many real-valued continuous functions to get a new one. Lemma 5.5 will be used
in the proof of Tietze's Extension Theorem (Theorem 5.6).

Lemma 5.4 (Weierstrass M-Test) Let X be a topological space. Suppose f, : X — R is
o0
continuous for each n e N and that |f,(z)| <M, for all z€ X. If Y M, <oo, then

n=1
00

f(xz) =>_ f.(x) converges (absolutely) for all z and f : X — Ris continuous.

n=1
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Proof Foreach z, Y |f.(z)| <> M, < oo, 50, fn(x) converges (absolutely) by the Comparison
n=1 n=1 n=1

Test.

Suppose a € X and € > 0. Choose N sothat > M, < {. Each f, is continuous, so for
n=N+1

n =1,..., N we can pick a neighborhood U,, of a such that for = € U,, |f.(z) — fu(a)| < 55. Then
U =N_,U, is a neighborhood of a, and for = € U we get | f(z) — f(a)|

o0

=[S (o) = ful@) + 5> (fule) = Ful@))] < S fal@) — ful@] + 5 [fule) — fula)

n=1 n=N+1 n=1 n=N+1
N ad € ad € €

< Ylfal@) = fal) + 2 @)+ [fala)| <N - 55 +3 2M, <545 =¢
n=1 n=N+1 n=N+1

Therefore f is continuous at a. e

Lemma5.5 Let A be aclosed set in a normal space X and let a be a positive real number. Suppose
h : A — [ —r,r|iscontinuous. Then there exists a continuous ¢ : X — [ — %, %] such that

|h(z) — ¢(z)| < ¥ foreach z € A.

rr
373

Proof Let A ={r € A:h(z) < —f}and By = {x € A: h(z) > 5}. A;and B, are disjoint
closed sets in A, and since A is closed, A; and By are closed in X. By Urysohn's Lemma, there exists
a continuous function ¢ : X — [ — £, ] such that ¢|A; = — g and ¢|B; = .

Ifz € Ay, then —r <h(z) < —fand¢(z) = — 5,80 |h(z) —d(x)| < | —7— (- 3)|
= 2r; and similarly if z € By, |h(z) — ¢(z)| < ¥. Ifz € A— (A U By), then h(x) and ¢(x) are

bothin[— %, 2]s0|h(z) — ¢(z)| < &. e

Theorem 5.6 (Tietze's Extension Theorem) A space X is normal iff whenever A is a closed set in
X and f € C(A), then there exists a function g € C'(X) such that g|A = f.

Note: if A is a closed subset of R, then it is quite easy to prove that each f € C'(A) can be extended to
a function gdefined on all of R. In that case, the open set R — A can be written as a countable union
of disjoint open intervals I, where each I = (a,b) or ( — oo, b) or (a,c0) (see Theorem 11.3.4). Any
endpoints of I are in A, where f is already defined. If I = (a,b) then extend the definition of f over
I by using a straight line segment to join (a, f(a))and (b, f(b)) on the graph of f. If I = (a, o). then
extend the graph of f over I using a horizontal right ray at height f(a); if I = ( — oo,b), then extend
the graph of f over I using a horizontal left ray at height f(b).

As with Urysohn's Lemma, half of the proof is easy. The significant part of theorem is proving the
existence of the extension g when X is normal.

Proof (<) Suppose A and B are disjoint closed sets in X. A and B are clopen in the subspace

A U B so the function f : AU B — [0, 1] defined by f|A = 0and f|B = 1 is continuous. Since
AU Bisclosed in X, there is a function g € C'(X) such that g|(A U B) = f. Then

U={z:9(x) <i}andV = {z: g(x) > 5} are disjoint open sets (cozero sets, in fact) that contain
A and B respectively. Therefore X is normal.

(=) Theideais to find a sequence of functions g; € C'(X) such that
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|f(z) — Zgi(:p)| — 0 asn — oo foreach = € A (where f is defined ). The sums Zgi(a:) are defined
i=1 i=1
on all of X and as n — oo we can think of them as giving better and better approximations to the

extension g that we want. Then we can let g(z) = lim > g;(z) = > gi(x). The details follow. We
o0 =1 i=1

proceed in three steps, but the heart of the argument is in Step I.

Step | Suppose f: A — [— 1,1] is continuous. We claim there is a continuous function
g: X —[—1,1]withg|A=f.

Using Lemma 5.5 (with h = f, r = 1) we geta function gy = ¢ : X — [ — 3, %] such that
forz € A, |f(z) — gi(z)| < 2. Therefore f — gy : A — [ — 2, 2].

Using Lemma 5.5 again (with h = f — gl,r = 2), we geta function g, : X — [ — 2, 2] such
thatfor = € A, [f(x) — 91(2) — ga(a)| < & = (D)% SO S — (i +92): A — [~ 4.8
Using Lemma 5.5 again (withh = f — g1 — go, 7 = %), we get a function g3 : X — [ — %, %]

such that for o € A, |f(z) — 1(2) — g2(2) — gs ()] < & = (2)°
Sof—(g1+g2+93): A*[—% %}

We continue, using induction, to find for each ¢ a continuous function
gi: X — [~ %, L] such that | f(z) — Y gi(x)| < (2/3)" for z € A.
i=1

(0.¢] oo . (0.¢]
Since > |gi(z)] < 2213—7] < o0, the series g(x) = Y fi(x) converges (absolutely) for every
i=1 i=1 i=1
o0
x € X, and g is continuous by the Weierstrass M-Test. Since |g(z)| = |>_gi(z)]
=

lgi (z )|<\Z 2-=1,wehaveg: X — [—1,1].

Finally, forx € A, |f(x) — g(x)| = lim | f(x) — igl( )] < lim (3)" = 0,50 g|]A = fand
n—oo i=1

n—oo

M8

Il
—

7

the proof for Step I is complete.

Step Il Suppose f: A — ( — 1, 1) is continuous. We claim there is a continuous function
g: X — (—1,1)withg|A = f.

Since f: A — (—1,1) C[— 1, 1], we can apply Case I to find a continuous function
F:X —[—1,1] with F|[A = f. Togetg, we merely make a slight modification to
F to get a g that still extends f but where g has all its values in ( — 1,1).

Let B={x € X: F(x) = £ 1}. Aand B are disjoint closed sets in X, so by
Urysohn's Lemma there is a continuous h : X — [ — 1, 1] such that 4|B = 0 and
h|A =1. Ifwelet g(x) = F(z)h(x), theng: X — (—1,1)and g|A = f,
completing the proof of Case II.

Step 111 (the full theorem) Suppose f : A — R is continuous. We claim there is a continuous
function g : X — Rwith g|A = f.
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Leth: R — (—1,1) be ahomeomorphism. Thenho f: A — (—1,1) and, by Step
1, there is a continuous F : X — (— 1,1)with F|[A=ho f.

h
A R -1, 1)

Letg=h"toF: X — R. Thenforz € A we have g(z) = h~}(F(z))
=h"((ho f))(z) = f(z).

It is easy to see that C*(X) can replace C'(X) in the statement of Tietze's Extension Theorem.

Example 5.7 We now know enough about normality to see some of its bad behavior. The Sorgenfrey
line S is normal (Example 4.4) but the plane .S x S is not normal.

To see this, let D = Q x Q, a countable dense setin S x S. Every continuous real-valued function
on S x S is completely determined by its values on D. (See Theorem 11.5.12. The theorem is stated
for the case of functions defined on a pseudometric space, but the proof is written in a way that applies
just as well to functions with any space X as domain.) Therefore the mapping C'(S x S) — C(D)
given by f — f|D is one-to-one, so |C'(S x S)| < |C(D) < |RP| =M = c.

A={(z,y) € S xS:x+y=1}Iisclosed and discrete in the subspace topology, so every function
defined on A is continuous, that is, R4 = C'(A) and so |C'(A)| = c¢¢ = 2¢. If S x S were normal,
then each f € C'(A) could be extended (by Tietze's Theorem) to a continuous function in C(S x S).
This would mean that |C'(S x S)| > |R?| = ¢ = 2¢ > ¢. which is false. Therefore normality is not
even finitely productive.

The comments following the statement of Urysohn's Lemma imply that S x S must contain closed sets
that are not zero sets.

A completely similar argument ““counting continuous real-valued functions” shows that the Moore

plane I' (Example 111.5.6) is not normal: use that I" is separable and the z-axis in I" is a closed
discrete subspace.
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Questions about the normality of products are difficult. For example, it was an open question for a
long time whether the product of a normal space X with [0, 1] (a very nice, well-behaved space) must
be normal. In the 1950's, Dowker proved that X x [0, 1] is normal iff X is normal and “countably
paracompact.”

However, this result was unsatisfying — because no one knew whether a normal space was
automatically “countably paracompact.” Then, in the 1960's, Mary Ellen Rudin constructed a normal
space X which was not countably paracompact. This example was still unsatisfying because the
construction assumed the existence of a space called a “Souslin line” — and whether a Souslin line
exists cannot be decided in the ZFC set theory! In other words, constructing her space X required
adding a new axiom to ZFC.

Things were finally settled in 1971 when Mary Ellen Rudin constructed a “real” example of a normal
space X whose product with [0, 1] is not normal. By “real,” we mean that X can be constructed in
ZFC with no additional set theoretic assumptions. Among other things, this example makes use of the
box topology on a product.

Example 5.8 The Sorgenfrey line S'is T}, so S is T, and therefore the Sorgenfrey plane S x S'is
also T31. So S x S is an example that shows 73, does not imply 7.

Extension theorems are an important idea in mathematics. In general, an “extension theorem” has the
following form:

AC Xand f: A— B,then there is a function g : X — B such that g|A = f.

-

4

i sl
£ B

If we leti : A — X be the injection i(a) = a, then the condition “g| A = f”” can be rewritten as
goi = f. Inthe language of algebra, we are asking whether there is a suitable function g which
“makes the diagram commute.”

Specific extension theorems impose conditions on A and X, and usually we want g to share some
property of f such as continuity. Here are some illustrations, without the specifics.

1) Extension theorems that generalize of Tietze's Theorem: by putting stronger hypotheses
on X, we can relax the hypotheses on B.
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Suppose A is closed in X and f : A — B is continuous.

X is normal and B =R (Tietze's Theorem)

If X is normal and B =R"
X is collectionwise normal** and B is a separable Banach space*
X is paracompact** and B is a Banach space*

then f has a continuous extension g : X — B.
The statement that R” can replace R in Tietze's Theorem is easy to prove:

If X isnormal and f : A — R" is continuous, write f(z) = (fi(z), fo(x), ..., fu(x))
where each f; : A — R. By Tietze's Theorem, there exists for each ¢ a continuous
extension g, : X — Rwith g;|A = fi. Ifwelet g(z) = (g1(x), ..., gn(x)), then

g: X — R"and g|A = f. Inother words, we separately extend the coordinate
functions in order to extend f. And in this example, n could even be an infinite
cardinal.

* A normed linear space is a vector space V' with a norm |v| ( = “absolute value’’) that
defines the “length” of each vector. Of course, a norm must satisfy certain axioms — for
example, |v; + vo| < |vi| + |vs]. These properties guarantee that a norm can be used to
define a metric: d(vy,v2) = |v; — v9|. A Banach space is a normed linear space which is
complete in this metric d. For example, R", with its usual norm |(z1, za, ..., x,)|

= \/x} + 23 + ... + 22 is aseparable Banach space.

** Roughly, a *““collectionwise normal’” space is one in which certain infinite collections of
disjoint closed sets can be enclosed in disjoint open sets. We will not give definitions for
*““collectionwise normal’ (or the stronger condition, “paracompactness’) here, but is true that

metric, or L
= paracompact = collectionwise normal = normal

compact T,

Therefore, in the theorems cited above, a continuous map f defined on a closed subset of a
metric space (or, compact 75 space) and valued in a Banach space B and be continuously
extended a functiong : X — B.

2) The Hahn-Banach Theorem is another example, taken from functional analysis, of an
extension. Roughly, it states:

Suppose f is a continuous linear functional defined on a subspace M of a normed
linear space X. For such a map, a “norm” || f|| can be defined Then f can be
extended to a continuous linear functional g : X — R for which ||g| = || f]|.

3) Homotopy is usually not formulated in terms of extension theorems, but extensions are
really at the heart of the idea.
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Let f,g: [0,1] — X be continuous and suppose that f(0) = ¢g(0) = x, and
f(1) =g(1) = x;. Then f and g are paths in X that start at = and end at ;. Let B
be the boundary of the square [0, 1] C R? and define F': B — X by

F(z,0) = f(z) F(a,1) = g(z)
F(O,t):l‘o F(l,t):ﬂjl

Thus F'agrees with f on the bottom edge of B and with g on the top edge. F' is constant
( = xo) on the left edge of B and constant ( = x;)on the right edge of B. We ask whether F’
can be extended to a continuous map defined on the whole square, H : [0,1]> — X.

If H does exist, then we have

1 Hix,1) = a0 X -
H
f
Hixti=1 i«
: fxi)= ) ;
Hi=,00 = %) 1

Foreach t € [0,1], restrict H to the line segment at height ¢ to define f,(z) = H(z,t). Then
foreacht € [0,1], f; isalsoa pathin X from xyto z;. Ast moves from 0 to 1, we can think
of the f;'s as a family of paths in X that continuously deform f, = f into f; = g.

The continuous extension H (if it exists) is called a homotopy between f and g with fixed
endpoints, and we say that the paths f and g are homotopic with fixed endpoints.

In the space X below, it seems intuitively clear that f can be continuously deformed (with
endpoints held fixed) into g — in other words, that H exists.
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However in the space Y, f and g together form a loop that surrounds a “hole” in Y, and it
seems intuitively clear that the path f cannot be continuously deformed into the path g within
the space Y — that is, the extension H does not exist.

In some sense, homotopy can be used to detect the presence of certain “holes” in a space, and
is one important part of algebraic topology.

The next theorem shows us where compact Hausdorff spaces stand in the discussion of separation
properties.

Theorem 5.9 A compact T5 space X is Ty.

Proof It is sufficient to show that X is regular because X is Lindelof and a regular Lindelof space is
normal (Theorem 4.3). Suppose F' is a closed set in X and x ¢ F'. For each y € F' we can pick
disjoint open sets U, and V, with x € U, and y € V,,. F'is compact so a finite number of the V's
cover F —say V,,, V,,....V,.. Thenze (N U, =U, FC' ,V,=V, and U,V are disjoint
open sets. o

Therefore, our results line up as:
compact 75

(*) compact metric = or =Ty = Tgé =>T=>Th=T=1T
metric

In particular, Urysohn's Lemma and Tietze's Extension Theorem hold in metric spaces and in compact
15 spaces.

Notice that
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i) the space (0, 1) is T, but not compact 75

ii) the Sorgenfrey line S'is Ty (see example 5.4) but not metrizable. (If S were metrizable,
then S x S would be metrizable and therefore 7, — which is false : see Example 5.7).

iii) [0, 1]¢ is compact 75 (‘assuming, for now, the Tychonoff Product Theorem V1.3.10) but
not metrizable (why?)

iv) (0,1) is metrizable but not compact.

Combining these observations with earlier examples, we see that none of the implications in
(*) is reversible.

Example 5.10 (See Example 5.7) The Sorgenfrey plane S x S is T3%, S0 S x S can be embedded

in a cube [0, 1]™ and [0, 1]™ is compact T, (assuming the Tychonoff Product Theorem). Since S x S'is
not normal, we see now that a normal space can have nonnormal subspaces. This example, admittedly,
is not terribly satisfying since it is hard to visualize how S x S “sits” inside [0, 1]™.

In Chapter VIII (Example 8.10), we will look at an example of a T); space in which it's easy to “see”
why a certain subspace isn't normal.

6. Some Metrization Results

We have enough information now to completely characterize separable metric spaces topologically.

Theorem 6.1 (Urysohn's Metrization Theorem) A second countable T3 space is metrizable.
(Note: earlier we proved a similar metrization theorem” (Corollary 3.18), but the separation
hypothesis then was T3% rather than T3.)

Proof X issecond countable so X is Lindeldf, and Theorem 4.3 tells us that a Lindelof
Tsspace is T)y. Therefore X is T;:. So by Corollary 3.18, X is metrizable. e

Because a separable metrizable space is second countable and T3, we have a complete characterization:
X is a separable metrizable space iff X is a second countable 73 space. So, with hindsight, we now see
that the hypothesis 3%” in Corollary 3.18 was unnecessarily strong. In fact, we see that 73 and T3%

are equivalent in a space that is second countable.

Further developments in metrization theory hinged on work of Arthur H. Stone in the late 1940's — in
particular, his result that metric spaces have a property called “paracompactness.” This led quickly to a
complete characterization of metrizable spaces came roughly a quarter century after Urysohn's work.
We state this characterization here without a proof.

A family of sets B in (X,7)is called locally finite if each point x € X has a neighborhood N that

meets only finitely many sets in B. The family B is called o-locally finite if we can write
B = U, e Br Where each subfamily B, is locally finite.
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Theorem 6.2 (The Bing-Smirnov-Nagata Metrization Theorem) (X, 7) is metrizable iff X is T3
and has a o-locally finite base 5.

Note: If X is second countable, a countable base B ={01,0,,...,0,,...} is o-locally
finite — because we can write B = JB,, where B, = {O, }. Therefore this Metrization Theorem
includes Urysohn's Metrization Theorem as a special case.

The Bing-Smirnov-Nagata Theorem has the typical form of most metrization theorems: X is metrizable
iff ““X has enough separation” and ““X has a nice enough base.”
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Exercises

E15. Let (X,d) be a metric space and S C X. Prove that if each continuous f: S — R extends to a
continuous ¢: X — R, then S is closed. (The converse, of course, follows from Tietze's Extension
Theorem.)

E16. Let X be a Tychonoff space.

a) Suppose F', K C X where F'is closed, K is compact. X and F'N K = (). Prove that there
isan f € C(X)suchthat f | K =0and f | F = 1. (This is another example of the rule of thumb that
“compact spaces act like finite spaces.” If necessary, try proving the result first for a finite
set K.)

b) Suppose p € U, where U is open in X. Prove {p} is a Gs set in X iff there exists
a continuous function f : X — [0, 1] such that f~1(1) = {p}and f|X — U = 0.

E17. Suppose Y is a Hausdorff space. Define x ~ y in Y iff there does not exist a continuous
function f : X — [0, 1] such that f(x) # f(y). Prove or disprove: Y/ ~ is a Tychonoff space.

E18. Prove that a Hausdorff space X is normal iff for each finite open cover &/ = {Uy, ..., U, } of X,
there exist continuous functions f;: X — [0,1] (¢ =1,...,n) such that >_" , f;(z)=1 for each x € X
and such that, for each 4, f; | X — U; =0. (Such a set of functions is called a partition of unity
subordinate to the finite cover i.)

Hint ( = ) First build a new open cover V = {V;,...,V,,} that “shrinks” / in the sense that,
Vi CclV; C U; foreach i. To begin the construction, let F; = X —J,.,U;. Pickan open
Visothat F; C Vi CclVy C Up. Then {Vy,Us, ..., U, } still covers X. Continue by
looking at /5 = X — (Vi UJ,-,U;) and defining V5 so that {Vi, V5, Us, ..., U, } is still a
cover and V; C ¢l V, C U,. Continue in this way to replace the U;'s one by one. Then use
Urysohn's lemma to get functions g; which can then be used to define the f;'s. .

E19. Suppose X is a compact, countable Hausdorff space. Prove that X is completely metrizable.

Hint: 1) For each pair of points z,, # z,, in X pick disjoint open sets U,,,, and V,,,, containing
these points. Consider the collection of all finite intersections of such sets.

2) Or: Since X is, countable, every singleton {p} is a Gs set. Use regularity to find a
descending sequence of open sets V;, containing p such that () _,cl V,, = {p}. Prove that the V,,'s are
a neighborhood base at p.

E20. A space X is called completely normal if every subspace of X is normal. (For example, every
metric space is completely normal).
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a) Prove that X is completely normal if and only if the following condition holds:

whenever A, B C X and each of A, B is disjoint from the closure of the other
(ie., (clAnB)U (AnclB) = 0), then there exist disjoint open sets U and V" with
ACUand BCV.

b) Recall that the “scattered line” (Exercise II1E.10) consist of the set X = R with the
topology 7 = {U UV : U is open in the usual topology on R and V' C P}. Prove that the scattered
line is completely normal and therefore 7.

E21. A T space X is called perfectly normal if whenever A and B are disjoint nonempty closed sets
in X, there isan f € C(X) with f~1(0) = Aand f~'(1) = B.

a) Prove that every metric space (X, d) is perfectly normal.

b) Prove that X is perfectly normal iff X is 7 and every closed set in X is a Gs-set.
Note: Example 3.10 shows a T;. space X that is not perfectly normal.

c) Show that the scattered line (see Exercise E20) is not perfectly normal, even though every
singleton set {p } is a Gs-set.

d) Show that the scattered line is T}.

Hint: Use the fact that R, with the usual topology, is normal. Nothing deeper than Urysohn's
Lemma is required but the problem is a bit tricky.

E22. Prove that a 75 space (X, 7') has a locally finite base B iff 7 is the discrete topology.
(Compare to Theorem 6.2.)
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Chapter VII Review

Explain why each statement is true, or provide a counterexample.

1. Suppose (X, 7) is a topological space and let 7, be the weak topology on X generated by C'(X).
Then T C 7,.

2. If X isregularand z € cl{y}, theny € cl {z}.

3. If Fy, F5, and Fj are pairwise disjoint closed sets in the normal space X, then there exist pairwise
disjoint open sets Uy, Us, and Us such that foreach i = 1,2,3, U; O F,.

4. Let X denote the real numbers with the topology 7 for which the “right rays” (a, co) form a base.
7 is the same as the weak topology generated by C'(X).

5. If X is infinite and has the cofinite topology, then X is completely regular.
6. Every separable Tychonoff space can be embedded in [0, 1]*.

7. If f € C(Q), we say g is a square root of f if g € C(Q) and ¢ = f. If a function f in C(Q) has
more than one square root, then it has ¢ square roots.

8. In a Tychonoff space, every closed set is an intersection of zero sets.

9. A subspace of a separable space need not be separable, but every subspace of the Sorgenfrey line is
separable.

10. Let f : R — R be given by f(z) = sin|z|and g: R — R be given by g(z) = {
The weak topology on R induced by the functions f and ¢ is completely regular.

11. Suppose N has the cofinite topology. If A is closed in N, then every f € C(A) can be extended to
a function g € C(N).

12. Let X be the Sorgenfrey plane. Then X™ is second countable.
13.Forn=1,2,..., let f, : R — R be given by f,,(x) = x + n and let 7 be the weak topology on R
generated by the f,'s. Then the evaluation map e : R — R® given by e(x)(n) = f,(z) is an

embedding.

14. Let C be the set of points in the Cantor set with the subspace topology from the Sorgenfrey line S.
Every continuous function f : C' — R can be extended to a continuous function g : S — R.

15. The product of two Lindel&f spaces cannot contain an uncountable closed discrete subset.
16. The Sorgenfrey line S is homeomorphic to an open subspace of the cube [0, 1]3.

17. If (X,d) is a metric space, then X is homeomorphic to a dense subspace of some compact
Hausdorff space.
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18. Suppose F' C R%. Fis closed iff F is a zero set.

19. A closed subspace of a product of two normal spaces is normal.

20. Suppose K is a compact subset of the Hausdorff space X x Y. Let A = nx[K]. Then AisT}.
21. For any cardinal m, a subspace X of [0, 1]™ is metrizable if and only if X is second countable.
22. Every space is the continuous image of a metrizable space.

23. Let F = {f € R®: fisnot continuous}. The weak topology on R generated by F is the
discrete topology.

24. Every Lindelof T5 space can be embedded in [0, 1]™ for some cardinal m.
25. A compact T5 space is metrizable if and only if it is second countable.

26. If F'is closed and W is open in the Sorgenfrey line S, and ' C W, then there is an open set O in
Ssuchthat FC O COCW.

27. Suppose F' and K are disjoint subsets of a Tychonoff space X, where F'is closed and K is
compact. There are disjoint cozero sets U and V with F C U and K C V.

28. A separable metric space with a basis of clopen sets is homeomorphic to a subspace of the
Cantor set.

29. Every T space is homeomorphic to a subspace of some cube [0, 1]™.

30. If every function in C*(X) is constant, then every function in C'(X') must be constant.
31. N is Ty,

32.If f : X — Y is continuous and onto and X is normal, then Y is normal.

33. If S is the Sorgenfrey line, and let 7 be the weak topology on S generated by the functions in
C(S). Then (S,7)isTy.

34. There is a closed set in the Sorgenfrey plane that is not a zero set.

35. Every closed set in NV is a zero set.
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