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Chapter IX
Theory of Convergence 

1.  Introduction

In Chapters II and III, we discussed the convergence of sequences.  Sequential convergence is very
useful in working with first countable spaces (in particular, with metric spaces).

In any space , if is a sequence in  and , then cl But in a first countable space,\ Ð+ Ñ E Ð+ Ñ Ä B B − EÞ8 8

the converse is also true cl  there is a sequence  in  with   ThereforeÀ B − E Ð+ Ñ E Ð+ Ñ Ä BÞiff 8 8

convergent sequences determine the set cl , so sequences can be used to check whether of not clE
E œ E E E, that is, whether or not  is closed. we can determine whether of not is closed using
sequences.  ( ).  So in a first countable space “sequences determine the topology.”See Theorem III.9.6

However, sequences are not sufficient in general to describe closures:  for example, in  we haveÒ!ß Ó="

= = α = = α =" " 8 " " "− Ò!ß Ñ Ð Ñ Ò!ß ß Ñ Ð ß Ócl  but no sequence  in converges to .  The basic neighborhoods  of
= α =" 8 " are very nicely ordered, but there are just “too many” of them: no mere sequence  in Ð Ñ Ò!ß Ñ
is “long enough” to be eventually inside every neighborhood of .="

A second example ( ):  cl but no sequence in see Example III.9.8 Ð!ß !Ñ − ÐP  ÖÐ!ß !Ñ×Ñ ÐP  ÖÐ!ß !Ñ×Ñ
converges to .  Here the problem is different.  is a “small” space ( ) but theÐ!ß !Ñ P lPl œ i!

neighborhood system ordered either by inclusion or by reverse inclusion  is a very complicatedaÐ!ß!Ñ Ð Ñ

poset so complicated that a mere sequence  in  cannot eventually be in every Ð+ Ñ P  ÖÐ!ß !Ñ×8

neighborhood of Ð!ß !ÑÞ

In this chapter we develop a theory of convergence that is sufficient to describe the topology in any
space .  We define a kind of “generalized sequence” called a    A sequence is a function ,\ Þ 0 − \net 

and we write   A net is a function ,  where is a more general kind of0Ð8Ñ œ B Þ 0 − \ Ð ß Ÿ Ñ8
A A

ordered set. Informally, we write a sequence  as ; similarly, when  is a net, then we informally0 ÐB Ñ 08

write the net as ÐB ÑÞ-

Thinking of , we might hope that it would be a sufficient generalization to replace  with\ œ Ò!ß Ó= "

an initial segment of ordinals : in other words, to replace sequences with “transfiniteA αœ Ò!ß Ñ
sequences” with domain some well-ordered set “longer” than   In  fact, this  a sufficient. is
generalization to deal with a case like  if  is the “transfinite sequence” in given byÒ!ß Ó À ÐB Ñ Ò!ß Ñ= =" "α

B œ Ð  Ñ ÐB Ñ Ä Ð ÐB Ñ Ñα α αα α = = =  , then  in the sense that is eventually in every neighborhood of ." " "

But as we will see below, such a generalization does not go far enough (s ). We need aee Example 2.9
generalization that uses some kind of ordered set  more complicated than just initial segments A αÒ!ß Ñ
of ordinals.

The theory of  turns out to have a “dual” formulation in the theory of .  In  this chapter wenets filters
will discuss both formulations. It turns out that nets and filters are fully equivalent formulations of
convergence, but sometimes one is more natural to use than the other.

2.  Nets
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Definition 2.1  A nonempty ordered set  is called a  ifÐ ß Ÿ ÑA directed set

  1)  is transitive and reflexiveŸ
  2) for all , , there exists  such that and .- - A - A - - -" # $ $ $ #− −    -" 

Example 2.2

 1) Any chain (for example, ) is a directed set.

 2) In , define    if   Then ,  is a directed set and  means that “‘ ‘B Ÿ C lBl   lClÞ Ð Ÿ Ñ B Ÿ C B‡ ‡ ‡

is at least as far from the origin as .”   Notice that  and , so that  is C  " Ÿ " " Ÿ  " Ÿ‡ ‡ ‡ not
antisymmetric.  A directed set might not be a poset.

 3) Let  be the neighborhood system at  in  ordered by “reverse inclusion” that is,aB B \ß 
R Ÿ R R ª R Þ Á g" # " # B iff    and condition 1) in the definition clearly holds.  Condition 2) isa
satisfied because for we have and  and .R ß R − ß R ∩ R œ R − R   R R   R" # B " # $ B $ " $a a 2

Therefore  is a directed set.  Ð ß Ÿ ÑaB

   This example hints at why replacing  (in the definition of a sequence) with a directed set  A
(in the definition of net) will give a tool strong enough to describe the topology in any space  the\ À
directed set  can chosen to be as complicated as the most complicated system of neighborhoods at aA
point .B

 4) Let  and  is finite   In analysis,  is called a  ofA œ ÖJ © Ò!ß "Ó À ! − J ß " − J J ×Þ J partition
the interval .  Order  by inclusion:  a “larger” partition is a “finer” one one with moreÒ!ß "Ó A
subdivision points.  Then  is a directed set.A
 

Definition 2.3     i)  A  in a set  is a function , where  is directed.  Wenet \ 0 À Ð ß Ÿ Ñ Ä \ Ð ß Ÿ ÑA A
   write  and, informally, denote the net by .0Ð Ñ œ B ÐB Ñ- - -

    ii)  A net  in a space   to  if  is eventually in everyÐB Ñ \ B − \ ÐB Ñ- -converges
    neighborhood of that is,    such that B  aR − b − B − Ra - AB ! -

    wherever .- -  !

 
         iii) A point  in a space is a  of a net  if the net is frequently inB \ ÐB Ñcluster point -

  every neighborhood of , that is:  for all  and all  there is a B R − −  a - A - -B ! !

    for which .B − R-

  
Clearly, every sequence is a net, and when , the definitions  ii), and iii) are the same as the oldA œ
definitions for convergence and cluster point of a sequence.

Example 2.4  A - - - - - - - - -œ Ö ß ß ×    " # $ $ " $ # " # and define an order in which  and but  and  are
not comparable.   is a directed set   We can define a net   by andÐ ß Ÿ Ñ Þ 0 À Ä 0Ð Ñ œ !A A ‘ -$

assigning any real values to  and .  Since  for all , we have 0Ð Ñ 0Ð Ñ B − Ð  ß Ñ   ÐB Ñ Ä !Þ- - % % - -" # $- -

( )Notice that a net can have a finite domain and can have a “last term.”
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Example 2.5  The following examples indicate how several different kinds of limit that come up in
analysis can all be reformulated in terms of net convergence.  In other words, many different “limit”
definitions in analysis are “unified” by the concept of net convergence.

      1) Let  and define   (in ) iff  (in ).  SupposeA ‘ A ‘œ  Ö+× B Ÿ C ± B  + ±   ± C  + ±‡

       is a net.  Then the net 0 À Ä ÐB Ñ Ä P −A ‘ ‘-

    iff for all  there exists such that  if  % - A % % - - ! − B − ÐP  ßP  Ñ  ! !
‡

-

    iff for all  there exists such that  if  % - A % % - - ! − B − ÐP  ßP  Ñ !  l  +l Ÿ l  +l! !-

    iff for all  there exists such that  if % $ - % - $ !  ! l0Ð Ñ  Pl  !  l  +l 
               Å Ð Ê À Ñuse $ -œ l  +lÎ#!

    iff   (in the usual sense of analysis).lim
BÄ+

0ÐBÑ œ P

 2) Let  with the usual order . If , we can think of as a net, and writeA ‘ ‘ ‘œ Ÿ 0 À Ä 0
    Then the net 0Ð<Ñ œ B Þ ÐB Ñ Ä P −< < ‘

    iff for all  there exists such that  if % A ‘ % % ! < − œ B − ÐP  ßP  Ñ <   <! < !

    iff for all  there exists such that |  if % ‘ % ! < − 0Ð<Ñ  Pl  <   <! !

    iff  (in the usual sense of analysis).lim
BÄ∞

0ÐBÑ œ P

Parts 1) and 2) show how two different limits in analysis can each be expressed as convergence of a
net.  In fact each of the limits , , ,  lim lim lim lim

BÄ+ BÄ+ BÄ∞BÄ+
0ÐBÑ œ P 0ÐBÑ œ P 0ÐBÑ œ P 0ÐBÑ œ Pß

 

and     can be expressed as the convergence of some net.  In each case, the trick is tolim
BÄ∞

0ÐBÑ œ P

choose the proper directed set.

 3)  Integrals can also be defined in terms of the convergence of nets.

Let  be a bounded real valued function defined on  and let  is finite and1 Ò!ß "Ó œ ÖJ © Ò!ß "Ó À JA
! − J ß " − J× J Ÿ J J © J J J Þ.  Order  by inclusion:   iff  iff  is a “finer” partition than A " # " # # "

For , enumerate  as   Let andJ − J ! œ B  B  ÞÞÞ  B  B œ "Þ B œ B  BA ?! " 8" 8 3 3 3"

 inf .0ÐJ Ñ œ Ð 1 Ñ † B œ B −
ÒB ß B Ó


3œ"

8

3" 3

3 J? ‘

0 À Ä 0ÐJÑ œ B ÞA ‘ ‘ is a net in  and we can write ThenJ

   iff  for all  there is a partition  such thatÐB Ñ Ä P  ! JJ !%
   for all partitions  finer than J J ß lB  Pl ! J %

One can show that such an  always exists:  is called the   denotedP P 1 Ò!ß "Óßlower integral of over
P œ 1




!

" .

If we replace “inf” by “sup” in defining , then the limit of the net is called the  0 Y 1upper integral of

over Ò!ß "Ó Y œ 1 P œ Y 1 Ò!ß "Ó


, denoted .   If , we say that  is (Riemann) integrable on  and write
!

"


!
"
1 œ P Ð œ YÑÞ
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A sequence can have more than one limit: for example, if  and  has the trivial topology,l\l  " \
every every is sequence  in  converges to  point in .  Since a sequence  a net (with ), a netÐB Ñ \ \ œ8 A 
can have more than one limit.  We also proved that a sequence in a Hausdorff space can have at most
one limit (Theorem III.9.3).  This theorem still holds for nets, but then even more is true: uniqueness of
net limits actually  Hausdorff spaces.characterizes

Theorem 2.6   A space is Hausdorff   every net in  has at most one limit.\ \iff

Proof  Suppose  is Hausdorff and .   Choose disjoint open sets  with  and\ B Á C − \ Yß Z B − Y
C − Z Þ ÐB Ñ Ä B ÐB Ñ Y ÐB Ñ Z If a net , then  is eventually in  and therefore  is eventually  .- - - outside
Therefore  does not also converge to .ÐB Ñ C-

Conversely, suppose  is not Hausdorff.  Then there are points  such that \ B Á C − \ Y ∩ Z Á g
whenever  and    Let  and order  by defining Y − Z − Þ œ ‚ ÐY ß Z Ñ Ÿ ÐY ß Z Ña a A a a AB C B C

w w

iff  and   (reverse inclusion in both coordinates).  For each , letY © Y Z © Z ÐY ß Z Ñ −w w A
0ÐÐY ß Z ÑÑ œ B − Y ∩ Z Þ ÐB Ñ Ä B ÐB Ñ Ä C any point   We claim that  and .ÐY ßZ Ñ ÐY ßZ Ñ ÐY ßZ Ñ

If , let .  Then if , we haveZ − œ Ð\ß Z Ñ − œ ÐY ß Z Ñ  a - A - -C ! !
w w

B œ B − Y ∩ Z © \ ∩ Z œ Z ÐB Ñ Ä C- -ÐY ßZ Ñ
w w

w w .  Therefore .
The proof that is similar.   ÐB Ñ Ä B ñ-

Example 2.7  The implication  in Theorem 2.6 is  for sequences.  Let Ð É Ñ \ œ Ò!ß Ó ∪ Ö ×false = =" "
‡

where   Let points in  have their usual neighborhoods and let a basic neighborhood= = ="
‡

" "Â Ò!ß ÓÞ Ò!ß Ó
of  be a set of the form , where   (= α = = = α =" "

‡ ‡
" " "Ð ß Ó  Ö × ∪ Ö ×  Þ In effect, the basic neighborhoods

of  and are identical except for replacing  by   or vice versa; it is as if  is a= = = = =" "" " "
‡ ‡ ‡

“shadow” of  which can't be separated from ).= =" "

This space is  Hausdorff, but we claim that a sequence in  has at most one limit.not Ð Ñ \α8

If  contains infinitely many terms , then let sup , soÐ Ñ  œ Ö À 5 œ "ß #ß ÞÞÞ× α α = α α =8 8 " 8 "5 5

that the subsequence  is in .  If and , then andÐ Ñ Ò!ß Ó Ð Ñ Ä Ð Ñ Ä Ð Ñ Äα α α " α # α "8 8 8 85 5

Ð Ñ Ä Ò!ß Ó Ò!ß Ó Xα # " # α α8 #5
 .  Therefore ,  are both in the closed set .  But  is  so a limit for

Ð Ñ œ Þα " #85
 must be unique: 

If only finitely many 's are less than , we can assume without loss of generality that for allα =8 "

8 − Ö ß ×Þ œ 8 Ð Ñ Ä,  It is easy to see that if  for only finitely many , then α = = α = α =8 " 8 " 8"
‡ ‡

"
 

only.  Similarly,  if  for only finitely many , then only  If  andα = α = α =8 8 " 8 ""
‡œ 8 Ð Ñ Ä Þ œ

α = α8 8"
‡œ 8 Ð Ñ each for infinitely many , then has no limit.

The next theorem tells us that nets are sufficient to describe the topology in any space\Þ

Theorem 2.8  Suppose . Then cl  iff there is a net  in  for which E © Ð\ß Ñ B − E Ð+ Ñ E Ð+ Ñ Ä BÞg - -

Proof   Suppose , where  is a net in .  For each ,  is eventually in  soÐ+ Ñ Ä B Ð+ Ñ E R − Ð+ Ñ R- - -aB

R ∩ E Á gÞ B − EÞ  Therefore cl
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 We can prove the converse because we can choose a directed set “as complicated as” the
neighborhood system of :  Suppose cl  and let , ordered by  inclusion.  ForB B − E œA aB reverse
- A - - A - -œ R − ß 0Ð Ñ œ + œ R ∩ EÞ œ R − œ R  let a point chosen in   If  and - ! ! !

then .  Therefore     + − R ∩ E © R ∩ E © R Ð+ Ñ Ä BÞ ñ- -! !

Example 2.9  In general, “sequences aren't sufficient” to describe the topology of a space . However\
we might ask whether something simpler than nets will do.  For example, suppose we consider
“transfinite sequences” that is, very  , where  is some ordinal.  It turns 0 À Ò!ß Ñ Ä \special nets α α
out that these are not sufficientÞ

Suppose Let the “upper right corner point”\ œ Ò!ß Ñ ‚ Ò!ß Ñ © X œ Ò!ß Ó ‚ Ò!ß ÓÞ : œ= = = =" ! " !
‡

Ð ß ÑÞ : − \ß \ : − X= =" !
‡ Then cl  but we claim that no transfinite sequence in  can converge to .

Let  and write .  We claim that    0 À Ò!ß Ñ Ä \ 0Ð Ñ œ ÐB ß C Ñ ÐÐB ß C ÑÑ ÄÎ : Ðα - - - - - no matter how large
an we use! α ÑÞ So ÐÐB ß C ÑÑ Ä : À- -

   ran  must be uncountable.Ð0Ñ

If ran  were countable,Ð0Ñ  then the set  would be countable andG œ ÖB À  ×- - α
" - α = " =œ ÖB À  ×  Þ Ð0Ñ © Ò!ß Ó ‚ Ò!ß Ñ ÐB ß C Ñsup   Then ran  and so could not- - -" !

converge to .:

   For every  set , sup :countable I © Ò!ß Ñ I α α

Since  well-ordered,  represents an ordinal , so there is an order isomorphismI I Ÿ" α
1 À Ò!ß Ñ Ä I Ÿ" " α for some .
 Certainly supI Ÿ Þα
 If sup ,  then  would be a transfinite sequence withÐIÑ œ 0 ‰ 1 À Ò!ß Ñ Ä \α "
countable range converging to  (since  does).  But we have shown that a net converging to : 0 :
must have uncountable range.  Therefore supI  Þα

   For each let  and sup  “ ” is the most we can7  ß I œ Ö  À C œ 7× œ I Ÿ Ð Ÿ= - α - α! 7 7 7-

   say since  might be uncountable).  For each  is in some so, for that , I  ß I  7   Þ7 7 7" α " - "
   Therefore sup   By the preceding paragraph, we conclude  forÖ À 7  × œ Þ œ- = α - α7 ! 7!

   some 7 Þ!

   Since ÐB ß C Ñ Ä : ÐB ß C Ñ Ä :Þ ÐB ß C Ñ Ä ß7- - - - - - - -, we conclude that  But ( ), so this−I −I "7 7! !
=

   is impossible. ñ

The definition of a subnet is analogous to the definition of a subsequence ( ).see Definition III.10.1
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Definition 2.10  Let  and  be directed sets  Suppose ,  .  Suppose that forA A 9 AQ 0 À Ä \ ÀQ Ä
each ,  there exists a  such that  whenever ,- A . 9 . - . .! ! ! !− − Q Ð Ñ    

  
then  is called a  of .  We write  and   Informally, the subnet0 ‰ 0 Ð Ñ œ 0Ð Ð ÑÑ œ B Þ9 9 . - 9 .subnet . -.

is .  The definition of subnet guarantees that  whenever ÐB Ñ Ð Ñ œ     Þ- .. 9 . - - . .! !

Note: an alternate definition for subnet is used in some books. It requires that

 1)  is :  if    then   and9 . . 9 . 9 .increasing " # " #Ÿ ß Ð Ñ Ÿ Ð Ñ

 2) is  in :  for each , there is a  for which 9 A - A . 9 . -cofinal ! ! ! !− − Q Ð Ñ   Þ

A subnet in the sense of this definition  also a subnet in the sense of Definition 2.10, but theis
definitions are .  Definition 2.10 is “more generous” it allows  subnetsnot equivalent more
because Definition 2.10 does not require  to be increasing.  For most purposes, the slight9
disagreement in the definitions doesn't matter.  However, the full generality of Definition 2.10
is required to develop the full duality between nets and filters that we discuss later.

We will state the following theorem, for now, without proof. The proof will be easier after we talk
about filter convergence.  For now, we simply want to use the theorem to highlight an observation in
Example 2.12.

Theorem 2.11  In if  is a cluster point of the net , then there is a subnet Ð\ß Ñß B ÐB Ñ ÐB Ñ Ä BÞg - -.

Proof  See Corollary 4.8 later in this chapter.

Example 2.12 ( ) In are nonnegative integers , all points exceptSee Example III.9.8  P œ ÖÐ7ß 8Ñ À 7ß 8 ×
Ð!ß !Ñ Ð!ß !Ñ Ð!ß !Ñ are isolated.  Basic neighborhoods of  are sets containing  and “most of the points
from most of the columns”  (where “most” means “all but finitely many”).
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Let  be an enumeration of .  Although is a cluster point of , we proved inÐB Ñ P  ÖÐ!ß !Ñ× Ð!ß !Ñ ÐB Ñ8 8

Example III.9.8 that  in  can converge to .  In particular,  nono sequence P  ÖÐ!ß !Ñ× Ð!ß !Ñ
sub  of  can converge to .  However, Theorem 2.11 implies that there is a  ofsequence subnetÐB Ñ Ð!ß !Ñ8

ÐB Ñ Ð!ß !ÑÞ8  that converges to 

This might seem surprising, but it simply highlights something is actually clear from the definition of
subnet:  even if a net is a sequence ( ), the directed set  in the definition of subnet  beA œ Q need not
.  Therefore a subnet of a sequence might not be a sequence.

3.  Filters

\ \ \ is the set of all sequences in , but the “set of all nets in ” makes no sense in ZFC.  We can put
an order  on  set  to create a directed set for example (using Zermelo's Theorem)  weŸ Ð ß Ÿ Ñ Àany A A
could let  be a well-ordering of .  Therefore there at least as many directed sets  as thereŸ Ð ß Ÿ ÑA A
are sets .  The “  in “  is a directed set ” is “too big” to be aA Aset” of all nets \ œ Ö\ À Ð ß Ÿ Ñ × Ð ßŸÑA

set in ZFC. This is not only an aesthetic annoyance; it is also a serious set-theoretic disadvantage for
certain purposes.

Therefore we look at an equivalent way to describe convergence, one which is strong enough to
describe the topology of any space  but which doesn't have this set-theoretic drawback.  The theory\
of filters does this, and it turns out to be a theory “dual” to the theory of nets that is, there is a natural
“back-and-forth” between nets and filters that converts each theorem about nets to a theorem about
filters and vice-versa.

Definition 3.1  A   in a set  is a nonempty collection of subsets of  such thatfilter Y \ \

   i)      g Â Y
   ii)    is closed under finite intersectionsY
   iii)  If  and ,  then .J − K ª J K −Y Y

A nonempty family  is called a  for  if  for some }.U Y Y Y U© œ ÖJ © \ À J ª F F −filter base

Assuming, as we have stated, that filters will provide an equivalent theory of convergence in a space
\ \, we see that there is no longer a set-theoretic issue.  The  in  makes perfectly goodset of all filters
sense: each filter , so the set of all filters in  is just a subset of .Y c c c c− Ð Ð\ÑÑ \ Ð Ð\ÑÑ

In a topological space , there is a completely familiar example of a filter  the neighborhood\ À ßaB

system at .  A base for this filter is what we have been calling a neighborhood base, .  In fact,  B U aB B

and  are what  inspired the general definitions of filter and filter base in the first place.UB

If we start with a filter , then a base  for a filter  must have certain properties:   is nonempty (orY U Y U
else ), and each is nonempty (or else ).  Moreover, if , , thenY U Y U Yœ g F − g − F F − ©" #

F ∩ F − F ∩ F ª F F − Þ" # " # $ $Y U so  (by definition of a base)  for some 

If, on the other hand, we start with any nonempty collection of nonempty sets in  such thatU \
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  whenever , , there is a  such that   (*)F F − F − F ∩ F ª F" # $ " # $U U

and define  for some , then  is a filter and  is a base for   ( ).   isY U Y U Y Yœ ÖJ À J ª F F − × check!
called is called the ;  it is the smallest filter containing .filter generated by U U

If we begin with a   of  in  nonempty collection nonempty sets with the finite intersection property,f \
then

   is a finite intersection of sets from  has property  (*)U fœ ÖF À F ×

so  is a base for a filter  called the ; it is smallest filter containing .U Y ffilter generated by f

There can be many neighborhood bases  for a neighborhood system in a space .  Similarly, aU aB B \
filter  can have many different filter bases .  In particular, notice that  itself is a filter base butY U Y 
usually we want to choose the simplest base possible.

Definition 3.2  A filter base   to  if for every , there is a  such thatU a Uconverges B − \ R − F −B

F © RÞ Ä BÞ In this case we write     (Since a filter   also a filter base, we have also just definedU Y is
the meaning of  .)Y Ä B

If is the filter generated by ,  then clearly  iff  .    (**)Y U U Y aÄ B ª B

The following theorem is very simple.  It is stated explicitly just to make sure that there are no
confusions.

Theorem 3.3  Let  be a filter in the space .   For any , the following are equivalent:Y \ B − \

 i)   Y Ä B
 ii)  Y aª B

 iii)  has a base  where . Y U U Ä B
 iv) Every base  for  satisfies U Y Uw w Ä BÞ

Proof   From Definition 3.2 and the observation (**) shows that i) ii) iii).Í Í

 iii) iv)   Suppose  is a base for  and that .  Then for each there is aÊ Ä B R − ßU Y U aB

F − R ª F F − FU U Y Y for which .  If is another base for  then, since ,  contains some setw 

F − Þ R ª F ª F ß Ä BÞ ñw w w wU U  Therefore so     

 iv) i)  because  is a base for .   Ê ñY Y

Example 3.4

 1)  Let .  If is a neighborhood base at , then In particular, B − Ð\ß Ñ B Ä BÞ Ä BÞg U U aB B B

 2) Suppose  is a filter in .  If  and  for all , then the collectionY Y\ E © \ E ∩ J Á g J −
Y f f∪ ÖE× œ  is a nonempty collection with the finite intersection property.  Therefore  generates a
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filter .   So: if  and  for all , we can enlarge  to a filter  that alsoY Y Y Y Y Yw wª E Â E ∩ J Á g J −
contains the set .E

 3) If , then  is a filter.  Since , we have .B − \ œ ÖE © \ À B − E× ª Ä B! ! B !Y Y a Y
!

The simplest base for  is  and .Y U Uœ ÖÖB ×× Ä B! !

     Suppose .  Then  so  cannot be enlarged to a filter  that also contains theF Â B Â FY Y Y!
w

set such an  would contain both  and , and therefore also contain , whichF  ÖB × F g œ ÖB × ∩ FY w
! !

is impossible.   ( )This also follows from Theorem 3.5, below.

    Therefore, is a  filter in .  A maximal filter is called an .Y maximal ultrafilter\

   For each  is called a . In general, it takesB − \ß œ ÖE © \ À B − E×! !Y trivial ultrafilter
some more work (and AC) to decide whether a set also contains “nontrivial” ultrafilters that is,\ 
ultrafilters not of this form. ( ).See Theorem 5.4 and the examples that follow

The next theorem gives us a simple characterization of ultrafilters. It is completely set-theoretic, not
topological.

Theorem 3.5   A filter  in  is an ultrafilter iff for every either  or Y Y Y\ E © \ß E − \ E − Þ

Proof Ð E © \ E Â E ª J J − J ∩ Ð\  EÑ Á gÊ Ñ If  and , then  is false for every , so   forY Y
all . Therefore the collection  has the finite intersection property, so J − œ ∪ Ö\ E×Y f Y f
generates a filter .   So if  is an ultrafilter, we must have  and therefore  Y Y Y Y Y Yw wª œ \ E − Þ
 Suppose that for every  either or  is in .  If  is a filter andÐ É Ñ E © \ß E \ E Y Y w

Y Y Y Y Y Y Yw w wª œ À E −  \ E −, then  for if , then which would mean
E ∩ Ð\ EÑ œ g − Þ ñY w   

Note: The proof shows that if a filter contains    , then  can be enlargedÐ Ê Ñ E \ EY Yneither nor
to a new filter containing either   whichever of the two you wish.Y w E \  E or

Definition 3.6  A point  is a  for a filter base  if  for every  andB − \ R ∩ F Á g R −cluster point U aB

every .  (Since a filter   also a filter base, we have also just defined a cluster point for a filterF − U Y is
Y .)

It is immediate from the definition that  is a cluster point of a filter base  iff  is in the closure ofB BU
each set in , that is, if and only if cl .U UB − Ö F À F − ×
Clearly, if , then  is a cluster point of  ( ).U UÄ B B explain!

Theorem 3.7  Suppose  is a filter in a space .  For , the following are equivalent:Y \ B − \

 i)   is a cluster point of B Y
 ii)  clB − Ö J À J − × Y
 iii)  there is a filter base  for  such that  is a cluster point of U Y UB
 iv) for every filter base  for ,  is a cluster point of .U Y UB
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Proof   It is clear from the definition and the following remarks that i) ii) iii).Í Í

 iii) iv ) Suppose  is a cluster point of  and  is another base for .  If Ê B F − ©U U Y U Yw w w

then  for some set because  is a base for .  But every neighborhood of  intersectsF ª F F −  Bw U U Y
F B F B, so every neighborhood of  also intersects .  Therefore  is a cluster point of .w wU

 iv) i)  This follows since  is a base for .    Ê ñY Y

Example 3.8

 1) Let .  Each real number  has a neighborhood  for whichY ‘œ ÖJ © À J ª Ò!ß "Ó× < R
R ªÎ Ò!ß "Ó R Â Þ ªÎ ÄÎ <Þ and therefore So  so Y Y a Y<

     If , then cl  for each so  is a cluster point of .< − Ò!ß "Ó < − E © E E − ß <Y Y
     If , then  is a neighborhood of  disjoint from Therefore< Â Ò!ß "Ó R œ  Ò!ß "Ó < Ò!ß "Ó − Þ‘ Y
< Ò!ß "ÓÞ is not a cluster point of .   So the set of cluster points of  is precisely the interval Y Y

 2) Let  have the usual topology.  is finite  is a filter ( ).   For Y  œ ÖE © À  E × check!
each , we have  and cl   Therefore  is not a cluster8 − J œ Ö8  "ß 8  #ß ÞÞÞ× − 8 Â J œ JÞ 8 Y
point of .  And since  has no cluster points, certainly does not converge.Y Y Y

 3)  Let  be a filter in a space .  If  and then and   SinceY Y Y Y a Y a\ Ä B Ä Cß ª ª ÞB C

g Â ß B C \Y every neighborhood of  must intersect every neighborhood of .  Therefore, if  is
Hausdorff, we must have , that is, .   (B œ C a filter in a Hausdorff space can have at most one limit In
fact,  is Hausdorff  every filter in  in  has at most one limit.  We could prove this directly,here\ \iff Y
and now (try it!).  But this fact follows later “for free” from Theorem 2.6 via the duality between nets
and filters: see Corollary 4.5 below.)

4.  The Relationship Between Nets and Filters

Nets and filters are dual to each other in a natural way it is possible to move back-and-forth between
them.  Although this back-and-forth process is not perfectly symmetric, it is still very useful because
the process preserves limits and cluster points.

Definition 4.1  Let  be a directed set.  For a net  in , we define its  Ð ß Ÿ Ñ ÐB Ñ \A Y- associated filter
Ð ÐB Ñ Ñor,   : :the filter generated by -

Let the  tail of the net, and let .   isX œ ÖB À − ß   × œ œ ÖX À − ×- . -. A . - - U - A Uth

nonempty since and each since   Moreover, if  and ,A - - - -Á gß X Á g B − X Þ    - - - $ " $ #

then .  Therefore the collection of tails  is a filter base andX ∩ X ª X œ ÖX À − ×- - - -" # $ U - A
the filter it generates is the associated filter of ÐB ÑÞ-
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Definition 4.2  For a filter  in , we define its  or,    Y Y\ Ð Ñ Àassociated net the net generated by

Let  and define  if .  Then  isA Y Aœ ÖÐBß J Ñ À B − J − × ÐBß J Ñ Ÿ ÐB ß J Ñ J ª J Ð ß Ÿ Ñw w w

directed.  ( )   The net defined by  is the associated net of .Why?) 0 À Ä \ 0ÐÐBß J ÑÑ œ BA Y

  Notice that  is not a poset: for example if , thenÐ ß Ÿ Ñ B Á B − J −A Yw

   and  but .ÐBß J Ñ   ÐB ß J Ñ ÐB ß J Ñ   ÐBß J Ñ ÐBß J Ñ Á ÐB ß J Ñw w w

If we begin with a filter , form its associated net, and then form its associated filter , we are backY Y w

to where we started:
 
  associated net associated filter Y Y Y{ {ÐB Ñ œ-

w

 To see this: a base for is the collection of tails ButY Aw
ÐBßJ ÑÖX À ÐBß J Ñ − ×Þ

 X œ Ö0ÐB ß J Ñ À ÐB ß J Ñ   ÐBß J Ñ œ ÖB À ÐB ß J Ñ   ÐBß J Ñ×ÐBßJ Ñ
w w w w w w w

  and , where   So theœ ÖB À B − J J © J J ß J − × œ ÖJ À J © J − × œ Þw w w w w w wY Y Y
 collection of tails is itself !Y

On the other hand, if we begin with a net , form its associated filter , and then form theÐB À − ×- - A Y
net associated with , we do  return to the original net Y not ÐB Ñ À-

  associated filter net associated to  ÐB Ñ Á ÐB Ñ- -{ {Y Y

 First of all, the net associated with  has for its directed setY
   But the problem runs even deeper than that:A Y Aw œ ÖÐBß J Ñ À B − J − × Á Þ

Consider the net in  with directed set , where  for all . The collection of tails isÐB Ñ B œ ! 88 8‘ 
U Y ‘œ ÖÖ!×× œ ÖE © À ! − E×, which generates the associated  (a trivial ultrafilter).  In
turn,  generates a net whose directed set  and in ,   is aY A Y Aœ ÖÐBßEÑ À B − E − × Ð!ß Ö!×Ñ
maximal element.  The directed set for the new net is not even order isomorphic to !

Nevertheless, the following theorem shows that this back-and-forth process between associated nets
and associated filters is good enough to be very useful for topological purposes.

Theorem 4.3  In any space ,\

 1)  is a cluster point of a net      is a cluster point of the associated filter .B ÐB Ñ B- iff Y
 2)   is a cluster point of a filter        is a cluster point of the associated net B B ÐB ÑY iff -

Proof   1)  is a cluster point of  iff  is frequently in every neighborhood of B ÐB Ñ ÐB Ñ B- -

             iff   for every tail  and every X ∩ R Á g X R −- - aB

            iff   is a cluster point of the filter baseB œ ÖX À − ×U - A-

            iff   is a cluster point of .B Y

 2) We use 1).  Given a filter , consider its associated net   By 1),  is a cluster point ofY ÐB ÑÞ B-

ÐB Ñ B œ Þ ñ-  iff is a cluster point of its associated filter .  But Y Y Yw w

 : if we had somehow proved part 2) first, and then tried to use 2) to prove part 1), weNotice
  would run into trouble we would end up looking at a net different from the one we started



399

 with.  The “asymmetry” in the back-and-forth process between nets and filters shows up here. .

Theorem 4.4  In any space ,\

 1) a net   iff its associated filter .ÐB Ñ Ä B Ä B- Y
 2) a filter     iff its associated net Y Ä B ÐB Ñ Ä BÞ-

Proof   The proof is left as an exercise.  As in Theorem 4.3, part 2) follows “for free” from 1) using the
duality between nets and filters. ñ

Corollary 4.5  A space  is Hausdorff iff every filter  has at most one limit in .\ \Y

Proof    The result follows immediately by duality:  use Theorem 4.4 and Theorem 2.6.     ñ

The following theorem shows how subnets and larger filters are related:  subnets generate larger filters
and vice-versa.

Theorem 4.6  Suppose  is a filter in  generated by some net .  (Y A\ 0 À Ä \ This is not a restriction
on  because every filter is generated by a net: for example, by its associated net.Y )

 1) Each subnet of  generates a filter 0 ªZ Y
 2)  Each filter  is generated by a subnet of .Z Yª 0

Proof    1) A base for  is , where  is the tail of  Suppose  and thatY - A - 9 AÖF À − × F 0Þ À Q Ä- -
th

0 ‰ À Q Ä \ 0 ÖG À − Q× G 0 ‰9 . . 9 is a subnet of . The filter base , where  is the  tail of ,. .
th

generates a filter .Z

Let .  Then  for some . Pick so that   Then theJ − J ª F − − Q   Ê Ð Ñ   ÞY - A . . . 9 . --0 0 ! ! !

subnet tail , so  is in the filter  generated by .G œ Ö0 ‰ Ð Ñ À   × © F © J J 0 ‰. -! !9 . . . Z 9!

Therefore .Y Z©
 
 2) Conversely, let  be a filter containing .  We claim  is generated by a subnet of .  LetZ Y Z 0
B G B G- - denote the  tail of .  We claim that  : ,  is a base for - U Z - A Z>2 0 œ Ö − − × À∩

U Y Z Y is clearly base for some filter  and  (since ).  On the otherw w© G G Bª ∩ -

hand, each , so each  so B G B- -− © − ©Y Z Z Y Z∩ w

Let ,  and ) .  (For each  thereQ œ ÖÐ Ñ À − ß ß − ß   0Ð œ B − × K ∩ F0 Z - 0 A 0 - 0G B G G B∩ ∩- 0 - -

is at least one such  because ). Order  by defining , ,  if0 0 0G B G B G B∩ ∩ ∩- - -Á g Q Ð Ñ Ÿ Ð Ñw w
w

- -w   Ÿ and .  It is easy to check that is transitive and reflexive.  In fact,G B G Bw ∩ © ∩-w -

ÐQß Ÿ Ñ is a directed set:

If , , we have . Since , we have- - - Zww w ww w  K œ K K −B B B- -ww w© ∩ ∩-

K Á g   0 Ñ œ B Kww ww∩ − ∩B B- -ww ww, so there exists a   such that ( . Thus0 - 0ww ww ww
0 ww

( , )  and  we have ( , ) ( , ) and0 0 0ww ww wwK − Qß K   Kww ∩ ∩ ∩B B B- -ww ww -

( , ) ( , ).0 0ww ww wK   K∩ ∩B B- -ww w
w

Define  by , .  Then  is a subnet of :9 A 9 0 0 9À Q Ä ÐÐ ÑÑ œ 0 ‰ 0G B∩ -
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Suppose .  Pick any  and any  such that ( ) .- A Z 0 - 0! ! ! ! !− −   0 œ B −G G B0 -! !! ∩
Let , )   If ,  in , then . 0 . 0 . 9 .! ! !œ Ð − QÞ œ Ð Ñ   Q Ð Ñ œG B G B! ∩ ∩- -!

0 0 -   ! !.

The filter generated by the subnet  has the set of tails a base. If , , we0 œ Ð Ñ − Q‰ ∩9 C G B. -
! !

. 0! ! !

claim that the tail = .  , since the sets of this form, as notedC. -! !
K ∩ F! If this is true, we are done

above, are a base for the filter .Z

G œ Ö0 ‰ Ð Ñ À   ×Þ − Q œ Ð ßK ∩ F Ñ   œ Ð Ñß. - -! !
9 . . . . . 0 . 0! ! !  If  and , G B! ∩

then , so .G G G∩ F © ∩ F ∩ F- ! !- - -! !
0 ‰ Ð Ñ œ 0Ð Ñ − K ∩ F ©9 . 0

Therefore G Þ. -! !© ∩ FG!

Conversely, if , then  for some .C C œ 0Ð Ñ œ B − ß  − K ∩ F! - 0!
0 0 A 0 -!

Then , )  and  so ( ) .. 0 . . 0 9 .œ Ð K − Q   C œ 0 œ 0 ‰ Ð Ñ − G! ∩ B0 .! !

  Therefore  G ª Þ ñ. -! !G! ∩ F

The remark following Definition 2.10 is relevant here.  To prove part 2) of Theorem 4.6: we need the
more generous definition of subnets to be sure that we have “enough” subnets to generate all possible
filters containing .  In particular, the subnet defined in proving part 2) is  a “subnet” using theY not
more restrictive definition for subnet.

Theorem 4.7  A point  is a cluster point of the filter  iff there exists a filter  suchB − \ ªY Z Y
that .Z Ä B

Proof  Ð Ê Ñ © Þ BIf such a filter  exists, then Therefore each neighborhood of  intersects eachZ a ZB

set in , and therefore, in particular, intersects each set in .  Therefore  is a cluster point of .Z Y YB

   If  is a cluster point of , then the set  and  is a filterÐ É Ñ B œ ÖR ∩ J À R − J − ×Y U a YB

base that generates a filter .  For  we have so ;  and for eachZ Y U Y ZJ − ß J œ \ ∩ J − ß ©
R − ß R œ R ∩\ − ß © Ä BÞ ña U a Z ZB Bwe have so  and therefore     

Corollary 4.8  B ÐB Ñ \ ÐB Ñ Ä BÞ is a cluster point of the net  in  iff  there exists a subnet - -.

( )This result was stated earlier, without proof, as Theorem 2.11.

Proof   B ÐB Ñ B is a cluster point of  iff  is a cluster point of the associated filter - Y
       iff there exists a filter  with Z Y Zª Ä B
       iff  has a subnet converging to .   ÐB Ñ B ñ-

Example 4.9  Think about each of the following parallel statements about nets and filters.  Which ones
follow “by duality” from the others?

 1) If  for all then     1 )  If  consists of all sets containing ,B œ +   ß +- - - Y!
w

      then ÐB Ñ Ä + Ä +
-

Y
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 2)  iff every subnet      2 )  If iff for every filter ÐB Ñ Ä + Ä + Ä + ª-
w Y Z Z Y

 converges to    +

 3) If a subnet of has cluster point     3 ) If  is a cluster point of  and ÐB Ñ +ß + ª ß-
w Z Z Y

 then  is a cluster point of  then  is a cluster point of+ ÐB Ñ + Þ- Y

5.  Ultrafilters and Universal Nets

Nets and filters are objects that can be defined in any  .  The same is true for ultrafilters andset \
universal nets.  No topology is needed  we want to talk about convergence, cluster points andunless
other ideas that involve “nearness.”  So many results in this section are purely set-theoretic.
 

Definition 5.1  An ultrafilter  in  is called  (or  if .   is called   (orh h h\ Á gfixed freetrivial) 
nontrivial) if .h œ g

For example )  the ultrafilter  is fixed (trivial).Ð Ñ œ ÖE © \ À : − E×see Example 3.4 Y

Theorem 5.2   For an ultrafilter  in , then the following are equivalent.h \

 i)   for some ,  : − \ œ ÖE © \ À : − E×h

 ii)   for some h œ Ö:× : − \

 iii)   is fixed that is, .h h Á g
  
Proof   It is clear that i) ii) iii)Ê Ê

 iii) i)  Suppose i) is false. Then  for every  ( ) so by Theorem 3.5,Ê ÖB× Â B − \h why?
\  ÖB× − B © Ö\  ÖB× À B − \× œ g ñh h for every .  Therefore .     
 

Example 5.3  If  is a filter and ,  might not be an ultrafilter.Y Y Y Á g

Let  be the filter in  generated by where   ThenY  ÖF À 8 − ×ß F œ Ö"× ∪ Ö5 À 5   8×Þ8 8 Y „   „œ F œ Ö"×Þ œ Ö#ß %ß 'ß ÞÞÞ× ©  F8œ"
∞

8 8 Since neither  nor  contains one of the sets ,
neither  nor  is in .  Therefore  is not an ultrafilter.„  „ Y Y

Y „ Y Y Y  „∪ Ö × ∪ Ö  × is a filter base that generates a filter  strictly larger than .  Similarly, w

generates a filter  strictly larger than .  Then  (because  and  cannot be in theY Y Y Y „  „ww w wwÁ 
same filter).  So  can be “enlarged” in at least two different ways.Y

Theorem 5.4   If  is a filter in , then  for some ultrafilter .Y Y h h\ ©
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Proof  Let is a filter and , ordered by inclusion.   is a nonempty poset sincec Z Z Z Y cœ Ö À ª ×
Y c Z α c Z c− Ö À − M× −..  Let  be a chain in . We claim that  .α α
 Clearly, and  is a filter: Z Y Zα αª à

   since each , and each set in  is nonempty. Z Z Zα α αÁ g Á g
  If , then both  are in a single filter .  ThereforeEßF − EßFZ Zα α!

  , so .   In addition, if , then , so  E ∩ F − E ∩ F − G ª E G − G − ÞZ Z Z Zα α α α! !
 

     
Therefore the chain   has an upper bound  in .  By Zorn's Lemma,  contains aÖ À − M×Z α Z c cα α
maximal element .   h ñ

Example 5.5   For each , there is a fixed (trivial) ultrafilter  It is the8 − œ ÖE © À 8 − E×Þ h 8

ultrafilter for which  By Theorem 5.2, the 's are  fixed ultrafilters in .  Thereh h 8 8œ Ö8×Þ the only
are also nontrivial (free) ultrafilters in  À

 Let   The collection { is a filter base andF œ Ö5 − À 5   8×Þ œ F À 8 − ×8 8 U 
  generates a filter .  By Theorem 5.4 there is an ultrafilter , andU Y h Yª
  h © F œ gÞ8œ"

∞
8

  is  ultrafilter containing .  If   and  are the sets of even and odd naturalh Y „ not the only
 numbers, then  and  are filter bases that generate filters and .  ThenU „ U  Y Y∪ Ö × ∪ Ö × w ww

 there are ultrafilters and    Since ,  and , weh Y h Y „ h  h „ w w ww ww w wwª ª Þ − − ∩ œ g
 have   Since  and , we know that  and , soh h U h U h h hw ww w ww w wwÁ Þ © © œ g œ g 
 and  are free ultrafilters.h hw w

It is a nice exercise to prove that  , then that is, ifif there is only one ultrafilter  containingh Y Y hœ À
Y Y is  an ultrafilter, then  can always be enlarged to an ultrafilter in more than one way.not

If  is a filter in , then , so there are  filters in .Y  Y c c  c c  − Ð Ð ÑÑ l Ð Ð ÑÑl œ # œ #at most # -i!

Comment without proof exactly: There are   different filters in .  In fact, there are 2  different#- -
ultrafilters in , and since  contains only countably many fixed ultrafilters , there are in fact  free  h8

-#
ultrafilters !

Theorem 5.6  An ultrafilter  in a space  converges to each of its cluster points.h \

Proof   If  is a cluster point of , then there is a filter  such that .  But  since  isB ª Ä B œh Z h Z Z h h
an ultrafilter.   ñ

Corollary 5.7  An ultrafilter  in a  space  has at most one cluster point.h X \#

We now define the analogue of ultrafilters for nets.

Definition 5.8  A net  in  is called  (or ) if for every ,   is eitherÐB Ñ \ E © \ ÐB Ñ- -universal ultranetnet
eventually in  or eventually in .E \ E
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For example, a net  which is eventually constant, say  for all is a universal net.  ItÐB Ñ B œ :   ß- - - -!

is referred to as a trivial universal net because its associated filter is the trivial ultrafilter
ÖE © \ À : − E×.

Theorem 5.9  In any  ,set \

 1) a net  is universal iff its associated filter is an ultrafilter, andÐB Ñ-
  2) a filter  is an ultrafilter iff  its associated net is universal.Y

Proof   1)   is universal iff for every ,  is eventually in  or ÐB Ñ E © \ ÐB Ñ E \ E- -

     iff for every ,   or  contains a tail of E © \ E \ E ÐB Ñ-
         iff for every , or  is in the associated filterE © \ E \ E
         iff the associated filter is an ultrafilter.

 2) We use duality.  For a given a filter , consider its associated net .Y ÐB Ñ-
By a),  is universal iff its associated filter  is an ultrafilter.  But .   ÐB Ñ œ ñ- Y Y Yw w

Corollary 5.10   In any space ,\

 1)  a subnet of a universal net is universal
  2) a universal net converges to each of its cluster points
  3) every net has a universal subnetÞ

Proof 1) If  is universal, then  generates an ultrafilter .  By Theorem 4.6, each subnet ÐB Ñ ÐB Ñ ÐB Ñ- - -h .

generates a filter .  So .   Because the filter associated to  is an ultrafilter,   isZ h Z hª œ ÐB Ñ ÐB Ñ- -. .

universal.

 2) If  is a cluster point of the universal net ,  then  is a cluster point of the associatedB ÐB Ñ B-

ultrafilter .   By Theorem 5.6   and therefore .h h Ä B ÐB Ñ Ä B-

 3) Let  be the associated filter for the net  and let  be an ultrafilter containing .  ByY h YÐB Ñ-
Theorem 4.6(2),   is generated by a subnet  of .  Since the filter associated with is anh ÐB Ñ ÐB Ñ ÐB Ñ- - -. .

ultrafilter,  is a universal net.   ÐB Ñ ñ-.

Corollary 5.11  A universal net in a  space has at most one cluster point.X#

Both nets and filters are sufficient to describe the topology in any space, so we should be able to use
them to describe continuous functions.

Theorem 5.12  Suppose  and  are topological spaces,  and .  The following are\ ] 0 À \ Ä ] + − \
equivalent:

 1)  is continuous at 0 +
 2) whenever a net  in , then  in ÐB Ñ Ä + \ Ð0ÐB ÑÑ Ä 0Ð+Ñ ]- -

 3) whenever a universal net  in , then  in ÐB Ñ Ä + \ Ð0ÐB ÑÑ Ä 0Ð+Ñ ]- -

 4) whenever  is a cluster point of a net  in , then  is a cluster point of + ÐB Ñ \ 0Ð+Ñ Ð0ÐB ÑÑ- -
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    in ]
 5) whenever a filter base in ,  then the filter base U U UÄ + \ 0Ò Ó œ Ö0ÒFÓ À F − × Ä 0Ð+Ñ
         in ]
 6) whenever an ultrafilter in ,  then the filter base in h hÄ + \ 0Ò Ó Ä 0Ð+Ñ ] Þ
 7) whenever  is a cluster point of a filter base  in ,  then  is a cluster point of+ \ 0Ð+ÑU
   the filter base  in 0Ò Ó ] ÞU

Proof 1) 2) Suppose  is a neighborhood of .  Since  is continuous at , there is aÊ Z 0Ð+Ñ 0 +
neighborhood of  such that   If , then  is eventually in  so  isY + 0ÒY Ó © Z Þ ÐB Ñ Ä + ÐB Ñ Y Ð0ÐB ÑÑ- - -

eventually in   Therefore Z Þ Ð0ÐB ÑÑ Ä 0Ð+ÑÞ-

 2) 3)  This is immediate.Ê

 3) 4) If  is a cluster point of , then there is a subnet Let  be aÊ + ÐB Ñ ÐB Ñ Ä +Þ ÐB Ñ- - -. ./

universal subnet of . Then  and by iii),   Then has a subnetÐB Ñ ÐB Ñ Ä + Ð0ÐB ÑÑ Ä 0Ð+ÑÞ Ð0ÐB ÑÑ- - - -. . ./ /

converging to so  is a cluster point of 0Ð+Ñß 0Ð+Ñ Ð0ÐB ÑÑÞ-

 4) 1) Suppose  is not continuous at .  Then there is a neighborhood of such thatÊ 0 + Z 0Ð+Ñ
0ÒRÓ ©Î Z R − Þ œ 1 À Ä \ for every  Let , ordered by reverse inclusion, and define a net a A a A+ +

by a point in  for which    Since ,   has a cluster point1ÐRÑ œ B œ R 0ÐB Ñ Â Z Þ ÐB Ñ Ä + ÐB ÑR R R R

at .  But the net  does not have a cluster point at  because  is  in .+ Ð0ÐB ÑÑ 0Ð+Ñ Ð0ÐB ÑÑ ZR R never
Therefore 4) fails.

Knowing that 1)-4) are equivalent, we could show that each of 2)-4) is equivalent to its filter
counterpart e.g., that 2) 5), etc.  This involves a little more than simply saying “by duality” Í
because, in each case, the function  also comes into the argument.   Instead, for practice, we will0
show directly that 1) 5) 6) 7) 1).Ê Ê Ê Ê

It is easy to check that if  is a filter base in , then  is a filter base in .U U U\ 0Ò Ó œ Ö0ÒFÓ À F − × ]

 1) 5) Suppose  in  and let If is any neighborhood of in ,Ê U UÄ + \ 0ÒFÓ − 0Ò ÓÞ R 0Ð+Ñ ]
then by continuity  is a neighborhood of  in .  Therefore  for some , so0 ÒRÓ + \ 0 ÒRÓ ª F F −" " U
R ª 0Ò0 ÒRÓÓ ª 0ÒFÓ Þ 0Ð Ñ Ä 0Ð+ÑÞ"  Therefore U

 5) 6) This is immediate.Ê

 6) 7) Suppose  is a cluster point of the filter base .  We can choose an ultrafilter Ê + ªU h U
with .  By 6) , .  Therefore the filter  generated by converges to , soh h h hÄ + 0Ò Ó Ä 0Ð+Ñ 0Ò Ó 0Ð+Ñw

h a U h U aw w
0 Ð+Ñ 0Ð+Ñª 0Ò Ó © 0Ò Ó 0Ð+Ñ.  Since , each set in  intersects every set in .  Therefore  is a

cluster point of .0Ò ÓU

 7) 1) Suppose  is not continuous at .  Then there is a neighborhood  of such thatÊ 0 + Z 0Ð+Ñ
0ÒRÓ ©Î Z R − R  0 ÒZ Ó Á g R − Þ for all , that is,  for all   The collectiona a+ +

"

U a Uœ ÖR  0 ÒZ Ó À R − × + 0Ò Ó"
+ is a filter base ( ) that has a cluster point at .  However  doeswhy?

not cluster at  since no set in  intersects .   0Ð+Ñ 0Ò Ó Z ñU

Corollary 5.13  Let  be a net in the product .  Then  in  iffÐB Ñ \ œ Ö\ À − E× ÐB Ñ Ä B \- α - α
(  in  for each .1 1 αα - α αÐB ÑÑ Ä ÐBÑ \ − E
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Proof   If , then by continuity  for every .ÐB Ñ Ä B − \ Ð ÐB ÑÑ Ä ÐBÑ − \ − E- α - α α1 1 α

Conversely, suppose  for every  and let be a basicÐ ÐB ÑÑ Ä ÐBÑ Y œ  Y ßY ß ÞÞÞß Y 1 1 αα - α α α α" # 8

open set containing  in .  For each  we have .  Therefore weB \ 3 œ "ß ÞÞÞß 8 Ð ÐB ÑÑ Ä ÐBÑ − Y1 1α - α α3 3 3

can choose a so that  when .  Pick , ... , .  If , we have- A 1 - - - - - - -3 3 " 8
‡ ‡− ÐB Ñ − Y      α - α3 3 

1 - -α - α - -3 3
ÐB Ñ − Y 3 œ "ß ÞÞÞß 8 B − Y   ÐB Ñ Ä BÞ ñ for each .  Therefore for  so ‡

6.  Compactness Revisited and The Tychonoff Product Theorem

With nets and filters available, we can give a nice characterization of compact spaces in terms of
convergence.

Theorem 6.1  For any space , the following are equivalent:\

 1)  is compact\
 2)  if  is a family of closed sets with the finite intersection property, then Y Y Á g
 3) every filter  has a cluster pointY
 4) every filter can be enlarged to a filter that converges
 5) every net has a cluster point
 6) every net has a convergent subnet
 7) every universal net converges
 8) every ultrafilter converges.

Proof  We proved earlier that 1) and 2) are equivalent ( ).see Theorem IV.8.4

2) 3) If  is a filter in , then  has the finite intersection property, so cl  is aÊ \ Ö J À J − ×Y Y Y
family of  sets also with the finite intersection property. By ii),  cl  so  is aclosed b B − Ö J À J − × B Y
cluster point of .Y

3) 4)   If  is a filter, then  has a cluster point  so, by Theorem 4.7, there is a filter  suchÊ B ªY Y Z Y
that .Z Ä B

4) 5)  If  is a net, consider the associated filter .  By 4) there is a filter  whereÊ ÐB Ñ ª- Y Z Y
Z ZÄ B − \ ÐB Ñ ÐB Ñ Ä B.   is generated by a subnet  and by duality, .- -. .

 
5) 6)    If  has a cluster point , then by Corollary 4.8,  there is a subnet Ê ÐB Ñ B ÐB Ñ Ä BÞ- -.

6) 7)   If  is a universal net, then 6) gives that  has a subnet that converges to a point .Ê ÐB Ñ ÐB Ñ B- -

Then  is a cluster point of   Since is universal,   by Corollary 5.10.B ÐB ÑÞ ÐB Ñ ÐB Ñ Ä B- - -

7) 8)    This is immediate from the duality between universal nets and ultrafilters (Theorems 5.9Ê
and 4.4)
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8) 1)  Suppose  is not compact and let   be an open cover with no finiteÊ \ œ ÖY À − E×h αα

subcover.  Then for any , ,..., , ; so, by complements,α α α" # 8 − E \ Á Y ∪ Y ∪ ÞÞÞ ∪ Yα α α" # 8

g Á Ð\  Y Ñ ∩ ÞÞÞ ∩ Ð\  Y Ñ œ Ö\  Y À − E×α α α" 8
.  Therefore  is a collection of closed setsf α

with the finite intersection property.  The set of all finite intersections of sets from  is a filter basef
which generates a filter , and we can find an ultrafilter .Y i Yª
     Every point  is in  for some  so cl Therefore  is not aB Y ß B Â \  Y œ Ð\  Y ÑÞ Bα α αα
cluster point of .  In particular, this implies .  Since  was arbitrary, this means  does noti i iÄÎ B B
converge.    ñ

Theorem 6.1 gives us a fresh look at the relationship between some of the “compactness-like”
properties that we defined in Chapter IV:

      is compact  iff           is sequentially compact   iff\ \
   every  has a convergent       every  has a convergent net subnet sequence subsequence

          (Theorem 6.1)                                     (Definition IV.8.7)
    
       à á

     is countably compact   iff\
      every sequence has a cluster point (Theorem IV.8.10)   iff
       every  has a convergent (Corollary 4.8)sequence subnet 

It is now easy to prove that every product of compact spaces is compact.

Theorem 6.2 (Tychonoff Product Theorem)   Suppose     is compact iff\ œ Ö\ À − E× Á gÞ \ α α
each   is compact.\α

Proof   For each ,  so if  is compact, then each  is compact.α 1\ œ Ò\Ó \ \α α α

Conversely, suppose each  is compact and let  be a universal net in .\ ÐB Ñ \ œ Ö\ À − E×α - α α
For each ,  is a universal net in  (  α 1Ð ÐB ÑÑ \α - α Check: if , then  is eventually in  orE © \ ÐB Ñ ÒEÓα - α1

"

1α α α
"Ò\  EÓ E \ EÞ \, so eventually in  or    Ð ÐB ÑÑ1α -  ) But is compact, so by Theorem 6.1

Ð ÐB ÑÑ Ä D − \ Þ D œ ÐD Ñ − \ ÐB Ñ Ä D1α - α α α -some point   Let .  By Corollary 5.13, .  Since every
universal net in  converges,  is compact by Theorem 6.1.    \ \ ñ

Remark:  A quite different approach to the Tychonoff Product Theorem is to show first that a space \
is compact iff every open cover by basic open sets has a finite subcover. This is called thesub
Alexander Subbase Theorem and the proof is nontrivial: it involves an argument using Zorn's Lemma
or one of its equivalents.

After that, it is fairly straightforward to show that any cover of   by sets of\ œ Ö\ À − E× α α
the form  has a finite subcover See Exercise E10.1α α

"ÒY Ó .   
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At this point we restate a result which we stated earlier but without a complete proof  (Corollary
VII.3.16).

Corollary 6.3  A space  is Tychonoff iff it is homeomorphic to a subspace of a compact Hausdorff\
space.  ( )In other words, the Tychonoff spaces are exactly the subspaces of compact Hausdorff spaces.

Proof  A compact Hausdorff space is , and therefore Tychonoff.  Since the Tychonoff property isX%

hereditary,  every subspace of a compact  space is Tychonoff.X#

Conversely, every Tychonoff space  is homeomorphic to a subspace of some cube .  This cube\ Ò!ß "Ó7

is Hausdorff and it is compact by the Tychonoff Product Theorem.   ñ

Remark  Suppose  is embedded in some cube   To simplify notation, assume .\ Ò!ß "Ó Þ \ © Ò!ß "Ó7 7

Then cl is a compact  space containing  as a dense subspace and  is\ © \ œ O © Ò!ß "Ó Þ O X \ O7
#

called a  of .  Since every Tychonoff space can be embedded in a cube, we havecompactification \
therefore shown that every Tychonoff space   a compactification.\ has

Conversely, if   a compactification of , then  is Tychonoff and its subspace  is alsoO \ O \is
Tychonoff.  Therefore .\ \ has a compactification iff  is Tychonoff

Our proof of the Tychonoff Product Theorem used the Axiom of Choice (AC) in the form of Zorn's
Lemma (to get the necessary universal nets or ultrafilters).  The following theorem shows that, in fact,
the Tychonoff Product Theorem and AC are equivalent.  This is perhaps somewhat surprising since AC
is a purely set theoretical statement while Tychonoff's Theorem is topological.  On the other hand, if
“all mathematics can be embedded in set theory” then every mathematical statement is purely set
theoretical.

Theorem 6.5  (Kelley, 1950)  The Tychonoff Product Theorem implies the Axiom of Choice  (so the
two are equivalent).

Proof   Suppose is a collection of nonempty sets.  The Axiom of Choice is equivalent toÖ\ À − E×α α
the statement that   ( ).

α α−E\ Á g see Theorem 6.2.2

Let  where  and give  the very simple topology ] œ \ ∪ Ö:× : Â \ ] œ Ö] ß Ö:×ß g×Þα α α α α αα


−E g
Then is compact, so  is compact by the Tychonoff Product Theorem.] ] œ ]α αα


−E

Ö:× ] \ ] œ Ö Ò\ Ó À − E× is open in , so  is closed in .  Therefore  is a family of  setsα α α ααY 1 α" closed
in .  We claim that  has the finite intersection property.] Y

Suppose .  Since the 's are nonempty, there exist points α α α" # 8ß ß ÞÞÞß − E \ B − \ ß ÞÞÞßα α α" "

B − \α α8 8 .

 Define  by:0 À E Ä ]
α α−E

  for , 
if 
if , ,...,

α α
α α
α α α α

− E 0Ð Ñ œ
B œ
: Á α3 3

" # 8

      weTo be more formal since this is the crucial set-theoretic issue in the argument 
       :can formally and precisely define  in ZF by0
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 0 œ ÖÐ ß CÑ − E ‚ ] À Ð œ • C œ B Ñ ” ÞÞÞ ” Ð œ • C œ B Ñα α α α α
α α α α−E " 8" 8

     ” ÐÐ Á Ñ • ÞÞÞ • Ð Á ÑÑ • C œ :Ñ×α α α α" 8

    
 Then 0 − Ò\ Ó ∩ ÞÞÞ ∩ Ò\ ÓÞ1 1α αα α" 8" 8

" "

Since  has the finite intersection property and is compact, .  If ,  thenY Y Y] Á g 1 − 
1 − \ \ Á g ñ 

α αα α−E −E and therefore .  

If  and any 's are noncompact, then  is noncompact.  And we note that if  \ Á g \ \α α α infinitely
many 's are noncompact, then  is “dramatically” noncompact as the following theorem\ \α α
indicates.

Theorem 6.6  Let .  If infinitely many of the 's are not compact, then\ œ Ö\ À − E× Á g \ α αα
every compact closed subset of  is nowhere dense.  (\ Thus, all closed compact subsets of  are “very\
skinny” and “far from” being all of .\ )

Proof   Suppose  is a compact closed set in  and that  is  nowhere dense. Then there is a pointF \ F not
B ß ÞÞÞß B −  Y ß Y ß ÞÞÞ Y  © Ð FÑ œ F © FÞ and indices , such that int cl int   Thenα α α" # 8 α α α" # 8

1 α α α α α α α αα α αÒFÓ œ \ Á ß ÞÞÞß \ Á ß ÞÞÞß ñ for , , so  is compact if , .   " # 8 " # 8

7.  Applications of the Tychonoff Theorem

We have already used the Tychonoff Theorem in several ways (see, for example, Corollary 6.3 and the
remarks following.)  It's a result that is useful in nearly all parts of analysis and topology, although its
full generality is not always necessary.  In this section we sketch how it can be used in more
“unexpected” settings.  The following examples also provide additional insight into the significance of
compactness.

The Compactness Theorem for Propositional Calculus

Propositional calculus is a part of mathematical logic that deals with expressions such as , ,: • ; : ” ;
: Ê ; µ : Ð: Ê ;Ñ ” < :ß ;ß <ß ÞÞÞ, , , etc.  Letters such as   are often used to represent  “propositions”
that can have “truth values” T (true) or F (false). These letters are the “alphabet” for propositional
calculus.  For example, we could think of  as representing the (false) proposition “ ” or the: #  # œ &
(true) proposition “ ”.  However,  could not represent anaB − ÐB   ! Ê bC − ÐC œ BÑÑ :‘ ‘ #

expression like “ ”, because this expression has no truth value: it contains a “free variable” .B œ & B

In propositional calculus, propositions  are thought of as “atoms” that is, the internal structure:ß ;ß ÞÞÞ 
of the propositions  (such as variables and quantifiers) is ignored.  Propositional calculus deals:ß ;ß ÞÞÞ
with “basic” or “atomic” propositions such as , with compounds built up from them such as:ß ;ß ÞÞÞ
Ð: ” ;Ñ µ Ð µ : ” ;Ñ and , and with the relations between their truth values.  We want to allow the
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possibility of infinitely many propositions, so we will use , ... , , ...  as our alphabet instead of theE E" 8

letters  that one usually sees in beginning treatments of propositional calculus.:ß ;ß ÞÞÞ

Here is a slightly more formal description of propositional calculus.

Propositional calculus has an  .  We will assume  is countable,alphabet T Tœ ÖE ßE ß ÞÞÞß E ß ÞÞÞ×" # 8

although that restriction is not really necessary for anything we do.  Propositional calculus also has
connective symbols:   ( ,  ) , , and” µ Þ

Inductively we define a collection  of  (called , for short) that are thej well-formed formulas wffs
“legal expressions” in propositional calculus:

   1) for each ,  is a wff8 E8

   2) if  and  are wffs, so are  and .9 < 9 < 9Ð ” Ñ µ

For example, ( )  and  are wffs but the string of symbols ( A )Ð E ” E ” µ E Ñ µ ÐE ” E Ñ ” ” ”" # % " % $$

is not a wff.  If we like, we can add additional connectives  and  to our propositional calculus• Ê ß
defining them as follows:

 Given wffs  and ,9 <

      and9 < 9 <• œ µ Ð µ ” µ Ñ
   .9 < < 9Ê œ ” µ

Since and can be defined in terms of  and , it is simpler and involves no loss to develop the• Ê ” µ
theory using just the smaller set of connectives.

A  is a function  that assigns a truth value to each  More formally,truth assignment = E Þ8
= À Ä ÖX ß J× = − ÖX ß J× œ GÞ GT , so   We give the product topology.  By the Tychonoffi!

Theorem,  is compact (in fact, by Theorem VI.2.19,  is homeomorphic to the Cantor set).G G

A truth assignment  can be used to assign a unique truth value to  wff in , that is, we can= every j
extend  to a function  as follows:= = À Ä ÖX ß J× j

 For any wff  we define:5
  
   if , then 5 5 5œ E = Ð Ñ œ =Ð Ñ

8

   

   if , then (
if  (  or  
otherwise

5 9 < 5
9 <

œ ” = Ñ œ X = Ñ œ X = Ð Ñ œ X 

J
   if , then 

if  (
if  (

5 9 5
9
9

œ µ = Ð Ñ œ X = Ñ œ J

J = Ñ œ X
  
We say that a truth assignment    if  .  A set of wffs  is called  if= = Ð Ñ œ Xsatisfies a wff satisfiable5 5 D
there exists a truth assignment  such that  satisfies  for  .= − ÖX ß J× = −i! 5 5 Devery

For example,
   is satisfiable   (D œ ÖE ßE ” E ßE ×" " # # We can use any  for which=
          =ÐE Ñ œ =ÐE Ñ œ XÑ" #
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   ( )  is not satisfiable (D œ Ö E ß µ E ” µ E ×" " # If , then=ÐE Ñ œ X"

         ( ( ) )= µ E ” µ E Ñ œ J
" #

Theorem 7.1 (Compactness Theorem for Propositional Calculus)  Let  be a set of wffs.  If everyD
finite subfamily of  is satisfiable, then  is satisfiable.D D

Proof Let  and suppose that every finite subset of  is satisfiable.  Then for eachG œ ÖX ß J×i! D
5 D 5− E œ Ö= − G À = × Á g E G,   satisfies . We claim that  is  in :5 5 closed

 Suppose .  We need to produce an open set  containing  for which = Â E Y = Y ∩ E œ gÞ5 5

 
 For a sufficiently large , the list  will contain all the letters that occur in .8 E ß ÞÞÞß E" 8 5
 Let  , .  In other words,  isY œ Ö> − GÀ > œ = 3 œ "ß ÞÞÞß 8× œ Ö= × ‚ ÞÞÞ ‚ Ö= × ‚ ÖX ß J× Y3 3 " 8

i!

 the set of truth assignments that  with  for all the letters that may occuragree = E ß ÞÞÞß E" 8

 in .  Since  fails to satisfy , each  also fails to satisfy , so .5 5 5 5= > − Y − Y © G E5

The 's have the finite intersection property in fact, this is precisely equivalent to saying that everyE 5

finite subset of  is satisfiable.  Since  is compact,  , i.e.,  is satisfiable.   D 5 D DG ÖE À − × Á g ñ 5
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If we assume the Alexander Subbase Theorem (see the remarks following Theorem 6.2, as well as
Exercise E10 ), then we can also prove that the Compactness Theorem 7.1 is  to theequivalent
statement that is compact.G œ ÖX ß J×i!

Suppose the Compactness Theorem 7.1 is true.  To show that  is compact it is sufficient, byG
the Alexander Subbase Theorem, to show that every cover of  by basic open sets has aG sub
finite subcover.  Each subbasic set has the form  or .1 18 8

" "ÒÖX×Ó ÒÖJ×Ó

Taking complements, we see that it is sufficient to show that:

 if  is any family of closed sets with the finite intersection property and each set in Y Y
 has form [{ [  or [ [ , then .G  X×Ó œ ÖJ×Ó G  ÖJ×Ó œ ÖX×Ó Á g1 1 1 1 Y8 8 8 8

" " " " 
Let  be any such family.  For each , define a wffY α αœ ÖJ À − E× − Eα

 
if  [
if  [

5
1

1
α

α

α
œ

E J œ ÖX×Ó

µ E J œ ÖJ×Ó
 8 8

"

8 8
"

Clearly,  is satisfied precisely by the truth assignments in .5α αJ

Let .  Since the 's have the finite intersection property, any finite subsetD 5 αœ Ö À − E× Jα α

of  is satisfiable.  By the Compactness Theorem,  is satisfiable,  so .    D D Y Á g ì

Note: If the propositional calculus is allowed to have an uncountable alphabet of cardinality , then7
the compactness theorem is equivalent to the statement that  is compact; the proof requiresÖX ß J×7

only minor notational changes.

A “map-coloring" theorem

Imagine that  is a (geographical) map containing infinitely many countries ,  .Q G G ß ÞÞÞß G ß ÞÞÞ" # 8

A   (red, white, blue, and green, say) is a functionvalid coloring  of with 4 colors- Q

   - À ÖG ßG ß ÞÞÞß G ß ÞÞÞ× Ä ÖVß[ ßFßK×" # 8

such that no two adjacent countries are assigned the same color.

Intuitively, if  doesn't have a valid covering, it must be because some “finite piece” of the map Q Q
has a configuration of countries for which a valid coloring can't be done.  That is the content of the
following theorem.

Theorem 7.2  Suppose  is a (geographical) map with infinitely countries .  If everyQ G ß ÞÞÞß G ß ÞÞÞ" 8

finite submap of  has a valid coloring,  then  has a valid coloring.  (Q Q Any reasonable definition of
“adjacent” and “submap” will work in the proof.)

Proof Consider set of all colorings  with the product topology.  For each finiteG œ ÖVß[ ßFßK×i!

submap , let  is a valid coloring of   We claim that  is closed in J Z œ Ö- − G À - J× Á gÞ Z GÞJ J
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Suppose . We need to produce an open set  with   If  is large- Â Z Y - − Y © G  Z Þ 8J J

enough, the list  will include all the countries in the submap .  Then the open setG ß ÞÞÞG J" 8

   Y œ Ö-ÐG Ñ× ‚ ÞÞÞ ‚ Ö-ÐG Ñ× ‚ ÖVß[ ßFßK×
"

!
8

i

works any coloring in is invalid because it colors the countries in  the same way  does. Y J -

If  and  are finite submaps of , then so is .  Since  has a valid coloring byJ J Q J ∪ J J ∪ J" # " # " #

hypothesis,  Therefore a finite submap of  has the finiteZ © Z ∩ Z Á gÞ œ ÖZ À J Q×J ∪J J J J" # " #
Y

intersection property.   Since is compact,  , and any  is a valid covering of the wholeG Á g - − Y Y
map .    Q ñ

( It is clear that a nearly identical proof would work for any finite number of colors and for maps with
uncountably many countries.)
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Exercises
 
E1.  Let  be a topological space and For each pick a point   If we order \ + − \Þ R − ß B − RÞa a+ R +

by reverse inclusion, then  is a net in .  Prove that ÐB Ñ \ ÐB Ñ Ä +ÞR R

E2. a) Let  be an uncountable  in which each element has only countably manyÐGß Ÿ Ñ chain
predecessors.   Suppose  and that  for each .  Show that the net  does not0 À G Ä 0Ð Ñ  ! − G 0‘ - -
converge to  in .! ‘

       b) Give an example to show that part a) is false if  is an uncountable  in which eachÐGß Ÿ Ñ poset
element has only countably many predecessors.

  b) Is it possible to have a net  and that  for each ?  Is it possible that 0 À Ò!ß Ñ Ä 0Ð Ñ  ! 0= ‘ - -#

converges to  in ?   ( .)! ‘ Recall that  denotes the first ordinal with  predecessors=α αi

E3.  Suppose  is a compact Hausdorff space and that ,  is a directed set.  For each , let\ Ð Ÿ Ñ −A - A
E E © E Ÿ- - - be a nonempty closed subset in  such that  iff .  Prove that\ # " - -" #ÖE À − × Á gÞ- - A

E4. a) Let  be a net in a space and write  For each , let0 À Ä \ \ 0Ð Ñ œ B Þ −A - α A-

X œ ÖB À   œ B − \ ÐB Ñα - -- α α} “the  tail of the net.”  Show that a point  is a cluster point of  iffth

B − Ö X À − ×Þ cl α α A

     b) Suppose  is a cluster point of the net  a product { .  Show that for each ,B ÐB Ñ \ À − E×- α α α
1 1α α α -ÐBÑ − \ ÐB ÑÑÞ is a cluster point of the net (

      c)  Give an example to show that the converse to part b) is false.

     d)  Let  be a metric space and  a function given by .  Show thatÐ\ß .Ñ 0 À Ò!ß Ñ Ä \ 0Ð Ñ œ B= α" α

the net  converges iff  is eventually constant.ÐB Ñ ÐB Ñα α

E5.  a) Suppose  is infinite set with the cofinite topology.  Let  be the filter generated by the filter\ Y
base consisting of all cofinite sets.  To what points does  converge?Y
        b) Translate the work in part a) into statements about nets.

E6.  Show that if a filter  is contained in a unique ultrafilter , then .Y h Y hœ
( )Thus, if  is not an ultrafilter, it can enlarged to an ultrafilter in more than one way.Y

E7.  a) State and prove a theorem of the form:    Suppose  is a point in a space .   Then  is anB \ aB

ultrafilter  ....Í

       b) Prove or disprove: Suppose  and that  is a  family of subsets of  with\ Á g \Y maximal
the finite intersection property.  Then  is an ultrafilter.Y
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E8.  a)  Let  be a filter in a set .  Prove that  is the intersection of all ultrafilters containing .Y Y Y\

     b) Let  be an ultrafilter in  and suppose that .  Prove that at least one  musth h\ E ∪ ÞÞÞ ∪ E − E" 8 3

be in .  (h This is the filter analogue for a fact in ring theory: in a commutative ring with a unit, every
maximal ideal is a prime ideal.)

      c)  Give an example to show that part b) is not true for infinite unions.

      d) “By duality,” there is a result similar to b) about universal nets.  State the result and
prove it directly.

E9.  Let   be a free ultrafilter in  and let , where .  Define a topology  on  byh  D  5 5  g Dœ ∪ Ö × Â
g  5 hœ ÖS À S © S œ Y ∪ Ö × Y − ×  or   where 

 a) Prove that  is T  and that  is dense in .D  D%

 b) Prove that a free ultrafilter  on  cannot have a countable base.h 
Hint: Since  is free, each set in  must be infinite. Why?h h

    c) Prove that no sequence in  can converge to  (and therefore there can be no countable 5
neighborhood base at  in )5 D
(Hint: Work you did in b) might help.)

Thus, is another example of a countable space where only one point is not isolated and which is notD
first countable,  See the space  in Example III.9.8.P

 d) How would the space  be different if  were a fixed ultrafilter?D h

Note: if  is a free ultrafilter on  and , then the corresponding spaces  and  may not beh  h h D Dw w wÁ
homeomorphic: the neighborhood systems of  may look quite different.  In this sense, free ultrafilters5
in  do  all “look alike.” not

E10.  Suppose  has a some property .  is called a -  topology (or -Ð\ß Ñ T T Tg g maximal minimal
topology) if any larger (smaller) topology on  fails to have property .  Prove that if  is a\ T Ð\ß Ñg
compact Hausdorff space, then  is maximal-compact and minimal-Hausdorff.  (g Compare Exercise IV
E23.)
          In one sense, this “justifies” the choice of the product topology over the box topology: for a
product of compact Hausdorff spaces, a larger topology would not be compact and a smaller one
would not be Hausdorff.  The product topology is “just right” to ensure that the property “compact
Hausdorff” is productive.

E11. Show that the map coloring Theorem 7.2 is  to the statement that  isequivalent ÖVß[ ßFßK×i!

compact.
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E12.  A family  of subsets of  is called  if it does not cover , and  is called U U\ \inadequate finitely
inadequate if no finite subfamily covers .\

 a) Use Zorn's Lemma to prove that any finitely inadequate family  is contained in a U maximal
finitely inadequate family.

 b) Prove (by contradiction) that a  finitely inadequate family  has the followingmaximal U
property:  if  are subsets of  and then at least one set G ß ÞÞÞß G \ G ∩ ÞÞÞ ∩ G − ß G − Þ" 8 " 8 3U U

 c) The following are equivalent (Alexander's Subbase Theorem)

  i) has a subbase  such that each cover of  by members of  has a finite subcover\ \f f

  ii) has a subbase such that each finitely inadequate collection from  is\ f f
  inadequate

  iii) every finitely inadequate family of open sets in  is inadequate\

  iv)  is compact\

 d) Use c) to prove the Tychonoff Product Theorem.

E13. This exercise gives still another proof of the Tychonoff Product Theorem.  Suppose  is\α

compact for all .  We want to prove that  is compact.  We proceed assuming  is notα − E \ \ α

compact.

 a) Show that there is a maximal open cover  of  having no finite subcover.h \

 b) Show that if  is open in  and , then there are sets such thatS \ S Â Y ß ÞÞÞß Y −h h" 8

ÖY ß ÞÞÞß Y ßS× \" 8 covers .

 c) Show that for each ,  is open and  cannot cover α hÖZ © \ À Z  Z  − × \ Þα α α α α

Conclude that for each  we can choose so that any open set  for whichα B − \ B Â Zα α α α

 Z  − Þα h

 d) Let  and suppose  Pick open sets  so thatB œ ÐB Ñ − \ B − Y − Þ Z © \α α αh
3 3

B −  Z ß ÞÞÞß Z  © YÞ  Z  Âα α α" 35
  Explain why each .h

 e) Show that for each , there is a finite family such that 3 œ "ß ÞÞÞß 5 © ∪  Z h h h3 3 α3

covers .\

 f) Show that  covers , and then arrive at the contradiction that
3œ"
5

3h ∪ Ö  Z ß ÞÞÞß Z  × \" 5α
3œ"
5 h ∪ ÖY× \ covers .
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Chapter IX Review

Explain why each statement is true, or provide a counterexample.

1. Order  by  iff  (in ) for every .  Then  is a directed set.GÐ\Ñ 0 Ÿ 1 0ÐBÑ Ÿ 1ÐBÑ B − \ ÐGÐ\Ñß Ÿ Ñ‘

2.  is a limit point of  in the space  iff there exists a filter  such that  and .B E \ E ÖB× − Ä BY Y Y

3. A set  is open in  iff  belongs to every filter  which converges to a point of .Y \ Y YY

4. In a space ,  let  is a filter converging to .  Then   .\ œ Ö À B× Ö À − × œF Y Y Y Y F aB B B
5. Suppose  is a family of subsets of a space  such that if  then  for someT T\ EßF − E ∩ F ª G
G − ÐB Ñ ÐB ÑT T.  Suppose  is a net which is frequently in each set of .  Then  has a subnet which is- -

eventually in each set in .T

6. If a net  in  and ,  then  has a subsequence  (i.e., a subnet whose directedÐB Ñ Ä B \ l\l œ i ÐB Ñ- -!

set is ) which converges to . B

7. If  is a nonempty finite set and , then there are exactly 2 1 different filters and exactly\ l\l œ 8 8

8 \ different ultrafilters on .

8. A universal  must be eventually constant.sequence

9. Suppose  is infinite.  The collection | |  is an ultrafilter.\ œ Ö \  l\l×f A © \ À  E

10. In ,  a filter   iff    such that  and diam .‘ Y % Y %Ä B a  ! bJ − B ÐJÑ − F

11. If  is compact, then every net in  has a convergent subsequence.  (\ \ Note: a “subsequence of a
net” is a subnet whose directed set is .)

12. If  in a space  and if  generates a filter, then  is not  .B Á C \ ∪ \ Xa aB C "

13. If  is a filter in , then there must be a filter  such that  has a cluster point.Y = Z Y ZÒ!ß Ó ª"
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14. Call a set in  an  if it has the form  or   for some .  To show  isÒ!ß "Ó Ò!ß Ñ Ð"  ß "Ó  ! Ò!ß "Óendset % % %
compact, it is sufficient to show that any cover by endsets has a finite subcover.

15.  Every separable metric space  has an equivalent totally bounded metric.Ð\ß .Ñ

16. Suppose  is the collection of finite subsets of , directed by , and  for all .A AÒ!ß "Ó © 0ÐJ Ñ œ " J −
The net  converges to  in .0 " Ò!ß "Ó


