Chapter IX
Theory of Convergence

1. Introduction

In Chapters 1l and 11, we discussed the convergence of sequences. Sequential convergence is very
useful in working with first countable spaces (in particular, with metric spaces).

In any space X, if (a,) is a sequence in A and (a,,) — z, then = € cl A. But in a first countable space,
the converse is also true : = € cl Aiff there is a sequence (a,) in A with (a,) — x. Therefore
convergent sequences determine the set cl A, so sequences can be used to check whether of not cl
A = A, that is, whether or not A is closed. we can determine whether of not Ais closed using
sequences. (See Theorem 111.9.6). So in a first countable space “sequences determine the topology.”

However, sequences are not sufficient in general to describe closures: for example, in [0, w;] we have
wy € ¢l [0,w;) but no sequence (a,) in [0,w;, ) converges to w;. The basic neighborhoods (a, w:] of
wy are very nicely ordered, but there are just “too many” of them: no mere sequence («a,) in [0, w;)

is “long enough” to be eventually inside every neighborhood of w.

A second example (see Example 111.9.8): (0,0) € cl (L — {(0,0)}) but no sequence in (L — {(0,0)})
converges to (0,0). Here the problem is different. Lis a “small” space (|L| = N;) but the
neighborhood system N5, (ordered either by inclusion or by reverse inclusion) is a very complicated
poset — so complicated that a mere sequence (a,) in L — {(0,0)} cannot eventually be in every
neighborhood of (0, 0).

In this chapter we develop a theory of convergence that is sufficient to describe the topology in any
space X. We define a kind of “generalized sequence” called a net. A sequence is a function f € XV,
and we write f(n) =z,. A netis a function f € X*, where (A, <)is a more general kind of
ordered set. Informally, we write a sequence f as (z,,); similarly, when f is a net, then we informally
write the net as (z,).

Thinking of X = [0, w;], we might hope that it would be a sufficient generalization to replace N with
an initial segment of ordinals A = [0,«a): in other words, to replace sequences with “transfinite
sequences” with domain some well-ordered set “longer” than N. In fact, this is a sufficient
generalization to deal with a case like [0,w,] : if (z,) is the “transfinite sequence” in [0, w;) given by
To =a (o <wy),then (z,) — w; (in the sense that (x,,) is eventually in every neighborhood of w;).
But as we will see below, such a generalization does not go far enough (see Example 2.9). We need a
generalization that uses some kind of ordered set A more complicated than just initial segments [0, «)
of ordinals.

The theory of nets turns out to have a “dual” formulation in the theory of filters. In this chapter we
will discuss both formulations. It turns out that nets and filters are fully equivalent formulations of
convergence, but sometimes one is more natural to use than the other.

2. Nets
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Definition 2.1 A nonempty ordered set (A, <) is called a directed set if

1) < istransitive and reflexive
2) forall A1, Ao € A, there exists A3 € A such that A3 > A and A3 > Xs.

Example 2.2
1) Any chain (for example, N) is a directed set.

2) InR, define x <*y if |z| > |y|. Then (R, < *) is a directed set and = < *y means that “z
is at least as far from the origin as y.” Notice that —1 <*1 and 1 <*—1, so that < * is not
antisymmetric. A directed set might not be a poset.

3) Let A, be the neighborhood system at = in X, ordered by “reverse inclusion” — that is,
Ny < N, iff Ny D Ny. N, # 0 and condition 1) in the definition clearly holds. Condition 2) is
satisfied because for N;, Ny € N, we have NN Ny = N3 e NM,and N3 > N; and N3 > N,.
Therefore (N, <) is adirected set.
This example hints at why replacing N (in the definition of a sequence) with a directed set A
(in the definition of net) will give a tool strong enough to describe the topology in any space X : the
directed set A can chosen to be as complicated as the most complicated system of neighborhoods at a
point x.

4) Let A ={F C[0,1]: 0€ F, 1€ F and F'is finite}. In analysis, F'is called a partition of
the interval [0,1]. Order A by inclusion: a “larger” partition is a “finer” one — one with more
subdivision points. Then A is a directed set.

Definition 2.3 i) Anetinaset X isa function f : (A, <) — X, where (A, <) isdirected. We
write f(A) = x, and, informally, denote the net by (z)).

i) Anet(x))inaspace X convergestox € X if () is eventually in every
neighborhood of = — thatis, VN € N, 3 )y € Asuchthatxz) € N
wherever A > Ag.

iif) A point x in a space X is a cluster point of a net (x)) if the net is frequently in
every neighborhood of z, that is: forall N € NV, andall \j € A thereisa A > \g
for which z, € N.

Clearly, every sequence is a net, and when A = N, the definitions ii), and iii) are the same as the old
definitions for convergence and cluster point of a sequence.

Example 2.4 A = {1, Ay, A3} and define an order in which A3 > A; and A3 > A\, but A; and )\, are
not comparable. (A, <) is a directed set. We can define a net f: A — R by f(A3) =0and
assigning any real values to f(A;) and f(\2). Since x) € ( —¢,¢) for all A > A3, we have (z,) — 0.
(Notice that a net can have a finite domain and can have a “last term.”)
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Example 2.5 The following examples indicate how several different kinds of limit that come up in
analysis can all be reformulated in terms of net convergence. In other words, many different “limit”
definitions in analysis are “unified” by the concept of net convergence.

1) Let A =R — {a} and define z < *y (inA) iff |z —a| > |y—a]| (inR). Suppose
f:A—Risanet. Thenthenet(z),) - LeR

iff for all ¢ > 0 there exists A\ € Asuchthatzy € (L —¢,L+¢) if A >* X\
iff for all € > 0 there exists A\ € Asuchthatz, € (L —¢,L+¢€) if 0 < |\ —a| <|X\ —a
iff for all e > 0 there exists 6 > 0 such that | f(\) — L| <eif 0 < |\ —a| <6
T (= :used=|\ —al/2)
iff lim f(z) = L (in the usual sense of analysis).

Tr—a

2) Let A = R with the usual order < .If f: R — R, we can think of f as a net, and write
f(r) = z,. Thenthenet (z,) — L € R

iff for all e > 0 there exists o € A = Rsuchthatz, € (L —e, L +¢) if r > rg
iff for all € > 0 there exists ry € Rsuch that |f(r) — L| < eif r > rg
iff lim f(x) = L (in the usual sense of analysis).

Parts 1) and 2) show how two different limits in analysis can each be expressed as convergence of a
net. In fact each of the limits lim f(z) = L, Iim+f(a:) =L, lim f(z) = L, lim f(z) = L,

and lim f(z) = L can be expressed as the convergence of some net. In each case, the trick is to
T——00
choose the proper directed set.

3) Integrals can also be defined in terms of the convergence of nets.

Let g be a bounded real valued function defined on [0,1] and let A = {F C [0,1] : F'is finite and
0€ F, 1€ F}. Order A by inclusion: Fy < Fy iff Fy C Fy iff Fy isa “finer” partition than F.

For '€ A, enumerate FasO0=ap < 21 < ... < Xp_1 <, = 1. Let Ax; = x; — x;_1 and
FF)=> (infg ) Az;=zpr R

=1 [x 1,
f:A— R isanetinR and we can write f(F') = xp. Then

(xp) — L iff forall e > 0 there is a partition £; such that
for all partitions F' finer than Fy, |zp — L| < €

One can show that such an L always exists: L is called the lower integral of g over [0, 1], denoted
L= fl g.
20

If we replace “inf” by “sup” indefining f, then the limit U of the net is called the upper integral of g
over [0, 1], denoted U = T; g. If L =1U, we say that g is (Riemann) integrable on [0, 1] and write
folg =L(=U).
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A sequence can have more than one limit: for example, if | X| > 1 and X has the trivial topology,
every sequence (z,,) in X converges to every point in X. Since a sequence is a net (with A = N), a net
can have more than one limit. We also proved that a sequence in a Hausdorff space can have at most
one limit (Theorem 111.9.3). This theorem still holds for nets, but then even more is true: uniqueness of
net limits actually characterizes Hausdorff spaces.

Theorem 2.6 A space X is Hausdorff iff every netin X has at most one limit.

Proof Suppose X is Hausdorff and = # y € X. Choose disjoint open sets U, V with z € U and
ye V. Ifanet (z)) — z, then (z,) is eventually in U and therefore (z,) is eventually outside V.
Therefore () does not also converge to y.

Conversely, suppose X is not Hausdorff. Then there are points = # y € X such that U NV # ()
whenever U € Ny and V € N,. Let A =N, x N, and order A by defining (U,V) < (U',V"')

iff U'CU and V' CV (reverse inclusion in both coordinates). For each (U,V) € A, let
f((U,V)) = anypointz ) € UNV. Weclaimthat (1)) — z and (zy,y)) — v.

If VenN,lety=(X,V)eA Thenif A= (U",V') > Xy, we have
Ty =z yy€eU' NV C XNV = V. Therefore (z,) — y.
The proof that (z)) — x is similar. e

Example 2.7 The implication ( < ) in Theorem 2.6 is false for sequences. Let X = [0, w;] U {w}}
where wj ¢ [0,w]. Let points in [0, w;] have their usual neighborhoods and let a basic neighborhood
of wj be a set of the form (a, w1] — {w1} U {w}}, where a < w;. (In effect, the basic neighborhoods
of wy and wyj are identical except for replacing w; by wj or vice versa; itis as if wj isa

*“shadow” of w; which can't be separated from w).

This space is not Hausdorff, but we claim that a sequence () in X has at most one limit.
If («v,) contains infinitely many terms o, < wy, thenleta =sup{a,, : k=1,2,...} < wy, SO
that the subsequence («,) is in [0,a]. If (o) — fand (a,) — 7, then (a,,) — Sand
() — v . Therefore 3,~ are both in the closed set [0,«]. But [0, ] is T5 so a limit for
(aun,, ) must be unique: 5 = .
If only finitely many «,'s are less than w,, we can assume without loss of generality that for all
n, o € {wy,wi}. Itis easy to see that if a,, = w; for only finitely many n, then (o) — wj
only. Similarly, if a,, = wj for only finitely many n, then (a,,) — wy only. If a,, = w; and
o, = wj each for infinitely many n, then («,) has no limit.

The next theorem tells us that nets are sufficient to describe the topology in any space X.

Theorem 2.8 Suppose A C (X, 7). Then x € cl A iff there isa net (a)) in A for which (ay) — x.

Proof Suppose (a)) — x, where (a)) is a net in A. For each N € A, (a,) is eventually in N so
NN A#(. Therefore z € cl A.
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We can prove the converse because we can choose a directed set “as complicated as” the
neighborhood system of x: Suppose = € cl A and let A = N, ordered by reverse inclusion. For
A= N €A, let f(A\) =ay =apointchosenin NNA. If\=NyeAandA=N > )\
then ay e NN AC NynAC Ny. Therefore (ay) — x. e

Example 2.9 In general, “sequences aren't sufficient” to describe the topology of a space X. However
we might ask whether something simpler than nets will do. For example, suppose we consider
“transfinite sequences” — that is, very special nets f : [0,«) — X, where « is some ordinal. It turns
out that these are not sufficient.

Suppose X = [0,w;) X [0,wy) € T* = [0,w;] X [0,wp]. Let p = the “upper right corner point”
(w1,wp). Then p € cl X, but we claim that no transfinite sequence in X can converge to p € T*.

Let f: [0,a) — X and write f(A) = (z),yx). Weclaimthat ((xx,y)\)) 4 p (no matter how large
anaweusel ). So ((zx,yn)) — p:

ran(f) must be uncountable.

If ran(f) were countable, then the set C' = {z, : A < a} would be countable and
B=sup{z): A <a} <w;. Thenran(f) C [0, 5] x [0,wy) and so (xy, y») could not
converge to p.

For every countable set £ C [0, «), SUp E < o

Since E well-ordered, E represents an ordinal 5 < «, so there is an order isomorphism
g:[0,8) — E for some 5 < a.

Certainly sup £ < a.

If sup(E) = «, then fog:[0,5) — X would be a transfinite sequence with
countable range converging to p (since f does). But we have shown that a net converging to p
must have uncountable range. Therefore sup £ < a.

Foreachm < wy, let E,, ={A < a:yy=m}and \,, =sup E,, < a (“ <" is the most we can
say since F,,, might be uncountable). For each 5 < «, 3 isin some E,, — so, for that m, A\, > .
Therefore sup {\,, : m < wy} = a. By the preceding paragraph, we conclude A,,, = « for

some my.

Since (zy,y)) — p, we conclude that (m,\,y,\)AeE"m — p. But (:L’A,yA))\eEmo — (w1, m), so this
is impossible. o

The definition of a subnet is analogous to the definition of a subsequence (see Definition I11.10.1).
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Definition 2.10 Let A and M be directed sets Suppose f: A — X, ¢: M — A. Suppose that for
each \y € A, there exists a ;1o € M such that ¢(p) > Ao whenever p > 1,

h— ¥

fod

then f o ¢ is called a subnet of f. We write ¢(1) = A, and f(¢ (i) = x,. Informally, the subnet
is (zy,). The definition of subnet guarantees that ¢(u) = A, > \o whenever p > pu.

Note: an alternate definition for subnet is used in some books. It requires that

1) ¢ isincreasing: if p; < po, then ¢(u1) < ¢(u2) and

2) ¢iscofinal in A: for each \y € A, thereis a py € M for which ¢ () > Ao.
A subnet in the sense of this definition is also a subnet in the sense of Definition 2.10, but the
definitions are not equivalent. Definition 2.10 is “more generous” — it allows more subnets
because Definition 2.10 does not require ¢ to be increasing. For most purposes, the slight

disagreement in the definitions doesn't matter. However, the full generality of Definition 2.10
is required to develop the full duality between nets and filters that we discuss later.

We will state the following theorem, for now, without proof. The proof will be easier after we talk

about filter convergence. For now, we simply want to use the theorem to highlight an observation in
Example 2.12.

Theorem 2.11 In (X, 7)), if z is a cluster point of the net (), then there is a subnet (z,,) — .
Proof See Corollary 4.8 later in this chapter.
Example 2.12 (See Example 111.9.8) In L = {(m,n) : m, nare nonnegative integers}, all points except

(0,0) are isolated. Basic neighborhoods of (0,0) are sets containing (0,0) and “most of the points
from most of the columns” (where “most” means “all but finitely many”).
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Let (z,) be an enumeration of L — {(0,0)}. Although (0, 0) is a cluster point of (x,,), we proved in
Example 111.9.8 that no sequence in L — {(0,0)} can converge to (0,0). In particular, no
subsequence of (z,) can converge to (0,0). However, Theorem 2.11 implies that there is a subnet of
(xy,) that converges to (0, 0).

This might seem surprising, but it simply highlights something is actually clear from the definition of
subnet: even if a net isa sequence (A = N), the directed set M in the definition of subnet need not be
N. Therefore a subnet of a sequence might not be a sequence.

3. Filters

XN is the set of all sequences in X, but the “set of all nets in X" makes no sense in ZFC. We can put
an order < on any set A to create a directed set (A, <) : for example (using Zermelo's Theorem) we
could let < be a well-ordering of A. Therefore there at least as many directed sets (A, <) as there
are sets A. The “set” of all nets in X = “|J{X®™=) : (A, <) is a directed set} ” is “too big” to be a
set in ZFC. This is not only an aesthetic annoyance; it is also a serious set-theoretic disadvantage for
certain purposes.

Therefore we look at an equivalent way to describe convergence, one which is strong enough to
describe the topology of any space X but which doesn't have this set-theoretic drawback. The theory
of filters does this, and it turns out to be a theory “dual” to the theory of nets — that is, there is a natural
“back-and-forth” between nets and filters that converts each theorem about nets to a theorem about
filters and vice-versa.

Definition 3.1 A filter F in a set X is a nonempty collection of subsets of X such that

i) 0¢F
if) F is closed under finite intersections
iii) IFFe FandG D F, thenG € F.

A nonempty family B C F is called a filter base for 7 if 7 = {F C X : F' O B for some B € 5}.

Assuming, as we have stated, that filters will provide an equivalent theory of convergence in a space
X, we see that there is no longer a set-theoretic issue. The set of all filters in X makes perfectly good
sense: each filter 7 € P(P(X)), so the set of all filters in X is just a subset of P(P(X)).

In a topological space X, there is a completely familiar example of a filter : A/, the neighborhood
system at z. A base for this filter is what we have been calling a neighborhood base, B,. In fact, N,
and B, are what inspired the general definitions of filter and filter base in the first place.

If we start with a filter F, then a base B for a filter 7 must have certain properties: B is nonempty (or
else 7 =), and each B € B is nonempty (or else O € F). Moreover, if By, B, € B C F, then
B1 N By € Fso (by definition of a base) B; N By © Bs for some B; € B.

If, on the other hand, we start with any nonempty collection B of nonempty sets in X such that
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whenever By, Bs € B, thereisa By € Bsuch that B; N By O By (*)

and define 7 = {F : F D B for some B € B}, then F is a filter and B is a base for 7 (check!). Fis
called is called the filter generated by B; it is the smallest filter containing 5.

If we begin with a nonempty collection S of nonempty sets in X with the finite intersection property,
then

B = {B: Bis afinite intersection of sets from S} has property (*)

so B is a base for a filter F called the filter generated by S; it is smallest filter containing S.

There can be many neighborhood bases B, for a neighborhood system N, in a space X. Similarly, a
filter F can have many different filter bases 5. In particular, notice that F itself is a filter base — but
usually we want to choose the simplest base possible.

Definition 3.2 A filter base B converges to x € X if for every N € N,, there is a B € B such that
B C N. Inthis case we write B — x. (Since a filter F is also a filter base, we have also just defined
the meaning of 7 — x.)
If F is the filter generated by B, thenclearly B — x iff F D N,. (*%)
The following theorem is very simple. It is stated explicitly just to make sure that there are no
confusions.
Theorem 3.3 Let F be a filter in the space X. Forany = € X, the following are equivalent:

i) F—=x

i)y F2ON,

iii) F has a base B where B — z.

iv) Every base B’ for F satisfies B’ — .
Proof From Definition 3.2 and the observation (**) shows that i) < ii) < iii).

iii) = iv) Suppose B is a base for F and that B — . Then for each N € A/, there is a
B € B for which N D B. If B’ is another base for JF then, since B € F, B contains some set
B’ € B'. Therefore N D BD B’,s0 B’ —x. e

iv) = i) because F is a base for 7. e

Example 3.4
1) Letx € (X,7). If B, isaneighborhood base at z, then B, — x. In particular, N, — z.

2) Suppose F is a filter in X. If AC X and AN F # () for all F € F, then the collection
F U{A} = S is a nonempty collection with the finite intersection property. Therefore S generates a

395



filter 7' D F. So:if A¢ Fand ANF #( forall F € F, we can enlarge F to a filter 7' that also
contains the set A.

A Ifzxye X, thenF ={AC X :2p€ A}isafilter. Since F O N, we have F — x.
The simplest base for F is B = {{z¢}} and B — x.

Suppose B ¢ F. Then x, ¢ B so F cannot be enlarged to a filter 7’ that also contains the
set B —such an F’ would contain both {z,} and B, and therefore also contain §) = {z¢} N B, which
is impossible. (This also follows from Theorem 3.5, below.)

Therefore, F is a maximal filterin X. A maximal filter is called an ultrafilter.

For each zp € X, F = {A C X : zp € A} is called a trivial ultrafilter. In general, it takes
some more work (and AC) to decide whether a set X also contains “nontrivial” ultrafilters — that is,
ultrafilters not of this form. (See Theorem 5.4 and the examples that follow).

The next theorem gives us a simple characterization of ultrafilters. It is completely set-theoretic, not
topological.

Theorem 3.5 A filter 7 in X is an ultrafilter iff for every A C X, either Ac ForX — A e F.

Proof (= )IfAC Xand A ¢ F,then AD Fisfalse forevery '€ F, so F'n (X — A) # 0 for
all F' € F. Therefore the collection S = F U{X — A} has the finite intersection property, so S
generates a filter 7/ D F. So if F is an ultrafilter, we must have 7’ = F and therefore X — A € F.

( <) Suppose that for every A C X, either A or X — Aisin F. If F'isafilter and
F'DOF, ten F' =F: for if AcF’ —F, then X — Ac Fwhich would mean
AN(X—A)=0eF'. o

Note: The proof ( =) shows that if a filter F contains neither A nor X — A, then F can be enlarged
to a new filter F’containing either A or X — A — whichever of the two you wish.

Definition 3.6 A point x € X is a cluster point for a filter base B if N N B # () for every N € N, and
every B € B. (Since a filter F is also a filter base, we have also just defined a cluster point for a filter
F)

It is immediate from the definition that = is a cluster point of a filter base B iff x is in the closure of
each set in BB, that is, if and only if z € (N{cI B : B € B}.

Clearly, if B — x, then x is a cluster point of B (explain!).

Theorem 3.7 Suppose F is a filter in a space X. For z € X, the following are equivalent:

i) « isacluster point of 7

i) zeN{clF:FeF}

iii) there is a filter base B for F such that z is a cluster point of 5
iv) for every filter base B for F, z is a cluster point of 5.
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Proof It is clear from the definition and the following remarks that i) < ii) < iii).

iii) = iv ) Suppose z is a cluster point of B and B’ is another base for 7. If B’ e B’ C F
then B’ O B for some set B € B — because B is a base for 7. But every neighborhood of x intersects
B, so every neighborhood of z also intersects B’. Therefore x is a cluster point of 5.

iv) = i) This follows since F is a base for 7. e

Example 3.8

1) Let F={F CR:F D[0,1]}. Each real number r has a neighborhood N for which
N 2 [0,1] and therefore N ¢ F. So F D2 N, so F -4 r.
If r € [0,1],thenr € A C cl A foreach A € F, so ris a cluster point of F.
If ¢ [0,1], then N = R — [0, 1] is a neighborhood of r disjoint from [0, 1] € F. Therefore
7 is not a cluster point of 7. So the set of cluster points of F is precisely the interval [0, 1].

2) Let N have the usual topology. F = {A C N: N — A is finite} is a filter (check!). For
each n € N, we have F ={n+1,n+2,..} € F and n ¢ F =clF. Therefore n is not a cluster
point of 7. And since F has no cluster points, certainly F does not converge.

3) Let F be afilter in a space X. If ¥ — z and F — y, then F D N, and F D N,. Since
() ¢ F, every neighborhood of x must intersect every neighborhood of y. Therefore, if X is
Hausdorff, we must have x = y, that is, a filter in a Hausdorff space can have at most one limit. (In
fact, X is Hausdorff iff every filter in F in X has at most one limit. We could prove this directly,here
and now (try it!). But this fact follows later “for free” from Theorem 2.6 via the duality between nets
and filters: see Corollary 4.5 below.)

4. The Relationship Between Nets and Filters

Nets and filters are dual to each other in a natural way — it is possible to move back-and-forth between
them. Although this back-and-forth process is not perfectly symmetric, it is still very useful because
the process preserves limits and cluster points.

Definition 4.1 Let (A, <) be a directed set. For a net (z,) in X, we define its associated filter 7
(or, the filter generated by (z,) ) : :

Let T\ = {z, : p € A, p > A} = the A" tail of the net, and let B={T\: A€ A}. B is
nonempty since A # (), and each T # ) since x) € T). Moreover, if A3 > A\; and A3 > X,
then 7, N T, D T,,. Therefore the collection of tails B = {T) : A € A} is a filter base and
the filter it generates is the associated filter of (x,).
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Definition 4.2 For a filter 7 in X, we define its associated net (or, the net generated by F) :

Let A={(z,F): 2z € F e F} and define (z,F) < («/,F') if FOF'. Then (A, <) is
directed. (Why?)) Thenet f : A — X defined by f((z, F')) = z is the associated net of F.

Notice that (A, <) is not a poset: for example if x # 2/ € F € F, then
(x, F)> («/,F)and (2/, F) > (z, F) but (z, F) # (2, F).

If we begin with a filter 7, form its associated net, and then form its associated filter 7', we are back
to where we started:

F  ~> associated net (z),) ~>  associated filter ' = F

To see this: a base for ' is the collection of tails {7{, r) : (z, F) € A}. But

Tor ={f@ ,F):(z',F')>(z,F)={z": (z', F') > (2, F)}

={z':2' e Fland F' C F,where F,F'' ¢ F} =|{F': F'CFeF}=F. Sothe
collection of tails is F itself!

On the other hand, if we begin with a net (x, : A € A}, form its associated filter 7, and then form the
net associated with F, we do not return to the original net (z)) :

(xy) ~= associated filter ¥ ~=  netassociated to F # (z))

First of all, the net associated with F has for its directed set
AN ={(z,F):x € F € F} # A. Butthe problem runs even deeper than that:

Consider the net (x,,) in R with directed set N, where x,, = 0 for all n. The collection of tails is
B = {{0}}, which generates the associated F = {A CR:0 € A} (a trivial ultrafilter). In
turn, F generates a net whose directed set A = {(z,A) :z € Ae F}andin A, (0,{0})isa
maximal element. The directed set for the new net is not even order isomorphic to N !

Nevertheless, the following theorem shows that this back-and-forth process between associated nets
and associated filters is good enough to be very useful for topological purposes.

Theorem 4.3 In any space X,

1) z isacluster point of a net (x,) iff  isa cluster point of the associated filter F.
2) x is a cluster point of a filter 7 iff x is a cluster point of the associated net (x))

Proof 1) z isacluster point of (z)) iff (z,) is frequently in every neighborhood of x
iff T, NN # () for every tail T\ and every N € N,
iff z isa cluster point of the filter base B = {T) : A € A}
iff x isa cluster point of F.

2) We use 1). Given a filter F, consider its associated net (z)). By 1), = is a cluster point of
(x) iff zis a cluster point of its associated filter 7'. But ¥’ = F. e

Notice: if we had somehow proved part 2) first, and then tried to use 2) to prove part 1), we
would run into trouble — we would end up looking at a net different from the one we started
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with. The “asymmetry”” in the back-and-forth process between nets and filters shows up here. .
Theorem 4.4 In any space X,

1) anet (z)) — = iff its associated filter 7 — .
2) afilter 7 — x iff its associated net (z)) — «.

Proof The proof is left as an exercise. As in Theorem 4.3, part 2) follows “for free” from 1) using the
duality between nets and filters.
Corollary 4.5 A space X is Hausdorff iff every filter F has at most one limit in X.

Proof The result follows immediately by duality: use Theorem 4.4 and Theorem 2.6. e

The following theorem shows how subnets and larger filters are related: subnets generate larger filters
and vice-versa.

Theorem 4.6 Suppose F is a filter in X generated by some net f : A — X. (This is not a restriction
on F because every filter is generated by a net: for example, by its associated net.)

1) Each subnet of f generates a filter G O F
2) Eachfilter G O F is generated by a subnet of f.

Proof 1) A base for F is {B) : A\ € A}, where B, is the A\"tail of f. Suppose ¢ : M — A and that
fog¢: M — X is a subnet of f. The filter base {C, : € M}, where C,, is the p™ tail of f o ¢,
generates a filter G.

Let F € F. Then F D B,, for some A\g € A. Pick py € M so that po > 1o = ¢(p) > Ao. Then the
subnet tail C,, = {foo(p):p>p}t < By CF, so F is in the filter G generated by fo ¢.
Therefore F C G.

2) Conversely, let G be a filter containing . We claim G is generated by a subnet of f. Let
B, denote the A" tail of f. We claimthat B = {GNB,:G € G, A € A} isabase for G :

B is clearly base for some filter 7’ and G C F’ (since G © GNB,). On the other
hand, eachBy, € F C G, soeachGNB, €GsoF' C G

Let M ={(£,GNB)):Geg, N\ (e £>Nand f(&) =z € GNB,}. (For each G N B, there
is at least one such & because GN B, # (). Order M by defining (£,GNB,) < (¢',G'NBy) if
AM>Xand G'NBy CGNB,. Itis easy to check that < is transitive and reflexive. In fact,
(M, <)isadirected set:

IfA” > X\, wehave By» CByNB,. SinceG" = GNG' e G, we have

G" NBy # 0, sothere exists a £” > X" such that f (£”) = z¢» € G" NByr. Thus
(€",G"nBy») e M, and we have (¢",G" NB,») > (£,GNB,)and
€",G"nBy) > (£',G'NBy).

Define¢ : M — A by ¢(((,GNB,)) =& Then fo¢isasubnetof f:
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Suppose Ay € A. Pickany Gy € G and any &, > X, such that f(&y) = ¢, € Gy N By,.
Let o= (£,GoNBy)eE M. Ifu=(,GNBy)>pg in M, then ¢(u) =
§>8& > Xo.

The filter generated by the subnet f o ¢ has the set of tails C,, a base. If ny = (£, Go N B),) € M, we
claim that the tail C, =Gy N B,,. If this is true, we are done, since the sets of this form, as noted
above, are a base for the filter G.

Cu={fod(w) :p>po}. WpeMandp=(§GNBy) = po = (§,GoNBy),
then G N B, QGQHB/\O,SOfOQS(/_L) :f(f) € GN B,y geoﬂB)\O.
Therefore C),, € Gy N B),.

Conversely, if y € GoN By, theny = f(&§) = zc forsome £ € A, £ > .
Then = (§,GoNBe) € Mand p > g soy = f(§) = f o d(u) € Cp,.
Therefore C,, 2 Gy N B),. ®

The remark following Definition 2.10 is relevant here. To prove part 2) of Theorem 4.6: we need the
more generous definition of subnets to be sure that we have “enough’ subnets to generate all possible
filters containing F. In particular, the subnet defined in proving part 2) is not a “‘subnet™ using the
more restrictive definition for subnet.

Theorem 4.7 A point x € X is a cluster point of the filter 7 iff there exists a filter G O F such
that ¢ — =.

Proof (=) Ifsuch a filter G exists, then A, C G. Therefore each neighborhood of z intersects each
set in G, and therefore, in particular, intersects each set in 7. Therefore z is a cluster point of F.

(<) Ifxisacluster point of F, thentheset B={NNF: N e N, and F' € F}is a filter
base that generates a filter G. For '€ 7, we have F=XNF € B,s0 F CG; and for each
N e N,,wehave N = NN X € B,soN, C G and therefore G — . o

Corollary 4.8 z is a cluster point of the net () in X iff there exists a subnet (x,,) — =.
(This result was stated earlier, without proof, as Theorem 2.11.)

Proof = is a cluster point of (z,) iff x is a cluster point of the associated filter 7
iff there exists a filter G O FwithG —
iff (x,) has a subnet converging to z. e

Example 4.9 Think about each of the following parallel statements about nets and filters. Which ones
follow “by duality” from the others?

D Ifxy, =aforall A > )\, then 1) If F consists of all sets containing a,
(z,) —a then 7 — a
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2) (z)) — a iff every subnet 2") If F — a iff G — aforeveryfilter G O F
converges to a

3) If a subnet of (z)) has cluster pointa,  3') If a is a cluster point of Gand G D F,
then a is a cluster point of (z)) then a is a cluster point of F.

5. Ultrafilters and Universal Nets

Nets and filters are objects that can be defined in any set X. The same is true for ultrafilters and
universal nets. No topology is needed unless we want to talk about convergence, cluster points and
other ideas that involve “nearness.” So many results in this section are purely set-theoretic.

Definition 5.1 An ultrafilter &/ in X is called fixed (or trivial) if (U # 0. U is called free (or
nontrivial) if (4 = 0.

For example (see Example 3.4) ) the ultrafilter 7 = {A C X : p € A} is fixed (trivial).
Theorem 5.2 For an ultrafilter ¢/ in X, then the following are equivalent.

i) forsomepe X, U={ACX:pec A}

i) (U= {p}forsomepe X

i) U is fixed — that is, (U # 0.
Proof Itis clear that i) = ii) = iii)

iii) = i) Suppose i) is false. Then{z} ¢ U for every x € X (why?) so by Theorem 3.5,
X —{z} e Uforevery z. Therefore MU C (X —{z}:z€ X} =0. e

Example 5.3 If F is a filter and (\F # 0, F might not be an ultrafilter.

Let F be the filter in N generated by {B, :n € N}, where B, ={1}U{k:k>n}. Then
NF ==, B, = {1}. Since neither E = {2,4,6,...} C N nor N — E contains one of the sets B,
neither E nor N — E is in F. Therefore F is not an ultrafilter.

FU{E} is a filter base that generates a filter ' strictly larger than F. Similarly, 7 U {N —E}

generates a filter 7" strictly larger than 7. Then F’ # F" (because E and N — [E cannot be in the
same filter). So F can be “enlarged” in at least two different ways.

Theorem 5.4 If F isafilter in X, then F C U/ for some ultrafilter /.
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Proof Let P={G:G is a filter and G O F}, ordered by inclusion. P is a nonempty poset since
F € P.. Let{G, : a € I} be achaininP. We claim that | JG, € P.

Clearly, G, 2 F; and |J G, is afilter:

J G # 0 since each G, # 0, and each set in | G, is nonempty.
If A, B € |JG., then both A, B are in a single filter G,,,. Therefore
ANBe€G,,s0 AN B e |JG,. Inaddition,if C O A, thenC € G,,, 50 C € |JG..

Therefore the chain {G, : « € I} has an upper bound |G, in P. By Zorn's Lemma, P contains a
maximal element /. e

Example 5.5 For each n € N, there is a fixed (trivial) ultrafilter 24, = {A CN:n € A}. Itis the
ultrafilter for which (4, = {n}. By Theorem 5.2, the 4,'s are the only fixed ultrafilters in N. There
are also nontrivial (free) ultrafilters in N :

Let B, = {k € N: k > n}. The collection B = {B, : n € N} is a filter base and
B generates a filter 7. By Theorem 5.4 there is an ultrafilter &/ © F, and
NUC N2y By =0.

U is not the only ultrafilter containing . If E and O are the sets of even and odd natural
numbers, then BU {E} and B U {QO} are filter bases that generate filters 7’ and . Then
there are ultrafilterst/’ O F'andUd” D F"”. SinceEcU’, OcU”" andEN QO = (), we
have U’ # U". Since BC U and B C U", we know that U’ = Pand U" =0, so
U and U’ are free ultrafilters.

It is a nice exercise to prove that if there is only one ultrafilter Z/ containing F, then F = U/ : that is, if
JF is not an ultrafilter, then F can always be enlarged to an ultrafilter in more than one way.

If Fisafilter in N, then 7 € P(P(N)), so there are at most [P(P(N))| = 22 = 2¢ filters in N.

Comment without proof: There are exactly 2¢ different filters in N. In fact, there are 2¢ different
ultrafilters in N, and since N contains only countably many fixed ultrafilters ¢4,, there are in fact 2¢ free
ultrafilters !

Theorem 5.6 An ultrafilter ¢/ in a space X converges to each of its cluster points.

Proof If x is a cluster point of I/, then there is a filter G O U/ such that G — x. But G = U since U is
an ultrafilter. e

Corollary 5.7 An ultrafilter ¢/ in a T space X has at most one cluster point.
We now define the analogue of ultrafilters for nets.
Definition 5.8 A net (z,) in X is called universal net (or ultranet) if for every A C X, (x,) is either

eventually in A or eventually in X — A.
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For example, a net (z)) which is eventually constant, say =, = p for all A > X, is a universal net. It
is referred to as a trivial universal net because its associated filter is the trivial ultrafilter
{ACX:pe A}

Theorem 5.9 In any set X,

1) anet (x,) is universal iff its associated filter is an ultrafilter, and
2) afilter F is an ultrafilter iff its associated net is universal.

Proof 1) (x,) is universal iff forevery A C X, (z,) iseventuallyin Aor X — A
iff forevery A C X, Aor X — A contains a tail of (x,)
iff forevery A C X, Aor X — A isin the associated filter
iff the associated filter is an ultrafilter.

2) We use duality. For a given a filter F, consider its associated net ().
By a), (x,) is universal iff its associated filter 7' is an ultrafilter. But 7' = F. e

Corollary 5.10 Inany space X,

1) asubnet of a universal net is universal
2) a universal net converges to each of its cluster points
3) every net has a universal subnet.

Proof 1) If (x,) is universal, then (z,) generates an ultrafilter /. By Theorem 4.6, each subnet (x) )
generates a filter G O U. So G =U. Because the filter associated to (x,,) is an ultrafilter, (z,,) is
universal.

2) If x is a cluster point of the universal net (x,), then x is a cluster point of the associated
ultrafilter /. By Theorem 5.6 U/ — x and therefore (x)) — =.

3) Let F be the associated filter for the net (x)) and let ¢/ be an ultrafilter containing 7. By
Theorem 4.6(2), U is generated by a subnet (x,,) of (xy). Since the filter associated with () is an
ultrafilter, (z,,) is a universal net. o

Corollary 5.11 A universal net in a 75 space has at most one cluster point.

Both nets and filters are sufficient to describe the topology in any space, so we should be able to use
them to describe continuous functions.

Theorem 5.12 Suppose X and Y are topological spaces, f : X — Y and a € X. The following are
equivalent:

1) fiscontinuousat a

2) wheneveranet (z)) — ain X, then (f(z))) — f(a)inY

3) whenever a universal net (z,) — a in X, then (f(z))) — f(a)inY

4) whenever a is a cluster point of a net (z,) in X, then f(a) is a cluster point of (f(z,))
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inY

5) whenever a filter base B — ain X, then the filter base f[B] = {f[B] : B € B} — f(a)
inYy

6) whenever an ultrafilter &/ — a in X, then the filter base f[U] — f(a)inY.

7) whenever a is a cluster point of a filter base B in X, then f(a) is a cluster point of
the filter base f[B]inY.

Proof 1) = 2) Suppose V is a neighborhood of f(a). Since f is continuous at a, there is a
neighborhood U of a such that f[U] C V. If (x)) — a, then (x,) is eventually in U so (f(z))) is
eventually in V. Therefore (f(xy)) — f(a).

2) = 3) This is immediate.

3) = 4) If a is a cluster point of (x,), then there is a subnet (z,,) — a. Let (z,,) be a
universal subnet of (x,,). Then (x), ) — a and by iii), (f(z»,)) — f(a). Then (f(x))has a subnet
converging to f(a), so f(a) is a cluster point of (f(z))).

4) = 1) Suppose f is not continuous at a. Then there is a neighborhood V" of f(a) such that
fIN] € V for every N € N,. Let A = A, ordered by reverse inclusion, and defineanetg: A — X
by g(N) = 2y = apointin N for which f(xy) ¢ V. Since (zy) — a, (zy) has a cluster point
at a. But the net (f(xy)) does not have a cluster point at f(a) because (f(xy)) is never in V.
Therefore 4) fails.

Knowing that 1)-4) are equivalent, we could show that each of 2)-4) is equivalent to its filter
counterpart — e.g., that 2) < 5), etc. This involves a little more than simply saying “by duality”
because, in each case, the function f also comes into the argument. Instead, for practice, we will
show directly that 1) = 5) = 6) = 7) = 1).

It is easy to check that if B is a filter base in X, then f[5] = {f[B] : B € B} isafilterbase in Y.

1) = 5) Suppose B — a in X and let f[B] € f[B]. If N is any neighborhood of f(a) in Y,
then by continuity f~![N] is a neighborhood of a in X. Therefore f~![N] D B for some B € B, so
N D f[fYN]] 2 f[B]. Therefore f(B) — f(a).

5) = 6) This is immediate.

6) = 7) Suppose a is a cluster point of the filter base B. We can choose an ultrafilter &/ © B
withid — a. By 6), f[U] — f(a). Therefore the filter &/’ generated by f[i/] converges to f(a), so
U'" D Nyw). Since f[B] CU’, each set in f[B] intersects every set in Ny. Therefore f(a) is a
cluster point of f[B5].

7) = 1) Suppose f is not continuous at a. Then there is a neighborhood V' of f(a)such that
fIN] € Vforall N € N, thatis, N — f~}[V] # 0 forall N € A,,. The collection
B={N— fl[V]: N € N,}is afilter base (why?) that has a cluster point at a. However f[B] does
not cluster at f(a) since no setin f[B] intersects V. e

Corollary 5.13 Let (z)) be a net in the product X = [[{X, :a € A}. Then (z,) — =z in X iff
(ma(z))) — ma(z) in X, foreach a € A.
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Proof If (z)) — x € X, then by continuity (7, (x))) — 7. (x) € X, for every a € A.

Conversely, suppose (m,(z))) — ma(z) for every o« and let U = < U,,,U,,,...,U,, > be a basic
open set containing = in X. For each i = 1,...,n we have (m,,(z))) — 7., (z) € U,,. Therefore we
can choose a \; € Aso that m,,(z)) € Uy, When A > X;. Pick A > A, ..., A, If A > A%, we have
7o, (x)) € Uy, foreachi =1,...,n. Therefore zy € UforA > A*so (z)) — z. e

6. Compactness Revisited and The Tychonoff Product Theorem

With nets and filters available, we can give a nice characterization of compact spaces in terms of
convergence.

Theorem 6.1 For any space X, the following are equivalent:

1) X is compact

2) if Fisafamily of closed sets with the finite intersection property, then (F # 0
3) every filter F has a cluster point

4) every filter can be enlarged to a filter that converges

5) every net has a cluster point

6) every net has a convergent subnet

7) every universal net converges

8) every ultrafilter converges.

Proof We proved earlier that 1) and 2) are equivalent ( see Theorem 1V.8.4 ).

2) = 3) If Fisafilter in X, then F has the finite intersection property, so {cl F': F € F} is a
family of closed sets also with the finite intersection property. By ii), 3z € {clF: F € F}soxisa
cluster point of F.

3) = 4) |If F is afilter, then F has a cluster point x so, by Theorem 4.7, there is a filter G O F such
that G — z.

4) = 5) If (z)) is a net, consider the associated filter 7. By 4) there is a filter G O F where
G — x € X. Gis generated by a subnet (x,,) and by duality, (z,,) — =.

5) = 6) If (x)) has a cluster point z, then by Corollary 4.8, there is a subnet (z),) — .

6) = 7) If (x)) is a universal net, then 6) gives that (z,) has a subnet that converges to a point z.
Then z is a cluster point of (z)). Since (x,) is universal, (z,) — « by Corollary 5.10.

7) = 8) This is immediate from the duality between universal nets and ultrafilters (Theorems 5.9
and 4.4)
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8) = 1) Suppose X is not compact and let &/ = {U, : a € A} be an open cover with no finite
subcover. Then for any oy, as,..an€ A, X # U, UU,, U... UU,,; so, by complements,
0#(X—-Uy)N ... N (X =U,,). Therefore S={X —U, :a € A} is a collection of closed sets
with the finite intersection property. The set of all finite intersections of sets from S is a filter base
which generates a filter 7, and we can find an ultrafilter V O F.

Every point z is in U, for some a, so x ¢ X — U, = cl (X — U,). Therefore z is not a
cluster point of V. In particular, this implies V -4 z. Since x was arbitrary, this means V' does not
converge. e

Theorem 6.1 gives us a fresh look at the relationship between some of the “compactness-like”
properties that we defined in Chapter 1V:

X is compact iff X is sequentially compact iff
every net has a convergent subnet every sequence has a convergent subsequence
(Theorem 6.1) (Definition 1V.8.7)
N e

X is countably compact iff
every sequence has a cluster point (Theorem 1V.8.10) iff
every sequence has a convergent subnet (Corollary 4.8)

It is now easy to prove that every product of compact spaces is compact.

Theorem 6.2 (Tychonoff Product Theorem) Suppose X = [[{X.:a € A} # 0. X is compact iff
each X, is compact.

Proof Foreach o, X, = m,[X] so if X is compact, then each X, is compact.

Conversely, suppose each X, is compact and let (x,) be a universal netin X = [[{X, : a € A}.

For each o, (m,(z,)) is a universal net in X,, (Check: if A C X,, then () is eventually in 7' [A] or
71X — A], s0 (m.(z))) eventually in A or X — A.) But X, is compact, so by Theorem 6.1
(ma(zy)) — some point z, € X,. Let z=(z,) € X. By Corollary 5.13, (z,) — 2. Since every
universal net in X converges, X is compact by Theorem 6.1. e

Remark: A quite different approach to the Tychonoff Product Theorem is to show first that a space X
is compact iff every open cover by subbasic open sets has a finite subcover. This is called the
Alexander Subbase Theorem and the proof is nontrivial: it involves an argument using Zorn's Lemma
or one of its equivalents.

After that, it is fairly straightforward to show that any cover of X = [[{X,:« € A} by sets of
the form 7, }[U,,] has a finite subcover. See Exercise E10.
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At this point we restate a result which we stated earlier but without a complete proof (Corollary
VI1.3.16).

Corollary 6.3 A space X is Tychonoff iff it is homeomorphic to a subspace of a compact Hausdorff
space. (In other words, the Tychonoff spaces are exactly the subspaces of compact Hausdorff spaces.)

Proof A compact Hausdorff space is Ty, and therefore Tychonoff. Since the Tychonoff property is
hereditary, every subspace of a compact T5 space is Tychonoff.

Conversely, every Tychonoff space X is homeomorphic to a subspace of some cube [0, 1]™. This cube
is Hausdorff and it is compact by the Tychonoff Product Theorem. e

Remark Suppose X is embedded in some cube [0, 1]™. To simplify notation, assume X C [0, 1]™.
Then X Ccl X = K C[0,1]". K is a compact 75 space containing X as a dense subspace and K is
called a compactification of X. Since every Tychonoff space can be embedded in a cube, we have
therefore shown that every Tychonoff space X has a compactification.

Conversely, if K is a compactification of X, then K is Tychonoff and its subspace X is also
Tychonoff. Therefore X has a compactification iff X is Tychonoff.

Our proof of the Tychonoff Product Theorem used the Axiom of Choice (AC) in the form of Zorn's
Lemma (to get the necessary universal nets or ultrafilters). The following theorem shows that, in fact,
the Tychonoff Product Theorem and AC are equivalent. This is perhaps somewhat surprising since AC
is a purely set theoretical statement while Tychonoff's Theorem is topological. On the other hand, if
“all mathematics can be embedded in set theory” then every mathematical statement is purely set
theoretical.

Theorem 6.5 (Kelley, 1950) The Tychonoff Product Theorem implies the Axiom of Choice (so the
two are equivalent).

Proof Suppose {X, : « € A}is a collection of nonempty sets. The Axiom of Choice is equivalent to
the statement that [ . , X, # 0 (see Theorem 6.2.2).

Let Y, = X, U {p} where p ¢ (J,.,X. and give Y, the very simple topology 7,, = {Y,, {p}, 0}.
Then Yy, is compact, so Y = [, Y. is compact by the Tychonoff Product Theorem.

{p} is openinY,, so X, is closed in Y,. Therefore F = {m'[X,.] : « € A} is a family of closed sets
in Y. We claim that F has the finite intersection property.

Suppose aq, o, ..., a, € A, Since the X, 's are nonempty, there exist points z,, € X,,, ...,
Ta, € X,

Define f : A — (J,c4Ya by:
fora € A, f(a) = {

o, fa=q
P if a # a1, a0,..., ay

To be more formal — since this is the crucial set-theoretic issue in the argument — we
can formally and precisely define f_in ZF by:
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f={la,y) e AxUpepYo: (=1 ANy=x,)V..V(ia=a, Ny =x,,)
V((@#a)AN. Ala#a,))ANy=p)}

Then f € m ' [Xo ] NNt [ X, -

Since F has the finite intersection property and Y'is compact, (\F #0. If ge(F, then
g € [1,eaXao and therefore T .4 Xo # 0. o

If [[X. # 0 and any X,'s are noncompact, then [[X, is noncompact. And we note that if infinitely
many X,'s are noncompact, then [[X, is “dramatically” noncompact as the following theorem
indicates.

Theorem 6.6 Let X = [[{X,:a € A} # 0. If infinitely many of the X,'s are not compact, then
every compact closed subset of X is nowhere dense. (Thus, all closed compact subsets of X are “very
skinny”” and ““far from” being all of X.)

Proof Suppose B is a compact closed set in X and that B is not nowhere dense. Then there is a point
x and indices ay, ag, ..., ay, such that x € < U,,, Uy,, ...U,, > C int(cl B) =intB C B. Then
| B] = X, for a # aq, ag, ..., ap, S0 X, is compact if o # oy, o, ..., ay. @

7. Applications of the Tychonoff Theorem

We have already used the Tychonoff Theorem in several ways (see, for example, Corollary 6.3 and the
remarks following.) It's a result that is useful in nearly all parts of analysis and topology, although its
full generality is not always necessary. In this section we sketch how it can be used in more
“unexpected” settings. The following examples also provide additional insight into the significance of
compactness.

The Compactness Theorem for Propositional Calculus

Propositional calculus is a part of mathematical logic that deals with expressions such as p A q, p V g,
p=gq, ~p, (p=q)Vr, etc. Letterssuchas p,q,r,... are often used to represent “propositions”
that can have “truth values” T (true) or F (false). These letters are the “alphabet” for propositional
calculus. For example, we could think of p as representing the (false) proposition “2 + 2 = 5” or the
(true) proposition “Vz € R(z > 0= Jy € R (y* =x))”. However, p could not represent an
expression like “z = 57, because this expression has no truth value: it contains a “free variable” z.

In propositional calculus, propositions p, ¢, ... are thought of as “atoms” — that is, the internal structure
of the propositions p, g, ... (such as variables and quantifiers) is ignored. Propositional calculus deals
with “basic” or “atomic” propositions such as p, ¢, ..., with compounds built up from them such as
(pVq) and ~ (~ pVq), and with the relations between their truth values. We want to allow the

408



possibility of infinitely many propositions, so we will use Ay, ..., A,, ... as our alphabet instead of the
letters p, g, ... that one usually sees in beginning treatments of propositional calculus.

Here is a slightly more formal description of propositional calculus.
Propositional calculus has an alphabet A = {A;, A, ..., A,,,...}. We will assume A is countable,

although that restriction is not really necessary for anythlng we do. Propositional calculus also has
connective symbols: (, ), v, and ~ .

Inductively we define a collection W of well-formed formulas (called wffs, for short) that are the
“legal expressions” in propositional calculus:

1) foreachn, A, isawff
2) if ¢ and ¢ are wffs, so are (¢ V) and ~ ¢.

For example, ((A13V Ag) V ~ Ay) and ~ (A; Vv Ay) are wifs but the string of symbols (V Az VvV V)
is not a wff. If we like, we can add additional connectives A and =- to our propositional calculus,
defining them as follows:

Given wffs ¢ and 1,

GAb= ~(~6V ~u) and
b= Y =1V ~ 0.

Since A and = can be defined in terms of v and ~ , it is simpler and involves no loss to develop the
theory using just the smaller set of connectives.

A truth assignment is a function s that assigns a truth value to each A,. More formally,
s:A—{T,F}, so sc{T,F}=(C. We give Cthe product topology. By the Tychonoff
Theorem, C' is compact (in fact, by Theorem VI1.2.19, C' is homeomorphic to the Cantor set).

A truth assignment s can be used to assign a unique truth value to every wff in W, that is, we can
extend s to a function 5 : W — {T, F'} as follows:

For any wff o we define:

ifo =A,, thens (0) =

|
~

if 5(p) =T ors (v)

F  otherwise

ifo=¢ Vi, thens (o) = {

ifa:wqb,then?(a):{IT? ig;:

We say that a truth assignment s satisfies a wff o if 5 (o) = 7. A set of wffs X is called satisfiable if
there exists a truth assignment s € {7T", F'}* such that s satisfies o for every o € ¥.

For example,

Y ={A41, A1V Ay, Ay} is satisfiable  (We can use any s for which
s(A1) =s(A2) =T)
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Y ={A4, ~(AV ~ Ay)}isnotsatisfiable (If s(A;) =T, then
S(~ AV ~A))=F)

Theorem 7.1 (Compactness Theorem for Propositional Calculus) Let X be a set of wffs. If every
finite subfamily of X is satisfiable, then X is satisfiable.

Proof Let C = {T,F}" and suppose that every finite subset of 3 is satisfiable. Then for each
ogeX, A, ={s e C:ssatisfies o} # (). We claim that A, is closed in C

Suppose s ¢ A,. We need to produce an open set U containing s for which U N A, = (.

For a sufficiently large n, the list A4, ..., A,, will contain all the letters that occur in o.

LetU ={tcC: t;=s;,i=1,...,n} = {51} x ... x {s,} x {T, F}*. In other words, U is
the set of truth assignments that agree with s for all the letters A, ..., A, that may occur

in o. Since s fails to satisfy o, each ¢ € U also fails to satisfy o,s00 € U C C — A,.

The A,'s have the finite intersection property — in fact, this is precisely equivalent to saying that every
finite subset of X is satisfiable. Since C'is compact, (\{A, : 0 € £} # 0, i.e., X is satisfiable. e
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If we assume the Alexander Subbase Theorem (see the remarks following Theorem 6.2, as well as
Exercise E10), then we can also prove that the Compactness Theorem 7.1 is equivalent to the
statement that C' = {T', F'}*is compact.
Suppose the Compactness Theorem 7.1 is true. To show that C' is compact it is sufficient, by
the Alexander Subbase Theorem, to show that every cover of C' by subbasic open sets has a
finite subcover. Each subbasic set has the form 7, L [{T'}] or 7, L [{ F'}].
Taking complements, we see that it is sufficient to show that:

if F is any family of closed sets with the finite intersection property and each set in F
has form C' — 7, [{T'}] = =, [{F}] or C — 7, [{F}] = =, [{T}], then NF # 0.

Let F = {F, : a € A} be any such family. For each a € A, define a wff

_ {An if £y =m,'[{T}]
eT\ ~A, if Fy=m'[{F}]

Clearly, o, is satisfied precisely by the truth assignments in F.

Let X = {0, : « € A}. Since the F,'s have the finite intersection property, any finite subset
of X is satisfiable. By the Compactness Theorem, X is satisfiable, so (|F # 0. e

Note: If the propositional calculus is allowed to have an uncountable alphabet of cardinality m, then
the compactness theorem is equivalent to the statement that {7, F'}"" is compact; the proof requires
only minor notational changes.

A “map-coloring'* theorem

Imagine that M is a (geographical) map containing infinitely many countries Cy, Cy, ..., C,, ... .
A valid coloring ¢ of M with 4 colors (red, white, blue, and green, say) is a function

C: {01, CQ, veey Cn, } — {R, W, B, G}
such that no two adjacent countries are assigned the same color.
Intuitively, if M doesn't have a valid covering, it must be because some “finite piece” of the map M
has a configuration of countries for which a valid coloring can't be done. That is the content of the
following theorem.
Theorem 7.2 Suppose M is a (geographical) map with infinitely countries C4, ...,C,, .... If every
finite submap of M has a valid coloring, then M has a valid coloring. (Any reasonable definition of
“adjacent” and “submap”” will work in the proof.)

Proof Consider set of all colorings C' = {R, W, B, G}* with the product topology. For each finite
submap F, let Vi = {c € C : cis avalid coloring of F'} # (. We claim that V is closed in C'.
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Suppose ¢ ¢ Vp. We need to produce an open set U with c€ U C C — Vp. If n is large
enough, the list C'y, ...C,, will include all the countries in the submap F'. Then the open set

U= {c(C)} x ... x {c(C)} x {R,W,B,G}"
works — any coloring in U is invalid because it colors the countries in F' the same way c¢ does.

If F1 and F;, are finite submaps of M, then so is Fy U Fy. Since Fy U Fy has a valid coloring by
hypothesis, Veur, € Ve, N Ve, # 0. Therefore F = {Vp : Fa finite submap of M} has the finite

intersection property. Since C'is compact, (F # 0, and any ¢ € (\F is a valid covering of the whole
map M. e

(It is clear that a nearly identical proof would work for any finite number of colors and for maps with
uncountably many countries.)
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Exercises

E1l. Let X be atopological space and a € X. Foreach N € N, pick a point zy € N. If we order N,
by reverse inclusion, then (zy) isanetin X. Prove that (zy) — a.

E2. a) Let (C, <) be an uncountable chain in which each element has only countably many
predecessors. Suppose f : C' — R and that f(\) > 0 for each A € C. Show that the net f does not
converge to 0 in R.

b) Give an example to show that part a) is false if (C', <) is an uncountable poset in which each
element has only countably many predecessors.

b) Is it possible to have a net f : [0,w2) — R and that f(\) > 0 for each A? Is it possible that f
converges to 0 in R? (Recall that w,, denotes the first ordinal with X, predecessors.)

E3. Suppose X is a compact Hausdorff space and that (A, <) is a directed set. For each A € A, let
A, be a nonempty closed subset in X such that A, C A, iff A\ <. Prove that

m{A)\)\GA}#Q

E4. a) Let f:A— X be a net in a space Xand write f(\)=uxz),. For each a €A, let
T, = {x\ : A > a} = “the o' tail of the net.” Show that a point = € X is a cluster point of (z,) iff
x e N{clT,: ae A}

b) Suppose z is a cluster point of the net (x,) a product [ [{X,:« € A}. Show that for each a,
7o (x) € X, is a cluster point of the net (7, (z))).

¢) Give an example to show that the converse to part b) is false.
d) Let (X,d) be a metric space and f : [0,w;) — X a function given by f(«) = x,. Show that

the net (x,) converges iff (x,) is eventually constant.

E5. a) Suppose X is infinite set with the cofinite topology. Let F be the filter generated by the filter
base consisting of all cofinite sets. To what points does F converge?
b) Translate the work in part a) into statements about nets.

E6. Show that if a filter F is contained in a unique ultrafilter ¢/, then F = U.
(Thus, if F is not an ultrafilter, it can enlarged to an ultrafilter in more than one way.)

E7. a) State and prove a theorem of the form:  Suppose z is a point in a space X. Then N, is an
ultrafilter < ...

b) Prove or disprove: Suppose X # () and that F is a maximal family of subsets of X with
the finite intersection property. Then F is an ultrafilter.
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E8. a) Let F be afilter in aset X. Prove that F is the intersection of all ultrafilters containing F.

b) Let ¢/ be an ultrafilter in X and suppose that A; U ... U A,, € U. Prove that at least one A; must
be in U. (This is the filter analogue for a fact in ring theory: in a commutative ring with a unit, every
maximal ideal is a prime ideal.)

c) Give an example to show that part b) is not true for infinite unions.

d) “By duality,” there is a result similar to b) about universal nets. State the result and
prove it directly.

E9. Let U be a free ultrafilterinN and let ¥ = NU {o}, where o ¢ N. Define a topology 7 on X by
7={0O: OCNor O=UU{o}whereU € U}

a) Prove that X is T, and that N is dense in 3.

b) Prove that a free ultrafilter Z/ on N cannot have a countable base.
Hint: Since U is free, each set in &/ must be infinite. Why?

c) Prove that no sequence in N can converge to o (and therefore there can be no countable
neighborhood base at o in X)
(Hint: Work you did in b) might help.)

Thus, 2 is another example of a countable space where only one point is not isolated and which is not
first countable, See the space L in Example 111.9.8.

d) How would the space X be different if 2/ were a fixed ultrafilter?

Note: if /' is a free ultrafilter on N and ¢/’ # U, then the corresponding spaces >’ and X may not be
homeomorphic: the neighborhood systems of o may look quite different. In this sense, free ultrafilters
in N do not all “look alike.”

E10. Suppose (X,7) has a some property P. 7 is called a maximal-P topology (or minimal-P
topology) if any larger (smaller) topology on X fails to have property P. Prove that if (X,7) is a
compact Hausdorff space, then 7" is maximal-compact and minimal-Hausdorff. (Compare Exercise IV
E23.)

In one sense, this “justifies” the choice of the product topology over the box topology: for a
product of compact Hausdorff spaces, a larger topology would not be compact and a smaller one
would not be Hausdorff. The product topology is “just right” to ensure that the property “compact
Hausdorff”” is productive.

E11. Show that the map coloring Theorem 7.2 is equivalent to the statement that {R, W, B, G} is
compact.
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E12. A family B of subsets of X is called inadequate if it does not cover X, and B is called finitely
inadeqguate if no finite subfamily covers X.

a) Use Zorn's Lemma to prove that any finitely inadequate family 5 is contained in a maximal
finitely inadequate family.

b) Prove (by contradiction) that a maximal finitely inadequate family B has the following
property: if C, ..., C,, are subsets of X and C; N ... N C,, € B, then at least one set C; € B.

c) The following are equivalent (Alexander's Subbase Theorem)
i) X has a subbase S such that each cover of X by members of S has a finite subcover

i) X has a subbase S such that each finitely inadequate collection from S is
inadequate

iii) every finitely inadequate family of open sets in X is inadequate
iv) X is compact
d) Use c) to prove the Tychonoff Product Theorem.
E13. This exercise gives still another proof of the Tychonoff Product Theorem. Suppose X, is

compact for all « € A. We want to prove that [[X, is compact. We proceed assuming X is not
compact.

a) Show that there is a maximal open cover I/ of X having no finite subcover.

b) Show that if O is open in X and O ¢ U, then there are sets Uy, ...,U, € U such that
{Uy,...,U,,O} covers X.

c) Show that for each «, {V, C X,: V, is open and <V, > €U} cannot cover X,.
Conclude that for each o we can choose z, € X,s0 that x, ¢ any open set V, for which
<Vo,> elU.

d) Letz = (x,) € X and suppose = € U € U. Pick open sets V,,, C X,,, so that
x€ <Vu,..,V, > CU. Explainwhy each <V, > ¢ U.

e) Show that for each i =1, ..., k, there is a finite family ¢/, C U such that ¢, U < V,, >
covers X.

f) Show that Uleui u{<V,..,V, > }covers X, and then arrive at the contradiction that
Ul u U {U} covers X.
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Chapter IX Review

Explain why each statement is true, or provide a counterexample.

1. Order C'(X) by f < g iff f(z) < g(x) (inR) forevery z € X. Then (C'(X), <) isadirected set.
2. xis a limit point of A in the space X iff there exists a filter 7 such that A — {z} € F and F — =.
3. AsetU isopenin X iff U belongs to every filter 7 which converges to a point of U.

4. Inaspace X, let ®, = {F : Fisafilter convergingto z}. Then (\{F : F € ®,} = N, .

5. Suppose A is a family of subsets of a space X such that if A, B € A then AN B 2 C for some
C € A. Suppose (x,) is a net which is frequently in each set of A. Then (x,) has a subnet which is
eventually in each set in A.

6. If anet (x)) — 2z in X and | X| = N, then (z,) has a subsequence (i.e., a subnet whose directed
set is N) which converges to z.

7. If X is a nonempty finite set and | X| = n, then there are exactly 2" — 1 different filters and exactly
n different ultrafilters on X.

8. A universal sequence must be eventually constant.
9. Suppose X is infinite. The collectionS = {AC X : | X — A| < |X]|} is an ultrafilter.
10. InR, afilter F — z iff Ve > 0 3F € F suchthat z € F and diam (F') < e.

11. If X is compact, then every net in X has a convergent subsequence. (Note: a “subsequence of a
net” is a subnet whose directed set is N.)

12. If z # y in a space X and if N, U N, generates a filter, then X is not 7 .

13. If Fis afilter in [0, w ], then there must be a filter G O F such that G has a cluster point.
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14. Call a setin [0, 1] an endset if it has the form [0, ¢) or (1 — ¢, 1] for some € > 0. To show [0, 1] is
compact, it is sufficient to show that any cover by endsets has a finite subcover.

15. Every separable metric space (X, d) has an equivalent totally bounded metric.

16. Suppose A is the collection of finite subsets of [0, 1], directed by C,and f(F') =1 forall F € A.
The net f converges to 1 in [0, 1].
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