Real 2 x 2 Matrices with Complex Eigenvalues

It turns out that a 2 x 2 matrix with complex eigenvalues, in general, represents a
“rotation and dilation (rescaling)” in a new coordinate system.

The text handles much of its discussion in this section without any proof. I'll try to spell
out some of the details here.

Lemma Suppose A is a2 x 2 real matrix that has a (complex) eigenvalue A = a — bi
(b # 0) and an associated eigenvector v. Then

A(Rev) = a(Rev)+b(Imwv)
A(Imv) = — b (Rewv) 4+ a (Imv)

Proof Write v = Rev + iImw, so that
Av=ARev +i Almv (%x)
AN /!
these are real since A is a real matrix

But on the other hand,

Av= v = (a—bi)v=(a—bi)(Rev+ilmw)
= (aRev+bImv)+ (—bRev+almv)i (%)

Equating real and imaginary parts of (xx) and (x*x) gives

ARev = (aRewv + bImw)
Almv = ( — bRewv + almw), so we're done.



Lemma Suppose A is a 2 x 2 matrix with a complex eigenvalue a — bi and
corresponding complex eigenvector v. Then Re v and Im v are linearly independent
vectors in R

Proof We are assuming the eigenvalue and eigenvector are complex, so b # 0
and Imwv # 0.

Suppose ¢c;Rev + ¢ Imv = 0, and assume ¢; # 0, so that Rev = — ;—flm v.
Then
0 = A(ciRev + ¢2 Imw)
=cjARev+ csAlmwv
=ci(aRev+bImwv) + co( — bRev + almw) (by the first

Lemma)

=ci(a(— 2Imv) +bImv) + eo( = b (- ZImv) + almw)
= —cpalmv+ be;Imo + bc—(?lmv + acolmo
= be;Imo + bc—cl%Imv

02
= b(cilmv + 2Imw)

Since b # 0, ci;lmwv + glm'v =(c + —%)Imfu = 0, and since Imwv # 0

C.
C
c
(a1 +2)=0,s0
Cl = — =
C% - — 02.
But we are assuming ¢; # 0, so ¢? > 0, so this equation is impossible.

Assuming ¢; # 0 leads to an impossibility, so it must be that ¢; = 0.

Since ciRe v + ¢ Imw = 0, we then have ¢; Imv = 0. But Imv # 0, so
co 0 also. Therefore ¢y, ¢y are both 0, so Rev and Imw are linearly independent.



Theorem Suppose A is a 2 x 2 real matrix with a complex eigenvalue a — bi and a
corresponding (complex) eigenvector v.

the columns of P are the vectors Rewv and Im v and
Then A = PCP~!, where {a — b}
¢= b «a

Proof From the Lemma, we know that the columns of P are linearly independent, so PP
is invertible. To check that A = PC P~!, we only need to verify that AP = PC.

AP = A[Rev Imv]|=[ARev Almv] =[aRev+blmv —bRev+almv]

PC = [Rev Im’"]{z _ab] =[ [Rew Imv]{g] [Rew Imv][ _ab}]

=[aRev+bImv —bRev+almv]=AP.

Suppose A is a real 2 x 2 matrix with a complex eigenvalue a — bi and a corresponding
eigenvector v. Let P = [Rev Imuw].

By the theorem, A = [Rev Imw] Z -0 [Rev Imwv] L.
[Z _ab] can be written as T[Z;ﬁg _COSSHZ)G],Where r=+/a%+0b%.

Thus C represents a counterclockwise rotation (if 6 is chosen > 0) around the origin
through the angle 6, followed by a rescaling factor of 7.

If we use B = {Rew, Imwv } as a new basis for R?, then the change of coordinate matrix
Pg = P = Rewv Imw]. The effect of A, broken into several steps, is:

r Pglz = [z]5 —  Clzg —  PgClz|p = Az
switch rotate and switch back
to dilate in new so standard
B coordinates coordinate coordinates
system

1) If r = 1, C represents a “pure* rotation (in the new coordinates)



2) If r > 1, then the successive images g, €1 = Axq, ..., Tpy1 = ATy, ...

move further and further away from the origin (assuming g # 0)

3) If r < 1, then the successive images xqg, 1 = Axg, ..., Tpy1 = Az, ...
approach the origin.



Example Let A =

det [

=)\ — g)\ + 1 = 0, which has the same solutions as 4\> — 7TA +4 = 0
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The eigenvalues are A = “V 0= =T 4 V.10 = T 4 VD

For no particular reason, choose the eigenvalue A = % —

To find the corresponding eigenspace: solve (A — A\I)z =0
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We could continue row reducing but it's easier, here, to note that the first equation
says

(—=3++/154)z —4xy =0, that is, £y = ﬂ -

Note: for a 2 X 2 homogeneous system in general, the first equation might solve
as xo = kyxy; the second equation might solve as xo = kox1. If the system had
only the trivial solution, then ki and ky would be different, and just looking at the
first equation might mislead us into thinking there were nontrivial solutions.
However, in this example, we know in advance that the system has nontrivial

V15

solutions (since A = % — Y51 is an eigenvalue). Therefore the second
equation will give the same relationship between xo and x;. (Check it!)
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Choosing 1 = 1, we can write down an eigenvector l 34 A neater

4
i t 1d be 4 ti thi Tv= /15 i |
eigenvector would be 4 times this one: v [ 3415 z]



In the notation of the Theorem, we have:
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@i (soaz%,b:i)

® corresponding €igenvector v , 1or

o= | 2],
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e Aneigenvalue A\ = { —

which Rev =

4 0
_ 8 _ _
= | /5 : and P = [Rev Imuv| = {_3 \/ﬁ]
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Theorem 9 states that A factors as PCP 1 :
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I checked this for errors using Matlab: rounded to 4 places, Matlab gives

3.5 —1.9365

— .75 4.8412} =Fo

ar—|



What does this mean geometrically? As in our first example, we can write
a —b -

e-[s V-5 3]
T

_ 2 2 _ 49 , 15 _ 64 _
Here,r =V a*+0* =1/ 1+ 6 =\ g =150
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so C represent a “pure rotation” (the rescaling factor » = 1), and since
cosf = %, we can choose 6 = 0.5054 (radians) ~ 28.96°
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where cos ) = g, sinf) = @ Using a calculator or Matlab we find that

~ 0.5054 radians (rounded to 4 places), or § ~ 50.1338°.

Multiplication by C' rotates a vector counterclockwise by an angle 6 around the

origin (and then rescales it by a factor of r, but in this example r = 1).



An alternate way of looking at this is to think of the first and last steps as simply
renaming points in the new coordinates, rather than moving points around in R?:
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New coordinate system
and new graph paper
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Standard coordinate system
and graph paper



The figure below shows an example where we take () = {(1)} and plot =y, 1 = Az,

o = A:z:l, veey 24 — A:z:23.

Plat of %0, x1, .. x24 whare Wppq = Aoy
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The images run along an elliptical “orbit” — even though C' is a “pure” rotation (r = 1),

0
the new coordinate basis vectors { _43} ) { \/1—5} are not perpendicular and have

different lengths, so the orbit isn't a circle.



2 =2

3 5 } = 4x(matrix A in the

To briefly illustrate the case where r > 1, let A = [

preceding example).

Multiplying a square matrix by 4 multiplies the eigenvalues by 4 but doesn't change the
eigenvectors (why? -- check this from the definitions of eigenvalue and eigenvector. )
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2 - 2] has a complex eigenvalue \ = % — ~5— i with a corresponding

SoAz[3 5

4
eigenvector . According to the Theorem, we can write
8 { —3+/15 z] 8

4 0

2 -2 1o vBirg o 17!
3 5 ] | -3 VI5]| /5 1
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I checked this for errors using Matlab: rounded to 4 places, Matlab gives

14  —7.7460
AP = { —3  19.3649 } =PC
a - b 4 - Q % - 815
Here,C’:[b a}:r b a =4 VB :
T T 8 8

_4 cos) —sind
~ |sinf@  cosf |’

where cos 0 = %, sinf = @ Again, we can choose 6 ~ 0.5054

or 6 ~ 50.1338°. The matrix C' rotates the new coordinate vector and then rescales it by
a factor of 4.



The following figure illustrates the first few iterations, starting with g = {(1)} :
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