Chapter I11
Topological Spaces

1. Introduction

In Chapter I we looked at properties of sets, and in Chapter II we added some additional structure
to a set — a distance function d — to create a pseudometric space. We then saw some of the most
basic fundamental definitions and properties of pseudometric spaces. There is much more, and
some of the most useful and interesting properties of pseudometric spaces will be discussed in
Chapter IV. But in Chapter III we look at an important generalization.

We observed, early in Chapter II, that the idea of continuity (in calculus) depends on talking
about “nearness,” so we used a distance function d to make the idea of “nearness” precise. In that
way, we were able to extend the definition of continuity from R" to pseudometric spaces. The
distance function d also led us to the idea of open sets in a pseudometric space. From there we
developed properties of closed sets, closures, interiors, frontiers, dense sets, continuity, and
sequential convergence.

An important observation in Chapter II was that open (or closed) sets are really all that we
require to talk about many of these ideas. In other words, we can often do what's necessary using
the open sets without knowing which specific d generated the open sets: the topology 7; is what
really matters. For example, int A is defined in (X, d) in terms of the open sets, so int A doesn't
change if d is replaced with a different but equivalent metric d’ — one that generates the same
open sets. Similarly, changing d to an equivalent metric d’ doesn't affect closures, continuity, or
convergent sequences. In summary: for many purposes d is logically unnecessary once d has
done the job of creating the topology 7, (although having d might still be convenient).

This suggests a way to generalize our work. For a particular set X we can simply assign a
topology — that is, a collection of “open” sets given without any mention of a pseudometric that
might have generated them. Of course when we do this, we want the “open sets” to “behave the
way open sets should behave” as described in Theorem II.2.11. This leads us to the definition of
a topological space.

2. Topological Spaces

Definition 2.1 A topology 7 on a set X is a collection of subsets of X such that
i) 0,XeT
ii) if O, € T foreach a € A, then |J,. 4 O, € T
iii) if O¢,...,0, € 7,thenO1N...N O, € T.

A set O C X is called open if O € 7. The pair (X, 7) is called a topological space.

Sometimes we will just refer to “a topological space X.” In that case, it is assumed that there is
some topology T on X but, for short, we are just not bothering to write down the “T )
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We emphasize that in a topological space there is no distance function d: therefore phrases like
“distance between two points” and “e-ball” make no sense in (X, 7). There is no preconceived
idea about what “open” means: to say “O is open” means nothing more or less than “O € 7.”

In a topological space (X, 7 ), we can go on to define closed sets and isolated points just as we
did in pseudometric spaces.

Definition 2.2 A subset F'in (X, 7) iscalled closed if X — F' is open, that is, if X — F € 7.
Definition 2.3 A point a € (X, 7T ) is called isolated if {a} is open, that is, if {a} € 7.

The proof of the following theorem is the same as it was for pseudometric spaces; we just take
complements and apply properties of open sets.

Theorem 2.4 In any topological space (X, 7)
i) 0 and X are closed
ii) if F,, is closed for each a € A, then ﬂaeAFOé is closed
iii) if F1, ..., F), are closed, then | J;_, F; is closed.
More informally, ii) and iii) state that intersections and finite unions of closed sets are closed.
Proof Read the proof for Theorem I1.4.2. o
For a particular topological space (X,7), it might or might not be possible to find a

pseudometric d on X that “creates” this topology — that is, one for which 7; = 7.

Definition 2.5 A topological space (X, 7 ) is called pseudometrizable if there exists a
pseudometric d on X for which 7; = 7. If d is a metric, then (X, 7) is called metrizable.

Examples 2.6

1) Suppose X isasetand 7 = {(J, X}. 7 is called the trivial topology on X and it is
the smallest possible topology on X. (X, 7)is called a trivial topological space. The
only open (or closed) sets are () and X. If we put the trivial pseudometric d on X, then
7, = 7. So a trivial topological space turns out to be pseudometrizable.

At the opposite extreme, suppose 7 = P(X). Then 7 is called the discrete topology on
X and it is the largest possible topology on X. (X,7) is called a discrete topological
space. Every subset is open (and also closed). Every point of X is isolated. If we put the
discrete unit metric d (or any equivalent metric) on X, then 7; = 7. So a discrete
topological space is metrizable.
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2) Suppose X = {0,1}andlet 7 = {0, {1}, X}. (X, 7) is a topological space called
Sierpinski space. In this case it is not possible to find a pseudometric d on X for which
T, = T, so Sierpinski space is not pseudometrizable. To see this, consider any
pseudometric d on X.

If d(0,1) = 0, then d is the trivial pseudometric on X and {0, X} =7; # 7.

If d(0,1) = é > 0, then the open ball Bs(0) = {0} € 73, s0 7y # T.
(In this case 1 is actually the discrete topology: d is just a rescaling of the
discrete unit metric.)

Another possible topology on X = {0,1}is 7' = {0, {0}, X'}, although (X, 7) and
(X,7") seem very much alike: both are two-point spaces, each with exactly

one isolated point. One space can be obtained from the other simply renaming “0”” and
“1” as “1” and “0” respectively. Such “topologically identical” spaces are called
“homeomorphic.” (We will give a precise definition later in this chapter.)

3) Foraset X,let7 ={OC X: O=10 or X — Oisfinite}. 7 is a topology on X :
i) Clearly, ) € Tand X € 7.

ii) Suppose O, € 7 foreacha € A. If |J,.4On =0, then |, ,0. € T.
Otherwise there is at least one O,, # (). Then X — O,, is finite, so

X — UneaOa = Naens(X = 0,) € X = O,,. Therefore X — |J,c 40, is
also finite, so | J,c 400 € 7.

iii) If Oy, ..., O,, € T and some O; = (), then ()_,0; =0 so()_,0;, € T.
Otherwise each O; is nonempty, so each X — O; is finite. Then
(X—01)U...U(X—-0,)=X -0, is finite, so ()_,0; € T.

In (X,7), aset Fis closed iff F' = ) or F'is finite. Because the open sets are () and the
complements of finite sets, 7 is called the cofinite topology on X.

If X is a finite set, then the cofinite topology is the same as the discrete topology on X.
(Why?) If X is infinite, then no point in (X, 7') is isolated.

Suppose X is an infinite set with the cofinite topology 7. If U and V' are nonempty
open sets, then X — U and X — V must be finite so (X —U) U (X — V)

= X — (UnNV)is finite. Since X is infinite, this means thatU NV # () (in fact,
U NV must be infinite). Therefore every pair of nonempty open sets in (X, 7") has
nonempty intersection! This shows us that an infinite cofinite space (X, 7) is not
pseudometrizable:

i) if d is the trivial pseudometric on X, then certainly 7; # 7, and
ii) if d is not the trivial pseudometric on X, then there exist points

a,b € X for which d(a,b) = ¢ > 0. In that case, Bs/»(a) and B, ,(b)
would be disjoint nonempty open sets in 74, so 7; # 7.
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4) OnR,let 7 = {(a,00): a € R}U{D,R}. Itis easy to verify that 7 is a topology
on R, called the right-ray topology. Is (R, 7 ) metrizable or pseudometrizable?

If X =0, then 7 = {(} is the only possible topology on X, and 7 = {0, {a}} is the only
possible topology on a singleton set X = {a}. But for |X| > 1, there are many possible
topologies on X. For example, there are four possible topologies on the set X = {a,b}. These
are the trivial topology, the discrete topology, {0,{a}, X}, and {0,{b}, X} although, as
mentioned earlier, the last two can be considered as “topologically identical.”

If 7 is a topology on X, then 7 is a collection of subsets of X, so 7 C P(X). This means that
T € P(P(X)), so IP(P(X))l = 2@™) is an upper bound for the number of possible topologies
on X. For example, there are no more than 22~ 3.4 x 103 topologies on a set X with 7
elements. But this upper bound is actually very crude, as the following table (given without
proof) indicates:
n = |X]| Actual number of distinct
topologies on X

0 1

1 1

2 4

3 29

4 355

5 6942

6 209527

7 9535241 (many less than 10%%)

Counting topologies on finite sets is really a question about combinatorics and we will not pursue
this topic.

Each concept we defined for pseudometric spaces can be carried over directly to topological
spaces if the concept was defined in topological terms — that is, in terms of open (or closed) sets.
This applies, for example, to the definitions of interior, closure, and frontier in pseudometric
spaces, so these definitions can also be carried over verbatim to a topological space (X, 7).

Definition 2.7 Suppose A C (X, 7). We define

intxy A = the interior of Ain X = (J{O : Oisopenand O C A}}
clyA = the closure of Ain X = ({F : Fisclosed and F D A}
Fry A = the frontier (or boundary) of Ain X = clyANclyx(X — A)

As before, we will drop the subscript “X”” when the context makes it clear.
The properties for the operators cl, int, and Fr (except those that mention a pseudometric d or

an e-ball) remain true. The proofs in the preceding chapter were deliberately phrased in
topological terms so they would carry over to the more general setting of topological spaces.
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Theorem 2.8 Suppose A C (X, d). Then

1) a) int A is the largest open subset of A (that is, if O is open and O C A, then
O Cint A).
b) Aisopen iff A= int A (Note: int A C A is true for every set A so we
could say: Ais open iff A C int A.)
c) x € int A iff there is an open set O such thatz € O C A

2) a)cl A is the smallest closed set containing A (that is, if F'is closed and F' O A,
then F' D cl A).
b) Aisclosed iff A =cl A (Note: A C cl A is true for every set A, so we
could say: A is closed iff cl A C A.)
c) z € cl A iff for every open set O containing x, O N A # ()

3) a) FrAisclosed and Fr A = Fr(X — A).
b) x € Fr A iff for every open set O containing , O N A # () and
ON(X—A)#0
c) Ais clopen iff Fr A = ().

See the proof of Theorem 11.4.5

At this point, we add a few additional facts about these operators. Some of the proofs are left as
exercises.

Theorem 2.9 Suppose A, B are subsets of a topological space (X, 7). Then

1) cl(AUB) =cl(A) U cl(B)

2) clA=AUFrA

3)int A=A—-FrA=X—cl(X - A)

4) FrA=clA—intA

5) X =int AUFrAUint (X — A), and these 3 sets are disjoint.

Proof 1) A C AU B so, from the definition of closure, we have cl A C cl (AU B).
Similarly, c1 B C cl (AU B) Thereforecl AUcl B C cl (AU B).

On the other hand, cl A U cl B is the union of two closed sets, so cl1 AU cl B is closed
and clAU c1B 2D AUB, soclAU clB D cl(AU B). (As an exercise, try proving 1) instead
using the characterization of closures given above in Theorem 2.8.2c.)

Is 1) trueif “U” is replaced by “ N ?

2) Suppose x € cl A but x ¢ A. If O is any open set containing x, then O N A # ()
(because = € clA) and ON(X — A) # (0 (because the intersection contains z). Therefore
z€FrA,soxr € AUFrA.

Conversely, suppose © € AUFrA. If x € A, then z € cl A. And if = ¢ A, then
xreFrA=clANcl(X —A),sox €clA. ThereforeclA = AUFrA.

The proofs of 3) — 5) are left as exercises. e
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Theorem 2.9 shows us that complements, closures, interiors and frontiers are interrelated and
therefore some of these operators are redundant. That is, if we wanted to very “economical,” we
could discard some of them. For example, we could avoid using “Fr” and “int” and just use “cl”
and complement because FrA =clANcl(X — A)andint A=A —FrA

=A—(clAncl(X — A)). Of course, the most economical way of doing things is not
necessarily the most convenient. (Could we get by only using complements and “Fr” — that is,
can we define “int” and “”cl” in terms of “Fr” and complements? Or could we use just “int”
and complements?)

Here is a famous related problem from the early days of topology: for A C (X,7), is there an
upper bound for the number of different subsets of X which might created from A using only
complements and closures, repeated in any order? (As we just observed, using the interior and
[frontier operators would not help to create any additional sets.) For example, one might start
with A and then consider such sets as cl A, X — clA, cl(X —cl(X — A)), and so on. An old
theorem of Kuratowski (1922) says that for any set A in any space (X, 7 ), the upper bound is
14. Moreover, this upper bound is “sharp” — there is a set A C R from which 14 different sets
can actually be obtained! Can you find such a set?

Definition 2.10 Suppose (X, 7) is a topological space and D C X. Dis called dense in X if
cl D = X. The space (X, 7)is called separable if there exists a countable dense set D in X.
Example 2.11 Let 7 be the cofinite topology on R. Let E = {2,4,6,...}.

int E = (), because each nonempty open set O has finite complement and therefore
O € E. Infact, forany B C R: if R — B is infinite, then int B = ()

cl E = R because the only closed set containing E is R. Therefore (R, 7) is separable.
In fact, any infinite set B is dense.

FrE=cl(E)Ncd(R—E)=RNR=R

(R, 7) is not pseudometrizable (why?)

Example 2.12 Let 7 be the right-ray topology on R. In (R, 7),
intZ =10
clZ =R, so (R, T) is separable
FrZ =R

Any two nonempty open sets intersect, so (R, 7") is not metrizable. Is it
pseudometrizable?
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3. Subspaces

There is a natural way to create a new topological space from a subset of a given topological
space. The new space is called a subspace (not merely a subset) of the original space.

Definition 3.1 Suppose (X, 7) is a topological space and that A C X. The subspace topology
on Aisdefinedas 7y = {ANO: 0 € T} and (A,7,)is called a subspace of (X, 7).
We sometimes call O N A the “restriction of O to A” or the “trace of O on A”

You should check the conditions in Definition 2.1 are satisfied: in other words, that T4 really

is a topology on A. When we say that A is a subspace of (X, T), we mean that A is a subset of
X with the subspace topology Ts. To indicate that A is a subspace, we sometimes write
A C (X, T)rather than A C X.

Example 3.2 Consider N C R, where R has its usual topology. For each n € N, the interval
(n—1,n+ 1) is open in R. Therefore (n — 1,n 4+ 1) NN = {n} is open in the subspace N, so
every point n is isolated in the subspace. The subspace topology is the discrete topology. Notice:
the subspace topology on N is the same as what we get if we use the usual metric on N to
generate open sets in N. Similarly, it is easy to check that in R? the subspace topology on the -
axis is the same as the usual metric topology on R.

More generally: suppose A C X, where (X, d) is a pseudometric space. Then we can think of
two ways to make A into a topological space.

i) d gives a topology 7; on X. Take the open sets in 7; and intersect them
with A. This gives us the subspace topology on A, which we call (7;) 4 and
(A, (Zg)a) is a subspace of (X, 7).

2) Or, we could view A as a pseudometric space by using d to measure distances
in A. To be very precise, d : X x X — R, so we make a “new” pseudometric
d' defined by d’ = d|A x A. Then (A, d’) is a pseudometric space and we can
use d’ to generate open sets in A: the topology 7.

Usually, we would be less compulsive about notation and continue to
use the name “d” also for the pseudometric on A. But for a moment it will be
helpful to distinguish carefully between d and d' = d|A x A.

Fortunately, it turns out that 1) and 2) produce the same open sets in A : the open sets in (A4, d")
are just the open sets from (X, d) restricted to A. That's just what Theorem 3.3 says, in “fancier”
notation.

Theorem 3.3 Suppose A C X, where (X, d) is a pseudometric space. Then (73)4 = 7y .
Proof If U € (7;)4, then U = ON A where O € 7;. Let a € U. There is an € > 0 such that

B%(a) C O. Sinced’ = d|A x A, we getthat BY (a) = BY(a)NACONA=U,soU € Ty
Conversely, suppose U € 7;.. For each a € U there is an ¢, >0 such that

f (a) C and U = UanBd/( ). Let O =U,cyB&(a), an open set in 7;.  Since
B! (a) = ( )N A weget ONA = (UyeoBi(a) N A= (UueoBi(a) N A)
= U,err ( ) =U. Therefore U € (7)a. ®
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Exercise Verify that in any topological space (X, 7)

i) If U is open in (X,7) and A is an open set in the subspace U, then A is open in X.
(“An open subset of an open set is open.”)

ii) If F'isclosedin (X,7) and A is a closed set in the subspace F', then F'is closed in X.
(“A closed subset of a closed set is closed.”)

4. Neighborhoods

Definition 4.1 Let (X,7) be a topological space and suppose N C X. If z € int N, then we
say that N is a neighborhood of z .

The collection N, ={N C X : Nis a neighborhood of z} is called the
neighborhood system at .

Note that
1) N # 0, because every point x has at least one neighborhood — for example,
X eN,.
2) If Ny and Ny € N, then = € int Ny Nint Ny = (why?) int (N7 N Ny).
Therefore N; N Ny € N,.
3) I NeAN,and N C N/, thenz €int N Cint N/, so N’ € N, (thatis, if
N’ contains a neighborhood of x, then N’ is also a neighborhood of x.)

Just as in pseudometric spaces, it is clear that a set O in (X, 7) is open iff O is a neighborhood
of each of its points. (See Theorem 11.5.4)

In a pseudometric space, we use the e-balls centered at z to measure “nearness” to z. For
example, if “every e-ball in R centered at = contains an irrational number,” this tells us that
“there are irrational numbers arbitrarily near to x.” Of course, we could convey the same
information in terms of neighborhoods by saying “every neighborhood of x in R contains an
irrational number.” Or, instead, we could say it in terms of “open sets”: “every open set in R
containing = contains an irrational number.” These are all equivalent ways to say “there are
irrational numbers arbitrarily near to x.” This isn't that surprising sinceopen sets and
neighborhoods in (X, d) were defined in terms of e-balls.

In a topological space (X,7) we don't have e-balls, but we still have open sets and
neighborhoods. We now think of the neighborhoods in A/, (or, if we prefer, the collection of
open sets containing z) as the tool we use to talk about “nearness to x.”

For example, suppose X has the trivial topology 7. For any x € X, the only neighborhood of =
is X: therefore every y in X is in every neighborhood of z : the neighborhoods of z are unable
to “separate” z and y, and that's analogous to having d(z,y) = 0 (if we had a pseudometric). In
that sense, all points in (X, 7") are “very close together”: so close together, in fact, that they are
“indistinguishable.” The neighborhoods of x tell us this.

At the opposite extreme, suppose X has the discrete topology 7 and that x € X. If z € W then
(since W is open), W is a neighborhood of x. The smallest neighborhood of = is N = {x}. So
every point x has a neighborhood NV that excludes all other points y: for every y # x, we could
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say “y is not within the neighborhood N of z.” This is analogous to saying “y is not within € of
2” (if we had a pseudometric). Because no point y is “within N of x,” we call x isolated. The
neighborhoods of z tell us this.

Of course, if we prefer, we could use “U is an open set containing x” instead of “N is a
neighborhood of x” to talk about nearness to x.

The complete neighborhood system N of a point x often contains more neighborhoods than we
actually need to talk about nearness to x. For example, the open balls Bi(x) in a pseudometric
space (X, d) are enough to let us talk about continuity at x. Therefore, we introduce the idea of a
neighborhood base at = to choose a smaller collection of neighborhoods of z that is

i) good enough for all our purposes, and
ii) from which all the other neighborhoods of x can be obtained if we want them.

Definition 4.2 A collection B, C N, is called a neighborhood base at z if for every
neighborhood N of z, there is a neighborhood B € B, such that x € B C N. We refer to the
sets in 3, as basic neighborhoods of x.

According to the definition, each set in B, must be a neighborhood of x, but the collection 5,
may be much simpler than the whole neighborhood system N,. The crucial thing is that every
neighborhood N of x must contain a basic neighborhood B of x.

Example 4.3 In (X, d), possible ways to choose a neighborhood base at x include:

i) B, = the collection of all balls B(z), or
ii) B, = the collection of all balls B, (z) , where € is a positive rational, or
iii) B, = the collection of all balls B1(x) forn € N, or

iv) B, =N, (The neighborhood system is always a base for itself, but it
is not an “efficient” choice; the goal is to get a base B,
that's much simpler than N,.)

Which B, to use is our choice: each of i)-iv) gives a neighborhood base at . But ii) or iii)
might be more convenient — because ii) and iii) are countable neighborhood bases B,. (If
X =R, for example, with the usual metric d, then the collections B, in i) and iv) are
uncountable.) Of the four, iii) is probably the simplest choice for B, .

Suppose we want to check whether some property that involves neighborhoods of z is true.
Often all we need to do is to check whether the property holds for neighborhoods in the simpler
collection B,. For example, in (X,d): O is open iff O contains a neighborhood N of each
z € O. But that is true iff O contains a set B: (x) around each of its points x.

Similarly, = € cl A iff NNA#( for every N € N, iff BN A # () for every B € B,. For
example, suppose we want to check, in R, that 1 € cIP. It is sufficient just to check that
Bi(1) NP # 0 for each n € N, because this implies that N NP # () for every N € N;.

Therefore it's often desirable to make an “efficient” choice of neighborhood base B, at each
pointx € X.
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Definition 4.4 We say that a space (X, 7 ) satisfies the first axiom of countability (or, more
simply, that (X, 7) is first countable) if at each point € X, it is possible to choose a countable
neighborhood base B, .

Example 4.5
1) The preceding Example 4.3 shows that every pseudometric space is first countable.

2) If 7T is the discrete topology on X, then (X,7) is first countable. In fact, at each
point x, we can choose a neighborhood base that consists of a single set: B, = { {z} }.

3) Let 7 be the cofinite topology on an uncountable set X. For any x € X, there cannot
be a countable neighborhood base B, at z.

We prove this by contradiction: suppose we had a countable neighborhood base
at some point z : callit B, = {By, ..., B, ...}.

For any y # z, {y} is closed, so X — {y} is a neighborhood of x. Then, by the
definition of neighborhood base, there is some % for which x € int B, C By
C X — {y}. Therefore y ¢ (,—,int B,.

Butz € (,—,int B, so (),—,int B, = {z}.

Then X — {z} = X — (" _,int B, = |J,~, (X — int B,). Since X — int B, is
finite (why?), this would mean that X — {x} is countable — which is impossible.

Since any pseudometric space is first countable, the example gives us another way to see that this
space (X, 7) is not pseudometrizable.

In (X, 7), the neighborhood system N, at each point x is completely determined by the
topology 7, but B, is not. As the preceding examples illustrate, there are usually many possible
choices for B,. (Can you describe all the spaces (X,T) for which B, is uniquely determined at
each point x 7)

On the other hand, if we were given B, at each point x € X we could
1) “reconstruct” the whole neighborhood system N,.:
N, ={N C X: 3B € B,suchthatz € B C N}, and then we could
2) “reconstruct” the whole topology 7 :
7 = {0 : O is aneighborhood of each of its points}
={O:V2x € O3B € B, z € B C O}, that s,

O is open iff O contains a basic neighborhood of each of its points.

This illustrates one method of describing a topology: by telling the neighborhood basis 3, at
each point. Various effective methods to describe topologies are discussed in the next section.
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5. Describing Topologies

How can a topological space be described? If X = {0, 1}, it is simple to give a topology by just
writing 7 = {0, {0}, X}. However, describing all the sets in 7" explicitly is often not the easiest
way to go.

In this section we look at three important — different but closely related — ways to define a

topology on a set. All of them will be used throughout the course. A fourth method — by using a
“closure operator” — is not used much nowadays. It is included just as an historical curiosity.

A. Basic neighborhoods at each point

Suppose that at each point = € (X,7) we have picked a neighborhood base B, . As mentioned
above, the collections B, implicitly contain all the information about the topology: a set O is in
T iff O contains a basic neighborhood of each of its points. This suggests that if we start with
just a set X, then we could define a topology on X if we begin by saying what the B,'s should
be. Of course, we can't just put “random” sets in 3, : the sets in each 3, must “act the way
basic neighborhoods are supposed to act.”” And how is that? The next theorem describes the
crucial behavior of a collection of basic neighborhoods at = in any topological space.

Theorem 5.1 Suppose (X,7) is a topological space and that for each point z € X, B, is a
neighborhood base.

1)B,#0and Be B, =€ BCX

2) if By and B, € B,, then 3 B3 € B, such that x € B3 C By N By

3) if B € B,,then 3 I suchthatx € I C B and,
Vyel 3B, € Bysuchthaty € B, C I

4)0e€T & VreO dB e B, suchthatx € B C O.

Proof 1) Since X is a neighborhood of x, there is a B € B, such that x € B C X. Therefore
B, # 0. If B € B, C N,, then B is a neighborhood of z, so z € int B C B C X.

2) The intersection of the two neighborhoods B; and B, of x is a neighborhood of z.
Therefore, by the definition of a neighborhood base, there is a set Bs € B, such that
r € B3 C BN Bs.

3) Let I = int B. Then « € I C B and because [ is open, / is a neighborhood of each its
points y. Since B, is a neighborhood base at y, there is a set B, € B, suchthaty € B, C I.

4) = :If O is open, then O is a neighborhood of each of its points z. Therefore for each
x € O there mustbe aset B € B, suchthatx € B C O.
< :The condition implies that O contains a neighborhood of each of its points.
Therefore O is a neighborhood of each of its points, so O is open. e
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Theorem 5.1 lists the crucial features of the behavior of a neighborhood base at x. The next
theorem tells us that we can put a topology on a set X by assigning a “properly behaved"
collection of sets to become the basic neighborhoods at each point z.

Theorem 5.2 (The Neighborhood Base Theorem) Let X be a set. Suppose that for each
x € X we give a collection B, of subsets of X in such a way that conditions 1) - 3) of Theorem
5.1 are true. Define 7 = {OC X:Vrxr € O dB € B, such that xt € BC O}. Then 7 is a
topology on X and B, is now a neighborhood base at = in (X, 7).

Note: In Theorem 5.2, we do not ask that the B, 's satisfy condition 4) of Theorem 5.1 — since X
is a set with no topology (yet), condition 4) would be meaningless. Rather, Condition 4) becomes
the motivation for how to define a topology T using the B, 's.

Proof We need to prove three things: a) 7 is a topology
b) each B € B, is now a neighborhood
of xin (X, 7T), and
¢) the collection B, is now a neighborhood base at x.

a) Clearly, ) € 7. If x € X then, by condition 1), we can choose any B € B, and
xr € B C X. Therefore X € 7.

Suppose O, € T foralla € A. If x € |J{O0,: a € A}, then z € O, for some
ay € A. By definition of 7, there is a set B € B, such that z € B C 0,, C |J{O,: a € A}, so
U{On:a € A} € T.

To finish a), it is sufficient to show that if O;and Oy € 7, then O; N Oy € T.
Suppose z € O; N Os. By the definition of 7, there are sets B; and B, € B, such that
x€ B COy and x € By C 0y, s0 x € BN By CO;NOy. By condition 2), there is a set
B; € B, suchthat x € B3 C B; N By C 01 N Oy. Therefore 01 N0y € 7.

Therefore 7 is a topology on X — so now we have a topological space (X,7 ) — and we must
show that B, is a neighborhood base at = in (X,7). Doing so involves the awkward-looking
condition 3) — which we have not yet used.

b) If B € B,, then x € B (by condition 1) and (by condition 3), there is a set /] C X
such that r € I C Band Vye€l, 3 B, € B,such that y € B, C I . The underlined phrase
states that [ satisfies the condition for I € 7, so [ is open. Since I isopenandz € I C B, B is
a neighborhood of z, that is, B, C N,.

c) To complete the proof, we have to check that B, is a neighborhood base at z. If
N is a neighborhood of z, then z € int N. Since int IV is open, int N must satisfy the criterion
for membership in 7, so there is a set B € B, such that xt € B Cint N C N. Therefore B,
forms a neighborhood base at z.
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Example 5.3 Foreachz € R, let B, = {[z,b) : b > z}. We can easily check the conditions
1)-3) from Theorem 5.2:

1) Foreach x € R, certainly B, # ()and © € [z, b) for each set [z,b) € B,
2) If By = [z,b1) and By = [z, by) are in B,, then (in this example) we can
choose By = By N By = [z,b3) € B,, where b3 = min {b1, by }.
3) If B = [z,b) € B,, then (in this example) we can let I = B.
If ye I =|xz,b), pickecsoy < c <b.Then B, = [y,c) € B, and
y € [y,c) C 1.

According to Theorem 5.2, 7 = {O CR: Vz € O 3[z,b) € B, such that z € [z,b) C O} isa
topology on R and B, is a neighborhood base at = in (R, 7). The space (R,7) is called the

Sorgenfrey line.

Notice that in this example each set [x,b) € 7: that is, the sets in BB, turn out to be open , not
merely neighborhoods of . (This does not always happen.)

It is easy to check that sets of form ( — oo, ) and [b, c0) are open, so ( — 0o, x) U [b, 00)
=R — [z,b) is open. Therefore [z, b) is also closed. So at each point x in the Sorgenfrey line,
there is a neighborhood base B, consisting of clopen sets.

We can write (a,c) = J,—[a + %, ¢), so (a,c) is open in the Sorgenfrey line. Because every
usual open set in R is a union of sets of the form (a, ¢), we conclude that every usual open set in
R is also open in the Sorgenfrey line. The usual topology on R is strictly smaller that the
Sorgenfrey topology: 7 ; T.

Q is dense in the Sorgenfrey line: if z € R, then every basic neighborhood [z, b) of x intersects
Q, so x € c1Q. Therefore the Sorgenfrey line is separable. It is also clear that the Sorgenfrey
line is first countable: at each point z the collection {[z,z+ 1):n € N} is a countable
neighborhood base.

Example 5.4 Similarly, we can define the Sorgenfrey plane by putting a new topology on R?.
At each point (z,y) € R?, let B, = {[z,b) X [y,¢) :b >z, ¢ >y} The families B,
satisfy the conditions in the Neighborhood Base Theorem, so they give a topology 7 for which
B(..y) isa neighborhood base at (z,y). A set O C R*is open iff: for each (z,y) € O, there are
b > x and ¢ > ysuch that (z,y) € [z,b) X [y,c) C O. (Make a sketch!) You should check that
the sets [z,b) x [y,c) € B(,,) are actually clopen in the Sorgenfrey plane. It is also easy to
check the usual topology 7;on the plane is strictly smaller that the Sorgenfrey topology. It is
clear that Q? is dense, so (R?, 7)) is separable. Is the Sorgenfrey plane first countable?

Example 5.5 At each point p € R?, let C.(p) = {x € R? : d(z,p) < €} and define

B, ={C.(p): p€R?}. It is easy to check that the conditions 1)-3) of Theorem 5.2 are
satisfied. (For C.(p)in condition 3), let = B.(p).) The topology generated by the B,'s is just
the usual topology; the sets in B, are basic neighborhoods of p in the usual topology — as they
should be — but the sets in B, did not turn out to be open sets.
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Example 5.6 LetT" = {(z,y) € R? : y > 0} = the “closed upper half-plane.”

For a point p = (z,y) € I' with y > 0, let B, = {B.(p) : e < |y|}
For a point p = (z,0) € T, let

B, = {{p} U A: Ais ausual open disc in the upper half-plane, tangent to the z-axis at p}.
It is easy to check that the collections B, satisfy the conditions 1)-3) of Theorem 5.2 and
therefore give a topology on I'. In this topology, the sets in B, turn out to be open neighborhoods
of p.
The space I', with this topology, is called the “Moore plane.” Notice that I' is separable and first

countable. The subspace topology on the z-axis is the discrete topology. (Verify these
statements!)

B. Base for the topology

Definition 5.7 A collection of open sets in (X,7) is called a base for the topology 7 if each
O € T is a union of sets from B. More precisely, B is a base if B C 7 and for each O € 7,
there exists a subfamily .A C B such that O = [ J.A. We also call B a base for the open sets and

we refer to the open sets in B as basic open sets.

If B is a base, then it is easy to see that: O € T iff Vo € O 4B € Bsuchthatz € B C O. This
means that if we were given B, we could use it to decide which sets are open and thus
“reconstruct” 7.

Of course, one example of a base is B = 7 : every topology 7 is a base for itself. But usually
there are many ways to choose a base, and the idea is that a simpler base B would be easier to
work with. For example, the set of all balls is a base for the topology 7; in any pseudometric
space (X,d); a different base would be the set containing only the balls with positive rational
radii. (Can you describe those topological spaces for which T is the only base for T ?)

The following theorem tells us the crucial properties of a base B in (X, 7).
Theorem 5.8 If (X, 7) is a topological space with a base B for 7, then
)X ={B:BehB}

2)if B; and By € Band x € By N By, then there is a set B3 € B
such thatx € By C By N Bs.

Proof 1) Certainly | JB C X and — since X is open — the definition of base implies that X is the
union of a subfamily of B. Therefore | JB = X.

2) If Byand B, € B, then B; N B, is open so By N By must be the union of some sets
from B. Therefore, if x € B; N By, there must be aset Bs € Bsuchthatx € B C B1 N By. e
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The next theorem tells us that if we are given a collection B of subsets of a set X with properties
1) and 2), we can use it to define a topology.

Theorem 5.9 (The Base Theorem) Suppose X is a set and that B is a collection of subsets of
X that satisfies conditions 1) and 2) in Theorem 5.8. Define 7 = {O C X : O is a union of sets
fromB} ={0OC X : Vz €O 3B € Bsuchthatz € B C O}.

Then 7 is a topology on X and B is a base for 7.

Proof First we show that 7 is a topology on X. Since () is the union of the empty subfamily of
B, we get that () € 7, and condition 1) simply states that X € 7.

If0, €7 (o€ A), then | J{O, : a € A} is a union of sets O, each of which is itself a union of
sets from B. Then clearly [ J{O, : @ € A}is a union of sets from B, so (J{O, :a € A} € T.

Suppose O; and Oy € 7 and that x € O; N 0. For each such z we can use 2) to pick a set
B, € B such that x € B, C O; N 0y. Then O N Oy is the union of all the B,'s chosen in this
way,s0o 01 N0, € T.

Now we know that we have a topology, 7, on X. By definition of 7 it is clear that 5 C 7 and
that each set in 7 is a union of sets from 3. Therefore B is a base for 7. e

Example 5.10 The collections

B ={B,(e): peR%, >0}
B’ ={By(3): p€Q? keN}and

B’ = {(a,b) x (¢,d) : a,b,c,d €R, a <b, c <d}

each satisfy the conditions 1) -2) in Theorem 5.9, so each collection is the base for a topology on
R2. 1In fact, all three are bases for the same topology on R? — that is, the usual topology (check
this!) Of the three, B’ is the simplest choice — it is a countable base for the usual topology.

Example 5.11 Suppose (X,7") and (Y, 7") are topological spaces. Let B = the set of “open
boxes” in X x Y ={U xV :U €T and V € T"}. (Verify that B satisfies conditions 1) and
2) of The Base Theorem.) The product topology on the set X x Y is the topology for which B is
a base. We always assume that X x Y has the product topology unless something else is stated.

Therefore a set A C X x Y'is open (in the product topology) iff : for all (z,y) € A, there are
opensets U C X and V C Y such that (z,y) € U x V C A. (Note that A itself might not be a
“box.”)

Let m : X x Y — X be the “projection” defined by 7 (x,y) = x. If U is any open set in X,
then 7 {U] = U x Y € B. Therefore 7! [U] is open. Similarly, for my : X X Y — Y defined
by mo(z,y) =y : if Vis open in Y, then m, ! [V] = X x V is open in X x Y. (As we see in
Section 8, this means that the projection maps are continuous. It is not hard to show that
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the projection maps 71 and o are also open maps: that is, the image of open sets in the
product is open).

If Dy is dense in X and D, is dense in Y, we claim that D; x D5 is dense in X x Y. If
(z,y) € A, where A is open, then there are nonempty open sets U C X and V C Y for which
(x,y) e U xV C A. Since x € cl Dy, we know that U N Dy # (J; and similarly V' N Dy # ().
Therefore (U x V)N (Dy x Do) =(UNDy) x (VNDy)#D, so AN(D; x Dy) # 0.
Therefore (z,y) € cl(Dy x Dy). So Dy x Dy is dense in X x Y. In particular, this shows that
the product of two separable spaces is separable.

Example 5.12 The open intervals (a,b) form a base for the usual topology in R, so each set
(a,b) x (c,d) is in the base B for the product topology on R x R. It is easy to see that every
“open box” U x V in B can be written as a union of “simple open boxes” like (a,b) x (c,d).
Therefore B’ = {(a,b) x (¢,d) : a < b, ¢ < d} also is a (simpler) base for the product topology
on R x R. From this, it is clear that the product topology on R x R is the usual topology on the
plane R? (see Example 5.10).

In general, the open sets U and V in the base for the product topology on X XY can be
replaced by sets “U chosen from a base for X’ and “V chosen from a base for Y,” as in
this example. So in the definition of the product topology, it is sufficient to say that basic
open sets are of the form U x V', where U and Vare basic open sets from X and from'Y .

Definition 5.13 We say that a space (X, 7 ) satisfies the second axiom of countability (or, more
simply, that (X, 7)is a second countable space) if it is possible to find a countable base B for
the topology 7.

For example, R is second countable because, for example, B = {(a,b) : a,b € Q} is a countable
base. Is R? is second countable (why or why not) ?

Example 5.14 The collection B = {[z,z+ +): © € R, n € N} is a base for the Sorgenfrey
topology on R. But the collection {[z,z + <) : = € Q, n € N} is not a countable base for the
Sorgenfrey topology. Why not?

Since the sets in a base may be simpler than arbitrary open sets, they are often more convenient
to work with, and working with the basic open sets is often all that is necessary — not a surprise
since all the information about the open sets in contained in the base 3. For example, you should
check that

1) If B is a base for 7, then = € cl A iff each basic open set B containing z satisfies
BNA#(.

2) If f:(X,d)— (Y,d') and Bis a base for the topology 7; on Y, then fis

continuous iff f~[B] is open for each B € B. This means that we needn't check the inverse
images of all open sets to verify that f is continuous.
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C. Subbase for the topology

Definition 5.15 Suppose (X,7) is a topological space. A family & of open sets is called a
subbase for the topology 7 if the collection B of all finite intersections of sets from & is a base
for 7. (Clearly, if B is a base for T, then B is automatically a subbase for T .)

Examples i) The collection S = {/ : I = (—o00,b) or I = (a,00), a,b € R} is a subbase for
a topology on R. All intervals of the form (a,b) = ( — 00,b) N (a,00) are in B, so B is a base
for the usual topology on R.

ii) The collection & of all sets U x Y and V' x X (for U open in X and Vopen in Y)
is a subbase for the product topology on X X Y: these sets are open in X X Y and the
collection 3 of all finite intersections of sets in & includes all the open boxes

UxV=UxY)N(XxV).

We can define a topology on a set X by giving a collection & of subsets as the subbase for a
topology. Surprisingly, any collection & can be used: no special conditions on G are required.

Theorem 5.16 (The Subbase Theorem) Suppose X is a set and G is any collection of subsets
of X. Let B be the collection of all finite intersections of sets from &. Then B is a base for a
topology 7, and & is a subbase for 7 .

Proof First we show that B satisfies conditions 1) and 2) of The Base Theorem.

1) X € B since X is the intersection of the empty subcollection of & (this follows
the convention that the intersection of an empty family of subsets of X is X itself. See Example
14.5.5). Since X € B, certainly X = |J{B: B € B}.

2) Suppose B; and By € B, and x € BN By;. We know that B; = S§1N...NS,
and By = S;,41 N... NSy for some Sy,..., Siy ooy Siak € S, s0

r € By=B NBy = SiN... ﬁS,nﬂSm,+1 n.. ﬁSerk eB
Therefore 7 = {O : O is a union of sets from B} is a topology, and B is a base for 7. By

definition of B and 7, we have & C B C 7 and each set in 7 is a union of finite intersections of
sets from &. Therefore G is a subbase for 7. e

Example 5.17

1) Let E = {2,4,6,...} C Nand & = {{1},{2}, E}. & is a subbase for a topology on
N. A base for this topology is the collection 5 of all finite intersections of sets in &:

B={0,N, {2}, {1}, E}.
The not-very-interesting topology 7 generated by the base B is collection of all possible unions

of sets from B :
T - {@, N’ {1}’ {2}’ {1’2}’ E’ EU {1}}
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2) Foreachn € N, let S, = {n,n+ 1,n+2,...}. The collection S = {S,, : n € N} is
a subbase for a topology on N. Here, S,, N S,, = Sj where kK = max{m,n}, so the collection of
all finite intersections from & is just G itself. So B = G is actually a base for a topology. The
topology is 7 = G U {0}.

3) Let G = {{: { is a straight line in R?}in R?. For every point p € R?, {p} is the
intersection of two sets from &, so {p} € B. & is a subbase for the discrete topology on R?.

4) Let & = {{: / is a vertical line in R?}. & generates a topology on R? for which
B={R* §}UGisabaseand 7 = {O: O is aunion of vertical lines}.

5) Let Gbe a collection of subsets of X and suppose that 7" is any topology on X for
which & C 7'. Since 7' is a topology, it must contain all finite intersections of sets in &, and
therefore must contain all possible unions of such intersections. Therefore 7' contains the
topology 7 for which & is a subbase. To put it another way, the topology for which &_is a
subbase is in the smallest topology on X containing the collection &. In fact, as an exercise, you
can check that

7T =(N{7':7'2 &andT'isatopology on X}.

Caution We said earlier that for some purposes it is sufficient (and simpler) to work with basic
open sets, rather than arbitrary open sets — for example to check whether « € cl A, it is sufficient
to check whether U N A # () for every basic open set U that contains x. However, it is not
always sufficient to work with subbasic open sets. Some caution is necessary.

For example, S = {I : I = (—00,b) or I = (a,0), a,b € R} is a subbase for the
usual topology on R.  We have I N Z # () for every subbasic open set I containing %, but
1 ¢ clz.
2

D. The closure operator

Usually we describe a topology 7 by giving a subbase G, a base B, or by giving collections 3, to
be the basic neighborhoods ateach point z. In the early history of general topology, one other
method was sometimes used. We will never actually use it, but we include it here as a curiosity.

Let cly be the closure operator in (X,7) (normally, we would just write “cl” for the closure
operator; here we write “cly” to emphasize that this closure operator comes from the topology
T on X). It gives us all the information about 7. That is, using cly, we can decide whether any
set A is closed (by asking “is cl; A = A ?”) and therefore can decide whether any set B is open
(by asking “is X — B closed ?”). It should be not be a surprise, then, that we can define a
topology on a set X if we are start with an “operator” which “behaves like a closure operator.”
How is that? Our first theorem tells us the crucial properties of a closure operator.
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Theorem 5.18 Suppose (X, 7 ) is a topological space and A, B are subsets of X. Then

1) clr0 =10

2) A - CITA

3) Aisclosed iff A =clfA

4) CITA = ClT (CITA>

5) CIT(A UB) = clfA U clsB

Proof 1) Since 0 is closed, cl70) = ()
2) AC(|{F:Fisclosedand AC F'} =clr A

3) = : If Aisclosed, then A itself is one of the closed sets F' used in the definition
cly A= N{F : Fisclosedand ' O A}, so A =cly A
< : If A = cly A, then A is closed because clr A is an intersection of closed sets.

4) cly Ais closed, so by 3), clr A = clr(clr A)

5 AUB D A,socly(AUB) Dclr A, Similarly, cly (AU B) D cly B.
Therefore cly (AU B) 2 cly (A) Ucly(B).

On the other hand, cly A Ucly B is a closed set that contains A U B, and therefore
clrAUcly B D CIT(A U B) °

The next theorem tells us that we can use an operator “cl” to create a topology on a set.

Theorem 5.19 (The Closure Operator Theorem) Suppose X is a set and that for each
A C X, a subset cl A is defined ( that is, we have a function cl : P(X) — P(X) ) in such a way
that conditions 1), 2), 4) and 5) of Theorem 5.18 are satisfied. Define 7 = {O:
cl(X —0)=X—0}. Then 7 is a topology on X, and cl is the closure operator for this
topology (that is, cl = clt).

Note: i) Such a function cl is called a “Kuratowski closure operator,” or just “closure
operator” for short.

iit) The Closure Operator Theorem does not ask that cl satisfy condition 3): initially,
there is no topology on the given set X, so 3) would be meaningless. But 3) motivates the
definition of T as the collection of sets whose complements are unchanged when “cl” is
applied..

Proof (Numbers in parentheses refer to properties of “cl”)

First note that:

(*) ifAQB,thenclAchAUclB(i)cl(AUB):clB

T has the properties required for a topology on the set X :
(2)
i) X CclX, soX =clX. Thereforecl (X —0) =clX =X =X—0,s00eT.

1
Also, cl(X — X) = cl(Z)(:)(Z) = X — X, so therefore X € 7.
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ii) Suppose O,, € T for each a € A. For each particular oy € A, we have
*

(*)
(X —O0,) Ccl(X —0,,) =X — 0,, because O,, € 7. This is true for every
ag € A, soc(X —JO,) CN(X —0,) =X —JO,.

But by 2), we know that X — |JO, C cl(X — JO,).

Therefore cl(X — |JO,) = X —JO,,s0JO, € 7.

iii) If Oy and O are in 7, then cl(X — (0; N 03)) = cl((X — 01) U (X — 0y))

&) (X —01)Ucl(X —03) = (X —01)U (X —0,) (since Oy and Oy € T)

= X — (01 N 0y). Therefore O1 N Oy € T. Therefore 7 is a topology on X.

Having this topology 7 now gives us an associated closure operator cly and we want to show
that cl; = cl. First, we observe that for closed sets in (X, 7) :

(**) cly B = B iff Bisclosedin (X,7)
iff X—BeTiff cl(X—(X—B))=X-(X—B) iff cI|B=B.

To finish, we must show that cl A = cly Aforevery A C X.

A Cclr A, so (*) gives that cl A C cl(cly A). Butcly A is closed in (X, 7),
so using B = cly A in (**) gives clcly A = cly A. Therefore cl A C cl A.

4
On the other hand, clcl A(:) cl A, sousing B = cl A in (**) gives
that cl A is closed in (X, 7).

Butcl A D A, so cl A is one of the closed sets in the intersection that defines
clr A. Therefore cl A D cly A. Thereforecl A = clyA. o

Example 5.20
, A if Ais finite
1) Let X be aset. For A C X, definecl A = {X i Ais infinite
Then cl satisfies the conditions in the Closure Operator Theorem. Since cl A = A iff A is finite
or A= X, the closed sets in the topology generated by cl are precisely X and the finite

sets — that is, cl generates the cofinite topology on X.
2) For each subset A of R, define
clA = {xz € R : there is asequence (a,) in A with each a,, > = and la,, — x| — 0}.
It is easy to check that cl satisfies the hypotheses of the Closure Operator Theorem. Moreover, a
set A is open in the corresponding topology iff Vx € A 3b > x such that [z,b) C A. Therefore
the topology generated by cl is the Sorgenfrey topology on R. What happens in this example if

“ > ”isreplaced by “ > ” in the definition of cl ?

Since closures, interiors and Frontiers are all related, it shouldn't be surprising that we can also
describe a topology by defining an appropriate “int” operator or “Fr” operator on a set X.
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El. Let X ={0,1,2,.,.,.} = {0} UN. For O C X, let

¢o(n) = the number of elements inO N [1,n] = |O N[1,n]|. Then define
T={0:0¢0 or (0€0 and lim 2 —1)}

a) Prove that 7 is a topology on X.

b) In any topological space: a point z is called a limit point of the set A if

NN (A—{z}) # 0 for every neighborhood N of =. Informally, x is a limit point of A
means that there are points of A, other than x itself, arbitrarily close to x. Prove that
in any topological space, a set B is closed iff B contains all of its limit points.

¢) For (X, 7) as defined in a): prove that x is a limit point of X if and only if x = 0.

E2. Suppose (X, 7) is a topological space and that A, C X for each o € A.

E3.

E4.

a) Prove that if |J{cl A, : a € A} isclosed, then
U{clAs:a€ A} = cl(|J{An: a € A})
(Note that “ C ” is true for any collection of sets A,.)

b) A family {B,, : a € A} of subsets of X is called locally finite if
each point x € X has a neighborhood N such that N N B,, # () for only
finitely many «'s. Prove thatif {B, : o € A} is locally finite, then

U{clBy:ae A} = cl(U{Ba:a € A})

¢) Prove that in (X, 7"), the union of a locally finite family of closed sets is closed.

Suppose f : (X,d) — (Y, s). Let B be a base for the topology 7, and let & be a
subbase for 7;. Prove or disprove: f is continuous iff f~![O] is open for all O € B iff
/7'[O]is open forall O € &.

A space (X, T) is called a T} -space if {« } is closed for every x € X.

a) Give an example where (X, 7 ) is not a T}-space and 7 is not the trivial topology.

b) Prove that X is a T'-space if and only if, given any two distinct points =,y € X, each
point is contained in an open set not containing the other point.

¢) Prove that in a 7} -space, each set {x} can be written as an intersection of open sets.
d) Prove that a subspace of a T}-space is a T}-space.

e) Prove that if a pseudometric space (X, d) is a T3-space, then d must in fact be a
metric.

f) Prove that if X and Y are T}-spaces, sois X X Y.
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ES.

E6.

E7.

(X, 7)) is called a Ty-space ( or Hausdorff space ) if whenever z,y € X and = # y, then
there exist disjoint open sets U and V withx € U andy € V.

a) Give an example of a space (X, 7 ) which is a T -space but not a T>-space (see E4.) .
b) Prove that a subspace of a Hausdorff space is Hausdorff.
¢) Prove that if X and Y are Hausdorff, then sois X x Y.

Prove that every infinite 75-space contains an infinite discrete subspace — that is, a
subset which is discrete in the subspace topology (see ES).

Suppose that (X,7) and (Y, 7 ') are topological spaces. Recall that the product
topology on X x Y is the topology for which a base is the collection of “open boxes”

B={UxV:UeT,VeT'}

Therefore a set O C X x Y is open in the product topology iff for all (z,y) € O, there
exist open sets U in X and V in Y such that (z,y) € U x V' C O. (Note that the
product topology on R x R is the usual topology on R%. (We always assume that the
topology used on a product of two spaces X X Y is the product topology unless
something different is explicitly stated.)

a) Verify that B is, in fact, a base for a topology on X x Y.

b) Consider the projection map 71 : X x Y — X. Prove that if O is any open set in

X x Y (not necessarily a “box”), then 1 [O] is open in X. (We say 7 is an open map.
The same is true for the projection ;.)

¢) Prove thatif A C X and B C Y, then clyyy (A x B) = clyA x cly B. Use this to
explain why “the product of two closed sets is closed in X x Y.”

d) Show that X x Y has a countable base iff each of X and Y has a countable base.

) Show that there is a countable neighborhood base at (z,y) € X x Y iff there is a
countable neighborhood base B, at x € X and a countable neighborhood base B, at
yey.

f) Suppose (X, d;) and (Y, ds) are pseudometric spaces. Define a pseudometric d on the
set X x Y by

d((z1,91), (22,92)) = di (21, 22) + do(y1,92).
Prove that the product topology on X x Y is the same as the topology 7.

Note: d is the analogue of the taxicab metric in R?. There are other equivalent
pseudometrics that produce the product topology on X x Y, for example

d'((z1, 1), (T2, 30)) = (di(z1,22)* + do(y1,92)%)"/?, and

d"((x1,y1), (22, 2)) = max{di(z1,22),d2(y1,92) }-
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E8.

E9.

E10.

Suppose A C (X, 7). The set A is called regular open if A = int(cl A) and A is regular
closed if A = cl(int A).

a) Show that for any subset B

i) X—clB int (X — B)
i) X—intB = cl(X — B)

b) Give an example of a closed subset of R which is not regular closed.

¢) Show that the complement of a regular open set in (X, 7) is regular closed
and vice-versa.

d) Show that the interior of any closed set in (X, 7") is regular open.
e) Show that the intersection of two regular open sets in (X, 7") is regular open.

f) Give an example of the union of two regular open sets that is not regular open.

In each part, prove the statement or provide a counterexample:

a) For any z in a topological space (X, 7), {z} is equal to the intersection of all
open sets containing .

b) In a topological space, a finite set must always be closed.

¢) Suppose we have topologies 7, on X, one for each « € A. Then ({7,: a € A} is
also a topology on X.

d) If 77 and 7 are topologies on X, then there is a unique smallest topology 73 on X
such that 7; U 75 C 7s.

e) Suppose, for each o € A, that 7, is a topology on X. Then there is a unique smallest
topology 7 on X such that for each o, 7 D 7,,.

Assume that natural number, except 1, can be factored into primes; you shouldn't need

any other information about prime numbers. For a € Zand d € N, let

and let

B,g={.,a—2d,a—d,a,a+d,a+2d,..} ={a+kd:kecZ}
B={Bui:a€Z,deN}

a) Prove that 3 is a base for a topology 7 on Z

b) Show that each set B, 4 is closed in (Z, T)

c) What is the set [ J{ By, : pis a prime number} ?

d) Part c) tells you what famous fact about the set of prime numbers?
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6. Countability Properties of Spaces

Countable sets are often easier to work with than uncountable sets, so it is not surprising that
spaces with certain “countability properties” are viewed as desirable. Most of these properties
have already been defined, but the definitions are collected together here for convenience.

Definition 6.1 (X,7) is called

first countable if we can choose a countable neighborhood base 5, at every point x € X.
(We also say that X satisfies the first axiom of countability.)

second countable if there is a countable base B for the topology 7. (We also say that X
satisfies the second axiom of countability.)

separable if there is a countable dense set D in X

Lindelof if whenever U/ is a collection of open sets for which [ Ji/ = X, then there is
a countable subcollection U’ = {Uy, Uy, ..., U,, ...} C U for which JU' = X.

U is called an open cover of X, and U’ is called a subcover from ¢. Thus, X is
Lindelof if “every open cover has a countable subcover.”)

Example 6.2

1) A countable discrete space (X, 7) is second countable because B = {{z} : x € X} is
a countable base. Is X first countable? separable? Lindelof ?

2) R is second countable because B = {(a,b) : a,b € Q} is a countable base. Similarly,
R™ is second countable since the collection B of boxes (z1,y1) X (z2,y2) X ... X (2, y,) With
rational endpoints is a countable base (check!)

3) Let X be a countable set with the cofinite topology 7. X has only countably many
finite subsets (see Theorem I.11.1) so there are only countably many sets in 7. (X, 7 )is second
countable because we could choose B = 7 as a countable base.

The following theorem implies that each of the spaces in Example 6.2 is also first countable,
separable, and Lindelof. (However, it is really worthwhile to try to verify these properties, in
each example, directly from the definitions.)

Theorem 6.3 A second countable topological space (X,7) is also separable, first countable,
and Lindelof.

Proof LetB = {0y,0,,...0,,... } be a countable base for 7.
i) For each n, pick a point z,, € O, and let D = {z,, : n € N}. The countable set D is

dense. To see this, notice that if U is any nonempty open set in X, then for some n,
x, € O, CU soU N D # (). Therefore X is separable.
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ii) For each x € X, let B, = {O € B: xz € O}. Clearly B, is a neighborhood base at x,
so X is first countable.

iii) Let U be any open cover of X. If x € X, then x € some set U, € U. For each z, we
can then pick a basic open set O, € B such that x € O, CU,. LetV = {0, :z € X}. Since
each O, € B, there can be only countably many different sets O,: that is, )V may contain
“repeats.” Eliminate any “repeats” and list only the different sets in )V, so
V={0,,,0,,,..0,,,...} where O, CU, €U. Every x is in one of the sets O, so
u ={u,,,U,,,...Uy, ...} is a countable subcover from /. Therefore X is Lindelof. e

The following examples show that no other implications exist among the countability properties
in Theorem 6.3.

Example 6.4
1) Suppose X is uncountable and let 7 be the cofinite topology on X.
(X, T) is separable since any infinite set is dense.

(X,T) is Lindelof. To see this, let U be an open cover of X. Pick any one
nonempty set U € Y. Then X — U is finite, say X — U = {1, ...,x,}. For
each x;, pickaset U; € U withz; € U;. Then U’ = {U}U{U; :i=1,...,n}
is a countable (actually, finite) subcover chosen from U.

However X is not first countable (Example 4.5.3), and therefore, by
Theorem 6.3, X is also not second countable.

2) Suppose X is uncountable. Define 7 = {O C X : O = or X — Ois countable}.

T is a topology on X (check!) called the cocountable topology. A set C' C X is
closed iff C' = X or C' is countable. (This is an “upscale” analogue of the
cofinite topology.)

An argument very similar to the one in the preceding example shows that (X, 7")
is Lindelof. But (X, 7) is not separable — every countable subset is closed

and therefore not dense. By Theorem 6.3, (X, 7") also cannot be second
countable.

3) Suppose X is uncountable set and choose a particular point p € X.
Define7 ={O C X : O=10orpe O}. (Check that T is a topology.)

(X, T) is separable because {p} is dense.

(X, T) is not Lindeldf — because the cover U = {{z, p} : x € X} has no
countable subcover.

Is (X, 7) first countable?
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4) Suppose X is uncountable and let 7 be the discrete topology on X. Then (X, 7) is

first countable because B, = {{z}} is a neighborhood base at =

not second countable  because each open set {x} would have to be in a base B
not separable because cl D = D # X for any countable set D

not Lindelof because the cover i = {{z} : x € X} has no countable

subcover. (In fact, not a single set can be omitted from
U: U has no proper subcover.)

For “special” topological spaces — pseudometrizable ones, for example — it turns out that things
are better behaved. For example, we noted earlier that every pseudometric space (X, d) is first
countable (Example 4.3). The following theorem shows that in (X, d) the other three countability
properties are equivalent to each other: that is, either all of them are true in (X, d) or none are
true.

Theorem 6.5 Any pseudometric space (X, d) is first countable. (X, d) is second countable iff
(X, d) is separable iff (X, d) is Lindelof.

Proof i) Second countable = Lindelof: by Theorem 6.3, this implication is true in any
topological space.

ii) Lindelof = separable: suppose (X, d) is Lindelof. For each n € N, let
U, ={Bi(z): ne N,z € X}. For each n, U, is an open cover so U, has a countable

subcover — that is, for each n we can find countably many %—balls that cover X : say
X =UpeBi(zy). Let D be the set of centers of all these balls: D = {x,,, : n,k € N}. For

any € X and every n, we have € Bi(z, ) for some k, so d(x,z, 1) < % Therefore, for
every n, Bi(x) N D # () — in other words, x can be approximated arbitrarily closely by points
from D. Therefore D is dense, so (X, d) is separable.

iii) Separable = second countable: suppose (X, d) is separable and that
D = {xy,x9,...,xp,...} is a countable dense set. Let B={Bi(z;):n,keN}. Bis a

countable collection of open balls and we claim B is a base for the topology 7;.

Suppose y € O € T,;. By the definition of “open,” there is an € > 0 for which
B.(y) C O. Pickn sothat + < §, and pick z; € Dso thatd(zs,y) < L.
Then y € Bi(zx) C B(y) € O (because z € Bi(xy)

= d(z,y) <d(z,zp) + d(zp,y) <L+ 1 <2(5)=¢€). o

It's customary to call a metric space that has these three equivalent properties a “separable
metric space” rather than a “second countable metric space” or “Lindelof metric space.”

Theorem 6.5 implies that the spaces in parts 1), 2), 3) of Example 6.4 are not pseudometrizable.
In general, to show a space (X, 7)is not pseudometrizable we can i) show that it fails to have
some property shared by all pseudometric spaces (for example, first countability), or ii) show
that it has one but not all of the properties “second countable,” “Lindeldf,” or “separable.”
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Exercises

Ell. Define7 = {U UV : U is open in the usual topology on R and V' C P}.

a) Show that 7 is a topology on R. If z is irrational, describe an “efficient”
neighborhood base at = . Do the same if z is rational.

b) Is (R, 7) first countable? second countable? Lindelsf ? separable?
The space (R, T) is called the “scattered line.” We could change the definition of T by
replacing P with some other set A C R. This creates a space in which the set A is “scattered.”
Hint: See Example 1.7.9.6. It is possible to find open intervals I,, such that| ;" I, 2 Q
00
and for which ) length(1,,) < 1.

n=1

E12. A pointz € (X,7) is called a condensation point if every neighborhood of z is
uncountable.

a) Let C be the set of all condensation points in X. Prove that C'is closed.

b) Prove that if X is second countable, then X — C' is countable.

E13. Suppose (X,7) is a second countable space and let B be a countable base for the
topology. Suppose B’ is another base (not necessarily countable ) for 7 containing open sets all
of which have some property P. (For example, “P” could be “clopen” or “separable.”) Show
that there is a countable base 3" consisting of open sets with property P.

Hint: think about the Lindelof property.

El14. A space (X,7) is called hereditarily Lindelof if every subspace of X is Lindelof.
a) Prove that a second countable space is hereditarily Lindel6f.

In any space, a point x is called a limit point of the set A if NN (A — {z}) # 0 for every

neighborhood N of x. Informally, x is a limit point of A if there are points in A different

from x and arbitrarily close to x.)

b) Suppose X is hereditarily Lindel6f. Prove that the set
A ={z € X : x is not a limit point of X'} is countable.
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E15. A space (X,7) is said to satisfy the countable chain condition (= CCC) if every
family of disjoint open sets must be countable.

a) Prove that a separable space (X, 7) satisfies the CCC.

b) Give an example of a space that satisfies the CCC but that is not separable. (It is not
necessary to do so, but can you find an example which is a metric space?)

E16.  Suppose (X, 7) is a topological space and that P and B are two bases for the topology
7T, and that P and B are infinite.

a) Prove that there is a subfamily B’ C Bsuch that B’ is also a base and | B'| < |P|.
(Hint: For each pair t= (U,V) € P x P, pick, if possible, a set W; € B such that
U CW CV; otherwise set Wy =().)

b) Use part a) to prove that the Sorgenfrey line is not second countable.
(Hint: Show that otherwise there would be a countable base of sets of the form [a,b), but
that this is impossible. )
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7. More About Subspaces

Suppose (X, 7) is a topological space. In Definition 3.1, we defined the subspace topology 74
onACX: 7T,={ANO0O:0€T}. In this section we explore some simple but important
properties of subspaces.

If A C B C X, there are two ways to put a topology on A :

1) we can give A the subspace topology 74 from X, or

2) we can give B the subspace topology 73, and then give A the subspace topology from
the space (B, 7p) — that is, we can give A the topology (75) 4.

In other words, we can think of A as a subspace of X or as a subspace of the subspace B.
Fortunately, the next theorem says that these two topologies are the same. More informally,
Theorem 7.1 says that in a space X “a subspace of a subspace is a subspace.”

Theorem 7.1 If A C B C X, and 7 is a topology on X, then 74 = (7p)a.

Proof U cT,iff U=0NAforsome OcT iff U=0nN(BNA)iff U=(ONB)NA.
But O N B € 7p, so the last equation holds iff U € (75)4.

We always assume a subset A has the subspace topology (unless something else is explicitly
stated). The notation A C (X,7) emphasizes that A is considered a subspace, not merely a
subset.

By definition, a set is open in the subspace topology on A iff it is the intersection with A of an
open set in X. The same is also true for closed sets.

Theorem 7.2 Suppose FF C A C (X,7). Fisclosedin Aiff FF = AN C where C is closed

in X.

Proof F'isclosedin Aiff A— Fisopenin A iff A — F = O N A (for some open set Oin X)
iff F=A—-(0NA)=(X-0)NA=CnNA (where C =X — O isaclosed setin X). e
Theorem 7.3 Suppose A C (X, 7).

1) Let a € A. If B, is a neighborhood base at a in X, then {BNA: B € B,} is a
neighborhood base at ain A.

2) If Bis abase for 7,then {BN A : B € B} is a base for 7.

With a slight abuse of notation, we can informally write these collections as B, N A and.B N A.
Why is this an “abuse?” What do B, N A and B N A mean if taken literally?
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Proof 1) Suppose a € A and that N is a neighborhood of a in A. Then a € intyN C N, so
there is an open set Oin X such that a € inty N = O N A C O.

Since B, is a neighborhood base at a in X, there is a neighborhood B € B, such that
a€BCO.Then a € (intyB)NAC BNAe€B,NA. Since (inty B) N A is open in A, we
see that BN A is a neighborhood of @ in A. And sincea € BNACONA=intyN C N, we
see that B, N A is a neighborhood base at a in A. e

2) Exercise
Theorem 7.3 tells us that in the subspace A we can get a neighborhood base at a point a by
choosing a neighborhood base at a in X are then restricting all its sets to A; and that the same

applies to a base for the subspace topology.

Corollary 7.4 Every subspace of a first countable (or second countable) space (X,7) is first
countable (or second countable).

Example 7.5 Suppose S! is a circle in R*and that p € S' CR?. B, = {B.(p) : ¢ >0} isa
neighborhood base at p in R?, and therefore B, N S! is a neighborhood base at p in the subspace
S1. The sets in B, N S are “open arcs on S containing p.” (See the figure,)

The following theorem relates closure in a subspace to closure in the larger space. It turns out to
be a very useful technical observation.

Theorem 7.6 Suppose A C B C (X,7), thenclgA = BNclyA.
Proof B NclyAisaclosed setin B that contains A, so BNclyA D clgA.

On the other hand, suppose b € BNclxA. To show that b € clgA, pick an open set U
in B that contains b. We need to show U N A # (). There is an open set O in X such that

ONB=U. Since b € clyA,wehavethat ) ZONA=0N(BNA) =(ONB)NA
=UNA. e
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Example 7.7 1) Q =clgQ =clzgQNQ
2) clig (0,1) = clr(0,1) N (0,2] = [0,1] N (0, 2] = (0,1]

3) The analogous calculations are not necessarily not true for interiors and
boundaries. For example:

Q =intpgQ # intgQNQ =0, and
)= FroQ # FrzQNQ = Q.

Why does “cl” have a privileged position here? Is there a “reason” why you would expect a
better connection between closures in A and closures in X than you would expect between
interiors in A and interiors in X ?

Definition 7.8 A property P of topological spaces is called hereditary if whenever a space X
has property P, then every subspace A also has property P.

For example, Corollary 7.4 tells us that first and second countability are hereditary properties.
Other hereditary properties include “finite cardinality” and “pseudometrizability.” On the other
hand, “infinite cardinality” is not a hereditary property.

Example 7.9

1) Separability is not a hereditary property. For example, consider the Sorgenfrey plane
X (see Example 5.4). X is separable because Q? is dense.

Consider the subspace D = {(z,y) : . +y = 1}. Theset U = [a,a+ 1) x [b,b+ 1)
is open in X so if (a,b) € D, then U N D = {(a, b)} is open in the subspace D. Therefore D is
a discrete subspace of X, and an uncountable discrete space is not separable.

Similarly, the Moore place I' is separable (see Example 5.6); the x-axis in I' is an
uncountable discrete subspace which is not separable.

2) The Lindelof property is not heredity. Let A be an uncountable set and let
X = AU {p}, where p is any additional point not in A. Put a topology on X by giving a
neighborhood base at each point.

B, = {{a}} fora e A
B, ={B: pe Band X — B is finite}

(Check that the collections B, satisfy the hypotheses of the Neighborhood Base Theorem 5.2.)

If V is an open cover of X, then p € V for some V' € V. By ii), every neighborhood of p in X
has a finite complement, so X — V is finite. For each y in the finite set X — V', we can choose a
set V, € V with y € V. Then V' ={V}U{V,:y € X —V} is a countable (in fact, finite)
subcover from V, so X is Lindelof.

The definition of B, implies that each point of A is isolated in A; that is, A is an uncountable

discrete subspace. Then U = {{a}:a € A}is an open cover of A that has no countable
subcover. Therefore the subspace A is not Lindelof.
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Even when a property is not hereditary, it is sometimes “inherited” by certain
subspaces — perhaps, for example, by closed subspaces, or by open subspaces. The next theorem
illustrates this.

Theorem 7.10 A closed subspace of a Lindelof space is Lindelof (so we say that the Lindelof
property is “closed hereditary” ).

Proof Suppose K is a closed subspace of the Lindelof space X. Let Y = {U, :a € A} be a
cover of K by sets U, that are open in K. For each «, there is an open set V,, in X such that
Vo.NK =U,.

Since K is closed, X — K isopenand V = {{X — K}} U{V, : @ € A} is an open cover of X.
But X is Lindelof, so V has a countable subcover from V, say V' = {X — K, Vi,...,V,,...}.
(The set X — K might not be needed in V', but it can't hurt to include it.) Clearly then, the
collection {Uy, ..., Uy, ...} is a countable subcover of K from U. e

Note:

1. A little reflection on the proof shows that to prove K is Lindeldf, it would be
equivalent to show that every cover of K by sets open in X has a countable subcover.)

2. A space X with the property that every open cover has a a finite subcover is called
compact. See, for example, the space in Example 6.4.1.

An obvious “tweak” to the proof for Theorem 7.10 shows that a closed subspace of
a compact space is compact. We will look at the properties of compact spaces in much
more detail in Chapter 4 and beyond.
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8. Continuity

We first defined continuous functions between pseudometric spaces by using the distance
function d to mimic the definition of continuity as given in calculus. But then we saw that our
definition could be restated in other equivalent ways in terms of open sets, closed sets, or
neighborhoods. For topological spaces, we do not have distance functions available to use in a
definition of continuity. But we can still make a definition using neighborhoods (or open sets, or
closed sets) since the neighborhoods of a describe “nearness” to a. Of course, the definition
parallels the way neighborhoods describe continuity in pseudometric spaces.

Definition 8.1 A function f: (X,7)— (Y,7’) is continuous at ¢ € X if whenever N is a
neighborhood of f(a), then f~![N] is a neighborhood of a. We say f is continuous if f is
continuous at each point of X.

The statement that f is continuous at ¢ is clearly equivalent to each of the following statements: :

i) for each neighborhood N of f(a) there is a neighborhood W of a such
that f[IW] C N

ii) for each open set V' containing f(a) there is an open set U containing a such
that f{U] CV

iii) for each basic open set V' containing f(a) there is a basic open set U
containing a such that f[U] C V.

In the following theorem, the conditions i) -iii) for continuity are the same as those in Theorem
I1.5.6 for pseudometric spaces. Condition iv) was not mentioned in Chapter II, but it is
sometimes handy.

Theorem 8.2 Suppose f : (X,7) — (Y,7’). The following are equivalent.

i) f is continuous

ii) if O € 77, then f~1[O] € T (the inverse image of an open set is open)

iii) if Fisclosedin Y, then f~![F]is closed in X (the inverse image of a
closed set is closed)

iv) forevery A C X : flclx(A)] C cly(f[A4]).

Proof The proof that i)-iii)are equivalent is identical to the proof for Theorem II.5.6 for
pseudometric spaces. That proof was deliberately worded in terms of open sets, closed sets, and
neighborhoods so that it would carry over to this new situation.

iii) = iv) A C ff[A]] C ftcly (f[A])]. Since cly (f[A]) is closed in Y, iii) tells
us that f~![cly (f[A])] is a closed set in X that contains A. Therefore clx(A) C f~'[cly (f[A])]
so flelx (A)] € [ely (f[A])]-

iv) = i) Suppose a € X and that N is a neighborhood of f(a). Let K = X — f~![N]
andU = X —cly K C f~![N]. U is open, and we claim that a € U — which will show
that f~![N] is a neighborhood of a, completing the proof. So we need to show that
a ¢ cly K. But this is clear because: if a € clx K, then using iv) would give us that
f(a) € flelx K] C cly f[K], which is impossible since N N f[K] = (. o
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Example 8.3 Sometimes we want to know whether a certain property is “preserved by
continuous functions” — that is, if X has property P and f : X — Y is continuous and onto,
must the image Y also have the property P?

For example, condition iv) in Theorem 8.2 implies that continuous maps preserve
separability. Suppose D is a countable dense set in X. Then f[D] is countable and f[D] is
dense in Y because Y = f[X]| = f[cl D] C cl f[D].

By contrast, continuous maps do not preserve first countability: for example, let (Y, 7)
be any topological space. Let 7' be the discrete topology on Y. (Y, 7')is first countable and
the identity map ¢ : (Y,7 ') — (Y, 7) is continuous and onto. Thus, every space (Y, 7) is the
continuous image of a first countable space.

Do continuous maps preserve other properties that we have studied — such as Lindeldf,
second countable, or metrizable?

The following theorem makes a few simple and useful observations about continuity.
Theorem 8.4 Suppose f: (X,7) — (Y, 7).

1) Let B =ran(f) C Y. Then f is continuous iff f : (X,7) — (B, 73) is continuous.
In other words, B = the range of f (a subspace of the codomain Y') is what matters
for the continuity of f, points of Y not in B (if any) are irrelevant. For example, the
function sin : R — R is continuous iff the function sin : R — [ — 1, 1] is continuous.

2) Let A C X. If f is continuous, then f|A = g : A — Y is continuous.
That is, the restriction of a continuous function to a subspace is continuous.
For example, sin : R — R is continuous, so sin : Q — [ — 1, 1] is continuous.
(The second function is really sin|Q, but it's abbreviated here to just “sin”.

3) If S is a subbase for 7’ (in particular, if S is a base), then f is continuous iff f~![U]
is open whenever U € S. In other words, to check continuity, it is sufficient to show
that the inverse image of every subbasic open set is open.

Proof 1) Exercise: the crucial observation is that if O C Y, then f~}[O] = f~![BNO].
2) If Ois openin Y, then g~*[O] = f~'[O] N A — which is an open set in A.

3) Exercise: the proof depends only on the definition of a subbase and set theory:

FHUUL e Al =U{f'[U,] : a € A} and
U ca€e Al=N{f U] :a € A} o

Example 8.5
1) For any topological spaces X and Y, every constant function f : X — Y must be
continuous. ( Suppose f(x) = yo for all x. If O is openin 'Y, then f~1[0] = ?)

If X has the discrete topology and Y is any topological space, then every function
f : X — Y is continuous.
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2) Suppose X has the trivial topology and that f : X — R. If f is not constant, then
there are points a, b € X for which f(a) # f(b). Let I be an open set in R containing
f(a) butnot f(b). Then f~1[I] is not open in X so f is not continuous. We conclude
that f is continuousiff f is constant.

In this example, we could replace R by any metric space (Y ,d); or, for that matter,
by any topological space (Y, T ) that has what property?

3) Let X be a rectangle inscribed inside a circle Y centered at P. For a € X, let
f(a) be the point where the ray from P through « intersects Y. (The function f is called
a “central projection.” ). Thenboth f : X — Y and f~! : Y — X are continuous

bijections.
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Example 8.6 (Weak topologies) Suppose X is a set. Let F = {f, : « € A} be a collection of
functions where each f,, : X — R. If we put the discrete topology on X, then all of the functions
fa will be continuous. But a topology on X smaller than the discrete topology might also make
all the f,'s continuous. The smallest topology on X that makes all the given f,'s continuous is
called the weak topology 7 on X generated by the collection F.

How can we describe that topology more directly? 7 makes all the f,'s continuous iff for each
open O C R and each a € A, the set f,}[O] is in 7. Therefore the weak topology generated by
F is the smallest topology that contains all these sets. According to Example 5.17.5, this means
that weak topology 7 is the one for which the collection & = {f,1[O] : O openin R, o € A}
is a subbase. (It is clearly sufficient here to use only basic open sets O from R — that is, open
intervals (a,b) : why ? Would using all open sets O put any additional sets into T ?)

For example, suppose X = R? and that F = {m, T} contains the two projection maps
m(z,y) =z and my(z,y) =y. For an open interval U = (a,b) C R, m![U] is the “open
vertical strip” U x R; and 75 }[V] is the “open horizontal strip” R x V. Therefore a subbase
for the weak topology on R? generated by JF consists of all such open horizontal or vertical
strips. Two such strips intersect in an “open box™ (a,b) x (c,d) in R?, so it is easy to see that
the weak topology is the product topology on R x R, that is, the usual topology of R2.

Suppose A C R and that i : A — R is the identity function i(x) = x. What is the weak topology
on the domain A generated by the collection F = {i} ?
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Definition 8.7 A mapping f: (X,7) — (Y,7 ) is called

open if whenever O is open in X, then f[O] isopeninY, and
closed if whenever F'is closed in X, then f[F] is closed in Y.

Suppose | X| > 1. Let 7 be the discrete topology on X and let 7’ be the trivial topology on X.
The identity map i : (X,7 ) — (X, 7 ') is continuous but neither open nor closed, and
i:(X,7") — (X,7T) is both open and closed but not continuous. Open and closed maps are
quite different from continuous maps — even when the mapping is a bijection! Here are some
examples that are more interesting.

Example 8.8

1) f:]0,2m) — St = {(z,y) € R? : 22 +y? = 1} given by f() = (cosf,sinb).
It is easy to check that f is continuous, one-to-one, and onto. The set F' = [, 27) is closed in
[0,27) but f[[m, 27)] is not closed in S'. Also, [0,7) is open in [0, 27)but f[[0,7)]] is not
open in S*. A continuous, one-to-one, onto mapping does not need to be open or closed !

2) Suppose X and Y are topological spaces and that f : X — Y is a bijection. Then
there is an inverse function g = f~!: Y — X, and f~! is continuous iff f is open. To check
this, consider an open set ) in X. Then y € g~ [O] iff g(y) € O iff y = f(g(y)) € f]O], so
f10] = g7O]. So f[O] is open iff g'[O] is open. So, fora bijection f, fis open iff f~! is
continuous.

If O is replaced in the argument by a closed set /' C X, then similar reasoning shows
that a bijection f is closed iff f~! is continuous.

In part 1), the bijection f is not open and therefore f~!:S! — [0,27) is not
continuous. (Explain directly, without part 2), why f~' is not continuous.)

Definition 8.9 A mapping f : (X,7) — (Y,7 ) is called a homeomorphism if f is a bijection
and f and f~! are both continuous. If a homeomorphism f exists, we say that X and Y are
homeomorphic and write X ~ Y.

Note: The term is “homeomorphism,” not “homomorphism” (a term from algebra). The
etymologies are closely related: “-morphism” comes from the Greek word (poppn”) for
“shape” or “form.” The prefixes “homo” and “homeo” come from Greek words meaning
same” and “similar” respectively. There was a major dispute in western religious history,
mostly during the 4" century AD, that hinged on the distinction between “homeo” and “homo.”

As noted in the preceding example, we could also describe a homeomorphism as a “continuous
open bijection” or a “continuous closed bijection.”

It is obvious that among topological spaces, homeomorphism is an equivalence relation, that is,
for topological spaces X, Y, and Z :

) X~X

i) if X ~Y,thenY ~ X
i) if X Y andY ~ Z, then X ~ Z.
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Example 8.10

1) The function f : [0,27) — S given by f(6) = (cos 6,sinf) is not a
homeomorphism even though f is continuous, one-to-one, and onto.

2) The “central projection” from the rectangle to the circle (Example 8.5.3) is a
homeomorphism.

3) It is easy to see that any two open intervals (a, b) in R are homeomorphic (just use
a linear map of one interval onto the other).
T

The mapping tan : ( — 7, 5) — R is a homeomorphism, so that each

nonempty open interval in R is actually homeomorphic to R itself.

3) If f:(X,d) — (Y,s) is an isometry (onto) between metric spaces, then both f and
f~1 are continuous, so f is a homeomorphism.

4) If d and d’ are equivalent metrics (so 7; = 7;/), then the identity map
i:(X,d) — (X,d’) is a homeomorphism. Notice, however, that i doesn't preserve
distances (unless d = d').

In general, a homeomorphism between metric spaces need not be an isometry. But, of
course, an isometry is automatically a homeomorphism

5) The function f : {+ : n € N} — N given by f(1) = n is a homeomorphism (both
spaces have the discrete topology!) Topologically, these spaces are the identical: both
are just countable infinite sets with the discrete topology. f is not an isometry

In general, two discrete spaces X and Y are homeomorphic iff they have the same
cardinality:any bijection between them is a homeomorphism. Roughly speaking, “size is
the only possible topological difference between two discrete spaces.”

139



6) Let P denote the “north pole” of the sphere
S? ={(z,y,2) 2> + > + 22 =1} C R

The function f illustrated below is a “stereographic projection”. The arrow starts at P, runs for
a while inside the sphere and then exits through the surface of the sphere at a point (z,y, z). Let
f(z,y, 2) be the point where the tip of the arrow hits the zy-plane R?. In this way f maps each
point in S? — { P} to a point in R%. The function f is a homeomorphism. (See the figure below.
Consider the images or inverse images of open sets.)

In general, what is the significance of a homeomorphism f : X — Y ?

i) f is a bijection so it sets up a perfect one-to-one correspondence between the points in
XandY: z < y= f(r). We can imagine that f just “renames” the points in X. There is also
a perfect one-to-one correspondence between the subsets X, and Y, of X and Y:
X, <Y, = f[X.]. Because f is a bijection, each subset Y;, C Y corresponds in this way to
one and only one subset X, C X.

ii) f is a bijection, so f treats unions, intersections and complements “nicely”:

a) FHUYs € Al = U{fHYa] s a € A}

b) f UNYa:a€e Al =N{f Y] : @ € A}, and
c) flUXe :ae Al = U{f[X.] : @ € A}

O FNXe:ae A =X e A}, and
e) fIX=Cl=fIX] - fIC] =Y = f[C]

(Actually a), b), c) are true for any function; but d) and e) depend on f being a bijection.)
These properties say that this correspondence between subsets preserves unions: if each

X, <Y, then UX, « UY, = Uf[X.] = fIUX.]. Similarly, f preserves intersection and
complements.
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iii) Finally if fand f~!are continuous, then open (closed) sets in X correspond to open
(closed) sets in Y and vice-versa.

The total effect is that all the “topological structure” in X is exactly “duplicated” in Y and vice
versa: we can think of points, subsets, open sets and closed sets in Y are just “renamed” copies
of their counterparts in X. Moreover f preserves unions, intersections and complements, so f
also preserves all properties of X that can defined be using unions, intersections and
complements of open sets. For example, we can check that if f is a homeomorphism and
A C X, then flintxA] = inty f[A], that f[clx A] = cly f[A], and that f[FrxA] = Fry f[A].
That is, f takes interiors to interiors, closures to closures, and boundaries to boundaries.

Definition 8.11 A property P of topological spaces is called a topological property if, whenever
a space X has property P and Y ~ X, then the space Y also has property P.

If X and Y are homeomorphic, then the very definition of “topological property” says that X and
Y have the same topological properties. Conversely, if two topological spaces X and Y have the
same topological properties, then X and Y must be homeomorphic. (Why? Let P be the property
“is homeomorphic to X.” P is a topological property because if Y has P (that is, if Y ~ X)
and Z ~Y, then Z also has P. Moreover, X has this property P, because X ~ X. So if we
assume that Y has the same topological properties as X, then'Y has the property P, that is, Y is
homeomorphic to X.)

So we think of two homeomorphic spaces as “topologically identical” — they are homeomorphic
iff they have exactly the same topological properties. We can show that two spaces are not
homeomorphic by naming a topological property of one space that the other space doesn't
possess.

Example 8.12 Let P be the property that “every continuous real-valued function achieves a
maximum value.” Suppose a space X has property P and that h : X — Y is a homeomorphism.
We claim that Y also has property P.

Let f be any continuous real-valued function defined on Y.
Then f o h : X — R is continuous :

R
v/ 1 f
X —Y

h
By assumption, g = f o h achieves a maximum value at some point a € X, and we claim

that f must achieve a maximum value at the point b = h(a) € Y. If not, then there is a
point y € Y where f(y) > f(b). Letx = h™!(y). Then

g(x) = f(h(z))) = f(M(h™(y)))) = f(y) > f(b) = f(h(a)) = g(a),
which contradicts the fact that g achieves a maximum value at a.

Therefore P is a topological property.
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For example, the closed interval [0, 1] has property P discussed in Example 8.12 (this is a well-
known fact from elementary analysis — which we will prove later). But (0, 1) and [0, 1) do not
have this property P (why?). So we can conclude that [0, 1] is not homeomorphic to either (0, 1)
or [0,1).

Some other simple examples of topological properties are cardinality, first and second
countability, Lindelof, separability, and (pseudo)metrizability. In the case of metrizability, for
example:

If (X, d) is a metric space and f : (X,d) — (Y, 7) is a homeomorphism, then we can
define a metric d’ on Y as d'(a,b) = d(f~(a), f~1(b)) for a,b € Y. You then need
to check that 7;, = 7 (using the properties of a homeomorphism and the definition of
d"). This shows that (Y, 7) is metrizable. Be sure you can do this!

9. Sequences

In Chapter II we saw that sequences are a useful tool for working with pseudometric spaces. In
fact, sequences are sufficient to describe the topology in a pseudometric space — because the
convergent sequences in (X, d) determine the closure of a set.

We can easily define convergent sequences in any topological space (X, 7). But, as we will see,
sequences need to be used with more care in spaces that are not pseudometrizable. Whether or
not a sequence (z,,) converges to a particular point x is a “local” question — it depends on “the
Z,'s approaching nearer and nearer to 2” and, in the absence of a distance function, we use the
neighborhoods of x to determine “nearness to z.” If the neighborhood system N, is “too large”
or “too complicated,” then it may be impossible for a sequence to “get arbitrarily close” to x.
Soon we will see a specific example where such a difficulty actually occurs. But first, we look at
some of the things that do work out just as nicely for topological spaces as they do in
pseudometric spaces.

Definition 9.1 Suppose (z,,) is a sequence in (X, 7). We say that (x,) converges to z if, for
every neighborhood W of x, 3k € N such that x,, € W when n > k. In this case we write
(x,) — x. More informally, we can say that (x,) — x if (x,) is eventually in every
neighborhood W of z.

Clearly, we can replace “every neighborhood W of x” in the definition with “every basic
neighborhood B of ©” or “every open set O containing x.” Be sure you are convinced of
this.

In a pseudometric space a sequence can converge to more than one point, but we proved that in a
metric space limits of convergent sequences must be unique. A similar distinction holds in
topological spaces: the important issue is whether we can “separate points by open sets.”
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Definition 9.2 (X,7) is a T;-space if whenever = # y € X there exist open sets U and V
suchthat x e U,y ¢ U and y € V, x ¢ V (that is, each point is in an open set that does not
contain the other point).

(X,7) is a Ty-space (or Hausdorff space ) if whenever x # y € X there exist
disjoint open sets U and V suchthatx € U andy € V.

It is easy to check that i) X is a Tj-space iff for every z € X, {x} is closed, that
ii) every Ts-space is a T7-space
iii) every metric space (X, d) is a T, -space (Hausdorff space)

There is a hierarchy of ever stronger “separation axioms” called Ty, Ty, T,, T, and T}
that a topological space might satisfy. Eventually we will look at all of them.

Each condition is stronger than the preceding ones in the list (for example, Ty = T}).
The letter “I'” is used here because in the early (German) literature, the word

for “separation axioms” was “Trennungsaxiome.”

Theorem 9.3 In a Hausdorff space (X, 7 ), a sequence can converge to at most one point.

Proof Suppose x # y € X. Choose disjoint open sets U and V withx € Uandy € V. If
(xn) — x, then (z,,) is eventually in U, so (x,,) is not eventually in V. Therefore (z,) does not
also converge to y. o

When we try to generalize results from pseudometric spaces to topological spaces, we often get a
better insight about where the heart of a proof lies. For example, to prove that limits of sequences
are unique it is the Hausdorff property that is important, not the presence of a metric. Here is
another example: for a pseudometric space (X, d) we proved that x € cl A iff z is a limit of a
sequence (a,)in A. That proof (see Theorem I1.5.18) used the fact that there was a countable
neighborhood base {B% (x) : n € N} at each point z. We can see now that the countable

neighborhood base was the crucial fact — because we can prove the same result in any first
countable topological space (X, 7).

But first, two technical lemmas are helpful.

Lemma 9.4 Suppose { N1, No, ..., Ni, ...} is a countable neighborhood base at a € X. Define
U = int (N1 N ...N N). Then {Uy, Uy, ..., Uy, ... } is also a neighborhood base at a.

Proof NN, N...N Nj is a neighborhood of a, so a € int (N N ... N Ny,) = Uy. Therefore Uy, is a
open neighborhood of a. If N is any neighborhood of a, then a € N C N for some k, so then
a € U, C N C N. Therefore the Uy's are a neighborhood base at a. e

The exact formula for the Uy's in Lemma 9.4 doesn't matter; the important thing is that we get a
“much improved” neighborhood base {U;, Uy, ..., Uy, ... } — one in which the Uj's are open and
U D2U; 2...2U; D .... This new neighborhood base at a plays a role analogous to the
neighborhood base Bi(a) 2 Bi(a) 2 ... 2 Bi(a) 2 ... in a pseudometric space. We call

{U1,Us, ..., Uy, ...} an open, shrinking neighborhood base at a.
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Lemma 9.5  Suppose {U;,Us,...,Uy,...} is a shrinking neighborhood base at = and that
a, € U, for each n. Then (a,) — x.

Proof If W is any neighborhood of x, then there is a k such that x € U, C W. Since the Uy's
are a shrinking neighborhood base, we have that for any n > k, a, € U, CU, CW. So
(a,) — x. o

Theorem 9.6 Suppose (X,7) is first countable and A C X. Then z € cl A iff there is a
sequence (a,) in A such that (a,) — =. (More informally, “sequences are sufficient” to
describe the topology in a first countable topological space.)

Proof (<) Suppose (a,) is a sequence in A and that (a,) — . For each neighborhood W of
z, (a,)iseventually in W. Therefore W N A # (), so x € cl A. (This half of the proof works
in any topological space: it does not depend on first countability.)

(=) Suppose x € cl A. Using Lemma 9.4, choose a countable shrinking neighborhood
base {Uy,...,U,,...} at . Since x € cl A, we can choose a point a,, € U,, N A for each n. By
Lemma 9.5, (a,) — x. ®

We can use Theorem 9.6 to get an upper bound on the size of certain topological spaces,
analogous to what we did for pseudometric spaces. This result is not very important, but it
illustrates that in Theorem I1.5.21 the properties that are really important are “first countability”
and “Hausdorff,” not the actual presence of a metric d.

Corollary 9.7 If D is a dense subsetin a first countable Hausdorff space (X,7), then
|X| < |D[™. In particular, If X is a separable, first countable Hausdorff space, then
| X| <N =c.

Proof X is first countable, so for each x € X we can pick a sequence (d,) in D such that
(d,) — x; formally, this sequence is a function f, : N — D, so f, € DN. Since X is Hausdorff,
a sequence cannot converge to two different points: so if z # y € X, then f, # f,. Therefore
the function ® : X — D" given by ®(z) = f, is one-to-one, so | X| < |DN| = |[D|™. e

The conclusion in Theorem 9.6 may not be true if X is not first countable: sequences are not
always “sufficient to describe the topology” of X — that is, convergent sequences cannot always
determine the closure of a set.

Example 9.8 (the space L)
Let L={(m,n): m,n€Z, mn >0}, and let C; be “the j® column of L,” that is
C;j={(j,n) € L:n=0,1,...}. We put atopology on L by giving a neighborhood base at each

point p :

5 _ [ {m.n) it p = (m,n) £ (0,0)
P {B:(0,0) € Band C; — B is finite for all but finitely many j} if p = (0,0)
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(Check that this definition satisfies the conditions in the Neighborhood Base Theorem 5.2 and
therefore does describe a topology for L.)

If p # (0,0) then p is isolated in L. A basic neighborhood of (0, 0) is a set which contains (0, 0)
and which, we could say, contains “most of the points from most of the columns.” With this
topology, L is a Hausdorff space.

Certainly (0,0) € cl (L — {(0,0)}), but no sequence from L — {(0,0)} converges to (0, 0).
To see this, consider any sequence (a,) in L — {(0,0)}:

i) if there is a column C);, that contains infinitely many of the terms a,,, then
N = (L —C},) U{(0,0)} is a neighborhood of (0,0) and (a,) is not eventually
in V.

ii) if every column C); contains only finitely many a,,'s,
then N = L — {a, : n € N} is a neighborhood of (0,0) and (a,,) is
not eventually in NV (in fact, the sequence is never in V).

In L, sequences are not sufficient to describe the topology: convergent sequences can't show us
that (0,0) € c1 (L — {(0,0)}). According to Theorem 9.6, this means that the countable space L
cannot be first countable — there is a countable neighborhood base at each point p # (0,0) but
not at (0,0).

The neighborhood system at (0,0) “measures nearness to” (0,0) but the ordering relationship
( O )among the basic neighborhoods at (0,0)is very complicated — much more complicated
than the neat, simple nested chain of neighborhoods U; 2 U; D ... 2 U,, D ... that could form a
base at z in a first countable space. Roughly, the complexity of the neighborhood system is the
reason why the terms of a sequence can't get “arbitrarily close” to (0, 0).

Since sequences do suffice to describe the topology in a first countable space, it is not surprising
that we can use sequences to determine the continuity of a function defined on a first countable
space X.

Theorem 9.9 Suppose (X,7) is first countable and f:(X,7)— (Y,7'). Then f is
continuous at a € X iff whenever (x,,) — a, then (f(z,)) — f(a).

Proof (=) If f is continuous at a and W is a neighborhood of f(a), then f~![W] is a
neighborhood of a. Therefore (x,) is eventually in f~*[W], so f((z,)) is eventually in W.
(This half of the proof is valid for any topological space X: continuous functions always
“preserve convergent sequences.”)

(<) Let{U,...,U,,...} be a shrinking neighborhood base at a. If f is not
continuous at a, then there is a neighborhood W of f(a) such that for every n, f[U,] € W.
For each n, choose a point x,, € U,, — f -1 [W]. Then (since the U,,'s are shrinking) we have
() — abut (f(z,)) fails to converge to f(a) because f(z,)is neverin W. e

(Compare this to the proof of Theorem 11.5.22.)
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10. Subsequences

Definition 10.1 Suppose f : N — X is a sequence in X and that ¢ : N — N is strictly
increasing. The composition f o ¢ : N — X is called a subsequence of f.

f
N— X

o1 /foo
N

If we write f(n) = z,, and ¢(k) = ny, then (f o ¢)(k) = f(ni) = x,,. We write the sequence f
informally as (x,)and the subsequence f o ¢ as (z,, ). Since ¢ is increasing, we have that
ng, — 00 as k — oo.

For example, if ¢(k) = ni = 2k, then f o ¢ is the subsequence written informally as

(@n,) = (wa), that is, the subsequence (za, x4, Tp, ..., Tog, ...). Butif ¢(n) =1 for all n, then
fo¢ is not a subsequence: informally, (zy,z1,1,..., x1,...) is not a subsequence of
(1, 9,23, ..., Ty, ... ). Every sequence f is a subsequence of itself: just let ¢(n) = n.

Theorem 10.2 Suppose = € (X, 7). Then (z,,) — x iff every subsequence (x,,) — x.

Proof (<) This is clear because (x,) is a subsequence of itself.

(=) Suppose (z,) — = and that (z,,) is a subsequence. If W is any neighborhood of
z, then z, € W for all n > some ng. Since the ny's are strictly increasing, nj; > ng for all
k > some kg. Therefore (z,, ) is eventually in W,so (z,,) — . e

Definition 10.3 Suppose = € (X,7). We say that z is a cluster point of the sequence (z,,) if
for each neighborhood W of x and for each k € N, there is an n > k for which x,, € W. More
informally, we say that = is a cluster point of (z,) if the sequence is frequently in every
neighborhood W of z .

Definition 10.4 Suppose z € (X,7) and A C X. We say that x is a limit point of Aif
NN (A—{z}) # 0 for every neighborhood N of = — that is, every neighborhood of x contains
points of arbitrarily close to x but different from x.

Example 10.5.

1) Suppose X = [0,1] U {2} and A = {2}. Then W N A # ( for every neighborhood
W of 2, but 2 is not a limit point of A — because W = {2} is a neighborhood of 2 in X
and W N (A—{2})=0. Eachz € [0, 1] is a limit point of [0, 1] and also a limit point
of X. Since {2} is open in X, 2 is also not a limit point of X.

2) Every point 7 in R is a limit point of Q. If A C N, then A has no limit points (in N or
in R).

3) If (x,) — x, then x is a cluster point of (x,). More generally, if (z,) has a
subsequence (x,, ) that converges to x, then z is a cluster point of (z,,). (Why?)
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4) A sequence can have many cluster points. For example, if the sequence (g,,) lists all
the elements of Q, then every r € R is a cluster point of (g, ).

5) In R, the sequence (z,,) = (( — 1)") has exactly two cluster points: — 1 and 1.

But the set {z,, : n € N} = { — 1,1} has no limit points in R. The set of cluster

points of a sequence is not always the same as the set of limit points of the set of terms in
the sequence! (Is one of these sets always a subset of the other?)

Theorem 10.6 Suppose a is a cluster point of (x,,) in a first countable space (X,7"). Then there
is a subsequence (z,,) — a.

Proof Let {U,Us,...,U,,...} be a countable shrinking neighborhood base at a. Since (z,,) is
frequently in Uy, we can pick n; so that z,, € U;. Since (x,,) is frequently in Us,, we can pick
an ny > n; so that z,, € Uy C U;. Continue inductively: having chosen n; < ... < ny, so that
xpn, € Uy C ... C Uy, we can then choose 11 > ny,so that z,,,,, € Uy C Up. Then (x,,) is a
subsequence of (z,) and (x,) — a. e

Example 10.7 (the space L, revisited)

Let L be the space in Example 9.8 and let (z,,)be a sequence which lists all the elements of

L —{(0,0)}.

Every basic neighborhood B of (0, 0) is infinite, so B must contain terms x,, for arbitrarily
large n. This means that (x,,) is frequently in B, so (0, 0) is a cluster point of (z,,).

But no subsequence of (z,,) can converge to (0,0) — because we showed in Example 9.8 that no
sequence whatsoever from L — {(0,0)} can converge to (0, 0). Therefore Theorem 10.6 may
not be true if the space X is not first countable.

Consider any sequence (x,,) — (0,0) in L. If there were infinitely many =, # (0,0), then we
could form the subsequence that contains those terms, and that subsequence would be a sequence
in L —{(0,0)} that converges to (0,0) — which is impossible. Therefore we conclude that
eventually x,, = (0,0).

Suppose now that f : L. — N is any bijection, and let k = f(0,0).

e whenever a sequence (z,) — (0,0) in L, then (f(z,)) — f(0,0) = k in N (because,
by the preceding paragraph, f(x,) = f(0,0) = k eventually)

e the topology on N is discrete so {k} is a neighborhood of f(0, 0), but

F7Y{k}] = {(0,0)} is not a neighborhood of (0,0). Therefore f is not continuous

at (0,0)

Theorem 9.9 does not apply to L: if a space is not first countable, sequences may be inadequate
to check whether a function f is continuous at a point.
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Exercises

E17. Suppose f,g: (X,77) — (Y,7;) are continuous functions, that D is dense in X, and
that f|D = g|D. Prove that if Y is Hausdorff, then f = g. (This generalizes the result in
Chapter 2, Theorem 5.12.)

E18. A function f : (X,7) — R is called lower semicontinuous if

J7H(b,00)] = {z: f(x) > b} is open for every b € R,

and f is called upper semicontinuous if

FH(—=00,b)]1={z: f(x) < b} is open for each b € R.
a) Show that f is continuous iff f is both upper and lower semicontinuous.

b) Give an example of a lower semicontinuous f : R — R which is not continuous.
Do the same for upper semicontinuous.

¢) Suppose A C X. Prove that the characteristic function x 4 is lower semicontinuous
if A is open in X and upper semicontinuous if A is closed in X.

E19. Suppose X is an infinite set with the cofinite topology, and that Y has the property that
every singleton {y} is a closed set. (You might want to check: this is equivalent to saying thatY’
is a Ty-space: see Definition 9.2). Prove that if f: X — Y is continuous and onto, then

either f is constant or X is homeomorphic to Y.

1) Note: the problem does not say that if f is not constant, then f is a homeomorphism.
2) Hint: Prove first that if f is not constant, then | X| = |Y'|. Then examine the topology
of Y.

E20. Suppose X is a countable set with the cofinite topology. State and prove a theorem that
completely answers the question: “what sequences in (X, 7") converge to what points?”

E21. Suppose that (X,7) and (Y, 7 ') are topological spaces. Recall that the product
topology on X x Y is the topology for which the collection of “open boxes”
B={UxV:Ue€T, VeT'}isabase.
a) The “projection maps” 771 : X XY — X and 7 : X X Y — Y are defined by
m(x,y) = z and mo(x,y) = y.

We showed in Example 5.11 that 7y and 7, are continuous. Prove that 7; and 79 are
open maps. Give examples to show that m; and 7o might not be closed.
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E22.

b) Suppose that (Z,7 ") is a topological space and that f : Z — X x Y. Prove that

f is continuous iff both compositions m o f : Z — X and mo f: Z — Y are
continuous. (Informally: a mapping into a product is continuous iff its composition with
each projection is continuous.)

¢) Prove that ((z,yn)) — (z,y) € X x Y iff (x,) — zin X and (y,) — yinY.
(For this reason, the product topology is sometimes called the “topology of

coordinatewise convergence.”)

d) Prove that X x Y is homeomorphic to Y x X.
(Topological products are commutative. )

e) Prove that (X x Y) x Z is homeomorphic to X x (Y x Z)
(Topological products are associative. )

Let (X,7) and (Y, S) be topological spaces. Suppose f : X — Y. Let

I'(f) ={(z,y) € X xY:y= f(x)} =“the graph of f.”

Prove that the map h: X — I'(f) defined by h(x) = (=, f(z)) is a homeomorphism if and only
if f is continuous.

Note: if we think of f as a set of ordered pairs, the “graph of f” is f. More informally,
however, the problem states a function is continuous iff its graph is homeomorphic to its domain.

E23.

In (X,7), a family of sets F = {B, : « € A} is called locally finite if each point

x € X has a neighborhood N such that N N B, # () for only finitely many «a's. (Part b) was
also in Exercise E2.)

a) Suppose (X, d) is a metric space and that F is a family of closed sets. Suppose there
is an € > 0 such that d(B,, B,) > e for all B;,B; € F. Prove that F is locally finite.

b) Prove that if F is a locally finite family of sets in (X, 7), then

cl(U,eaBa) = Upea €1 (Ba). Explain why this implies that if all the B, s are closed,
then |J,c4B. is closed. (This would apply, for example, to the sets in part a). See also
Exercise E2.)

¢) (The Pasting Lemmas: compare Exercise II.LE24) Let (X,7)and (Y,7 ') be
topological spaces. For each o € A, suppose B, C X, that f, : B, — Y isa
continuous function, and that f,|(B, N Bs) = f3|(Bs N Bg)forall a, 3 € A Then
Uaea fa = fisafunctionand f : |JB, — Y. (Informally: each pair of functions

fa and fg agree wherever their domains overlap; this allows use to define f by “pasting
together” all the “function pieces”)

i) Show that if all the B,,'s are open, then f is continuous.
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ii) Show that if there are only finitely many B, 's and they are all closed, then f
is continuous. (Hint: use a characterization of continuity in terms of closed
sets.)

iii) Give an example to show that f might not be continuous when there are
infinitely many B, 's all of which are closed.

iv) Show that if F is a locally finite family of closed sets, then f is continuous.

(Of course, iv) = ii)).

Note: the most common use of the Pasting Lemma is when the index set A is finite.
For example, suppose

Hy :[0,1] x [0, 3] — (X, d) is continuous, and

H, :[0,1] x [3,1] — (X, d) is continuous, and

Hi(t,5) = Ha(t, %) forallt € [0,1]
151
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H, is defined on the lower closed half of the box [0,1]?, Hy is defined on the upper closed half,
and they agree on the “overlap” — that is, on the horizontal line segment [0,1] x {}}. Part b)

(or part c) ) says that the two functions can be pieced together into a continuous function
H :[0,1]? — (X,d), where H = H; U H, that is

it = {Hz<t,y> i 1>

D= D=
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Chapter III Review

Explain why each statement is true, or provide a counterexample. If nothing else is mentioned,
X and Y are topological spaces with no other properties assumed.

1. For every possible topology 7, the space ({0, 1,2},7) is pseudometrizable.
2. A convergent sequence in a first countable topological space has at most one limit.
3. A one point set {2} in a pseudometric space (X, d) is closed.

4. Suppose 7 and 7 ' are topologies on X and that for every subset A of X, cly(A) = clr/(A).
Then7 =7".

5. Suppose f: X — Yand A C X. If f|[A: A — Y is continuous, then f is continuous at each
point of A.

6. Suppose Sis a subbase for the topology on X and that D C X. If U N D # () for every
U € S, then D is dense in X.

7.1f D is dense in (X, 7) and 7 * is another topology on X with 7 C 7*, then D is dense
in (X,77).

8. If f: X — Y is both continuous and open, then f is also closed.
9. Every space is a continuous image of a first countable space.

10. Let X = {0, 1} with topology 7 = {0, X, {1}}. There are exactly 3 continuous
functions f : (X,7) — (X, 7).

11. If A and B are subspaces of (X,7) and both A and B are discrete in the subspace topology,
then A U B is discrete in the subspace topology.

12.If A C (X, T) and X is separable, then A is separable.
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13. If 7 is the cofinite topology on X. Every bijection f:(X,7)— (X,7) is a
homeomorphism.

14. If X has the cofinite topology, then the closure of any open set in X is open.

15. A continuous bijection from R to R must be a homeomorphism.

16. For every cardinal m, there is a separable topological space (X, 7) with | X | = m.

17. If every family of disjoint open sets in (X, 7") is countable, then (X, 7") is separable.

18. For a € R? and € > 0, let C,(a) = {z € R?: d(x,a) = €}. Let 7 be the topology on R? for
which the collection {C,(a): € > 0,a € R?} is a subbasis. Let U be the usual topology on R?.
Then the function f: (R?,7) — (R?,U) given by f(z,y) = (sinz,siny) is continuous.

19. If D C R and each point of D is isolated in D, then cl D must be countable.

20. Consider the separation property S : every minimal nonempty closed set F'is a singleton.
(F' is a minimal nonempty closed set means: if A is a nonempty closed set and A C F, then
A =F). If X is a T}-space, then X has property S.

21. A one-to-one, continuous, onto map f : ( X,7) — (Y,7") must be a homeomorphism.

22. An uncountable closed set in R must contain an interval of positive length.

23. A countable metric space has a base consisting of clopen sets.

24. Suppose D C X and that D is dense in (X, 7). If 7* is topology on X with 7* C 7, then
Dis dense in (X,77").

25.1f D C R and D is discrete in the subspace topology, then D is countable.

26. The Sorgenfrey plane has a subspace homeomorphic to R (with its usual topology).
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27.InN,let B, ={BCN: ne Band B C {1,2,...,n}}. Ateach point n, the B,'s satisfy the
conditions in the Neighborhood Base Theorem and therefore describe a topology on N.

28. Ateach pointn € N, let B, ={B: B2 {n,n+1,n+2,... }}. Ateach point n, the B,'s
satisfy the conditions in the Neighborhood Base Theorem and therefore describe a topology
on N.

29. Suppose (X, 7') has a base B with |B| = ¢. Then X has a dense set D with |D| < c.

30. Suppose (X, 7 ) has a base B with |B| = c. Then at each point x € X, there is a
neighborhood base with |B,| < c.

31. Suppose X is an infinite set. Let 77 be the cofinite topology on X and let 75 be the discrete
topology on X. If a function f : R — (X, 7;)is continuous, then f : R — (X, 73) is also
continuous.

32. Let 7 be the “right-ray topology” on R, that is, 7 = {(a,0) : a € R} U {0, R}. The space
(R, 7) is first countable.
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