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Chapter III
Topological Spaces

1. Introduction

In Chapter I we looked at properties of sets, and in Chapter II we added some additional structure

to a set a distance function to create a pseudometric space.  We then saw some of the most� . �
basic fundamental definitions and properties of pseudometric spaces. There is much more, and

some of the most useful and interesting properties of pseudometric spaces will be discussed in

Chapter IV. But in Chapter III we look at an important generalization.

We observed, early in Chapter II, that the idea of continuity (in calculus) depends on talking

about “nearness,” so we used a distance function  to make the idea of “nearness” precise. In that.
way, we were able to extend the definition of continuity from  to pseudometric spaces. The‘8

distance function  also led us to the idea of open sets in a pseudometric space.  From there we.
developed properties of closed sets, closures, interiors, frontiers, dense sets, continuity, and

sequential convergence.

An important observation in Chapter II was that open (or closed) sets are really all that we

require to talk about many of these ideas. In other words, we can often do what's necessary using

the open sets  knowing which specific  generated the open sets: the topology is whatwithout . g.

really matters. For example, int  is defined in in terms of the open sets so int  doesn'tE Ð\ß .Ñ ß E
change if  is replaced with a different but equivalent metric one that generates the same. . �w

open sets. Similarly, changing  to an equivalent metric  doesn't affect closures, continuity, or. .w

convergent sequences.  In summary: for many purposes  is logically unnecessary once  has. .
done the job of creating the topology  (although having  might still be convenient).g. .

This suggests a way to generalize our work.  For a particular set  we can simply assign a\
topology that is, a collection of “open” sets given without any mention of a pseudometric that�
might have generated them.  Of course when we do this, we want the “open sets” to “behave the

way open sets should behave” as described in Theorem II.2.11. This leads us to the definition of

a topological space.

2. Topological Spaces

Definition 2.1  A  on a set  is a collection of subsets of  such thattopology g \ \

   i) gß\ − g
   ii) if  for each  then S − − Eß S −α g α g-

+−E +

   iii)  if then S ß ÞÞÞß S − ß S ∩ ÞÞÞ ∩ S − Þ" 8 " 8g g

A set  is called  if  . The pair is called a .S © \ S − Ð\ß Ñopen g g topological space

Sometimes we will just refer to “a topological space .” In that case, it is assumed that there is\    

some topology  on  but, for short, we are just not bothering to write down the “ ”)g g\
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We emphasize that in a topological space there is  : therefore phrases likeno distance function .
“distance between two points” and “ -ball”  in   There is no preconceived% gmake no sense Ð\ß ÑÞ
idea about what “open” means: to say “  is open” means nothing more or less than  “ .”S S − g

In a topological space , we can go on to define closed sets and isolated points just as weÐ\ß Ñg
did in pseudometric spaces.

Definition 2.2  A subset  in  is called  if   is open, that is, if .J Ð\ß Ñ \ � J −g gclosed X � J

Definition 2.3   A point is called  if } is open, that is, if + − Ð\ß Ñ Ö+ Ö+× − Þg gisolated

The proof of the following theorem is the same as it was for pseudometric spaces; we just take

complements and apply properties of open sets.

Theorem 2.4    In any topological space      Ð\ß Ñg

   i)    and  are closedg \
   ii)  if  is closed for each then is closedJ + − Eß Jα αα

+
−E

   iii) if  are closed, then  is closed.J ß ÞÞÞß J J" 8 33œ3
8-

More informally, ii) and iii) state that intersections and finite unions of closed sets are closed.

Proof   Read the proof for Theorem II.4.2.   ñ

For a particular topological space , it  be possible to find aÐ\ß Ñg might or might not

pseudometric  on  that “creates” this topology that is, one for which . \ � œ Þg g.

Definition 2.5 A topological space is called if there exists aÐ\ß Ñg pseudometrizable

pseudometric  on  for which If  is a metric, then  is called . \ œ Þ . Ð\ß Ñg g g. metrizable.

Examples 2.6

 1) Suppose  is a set and  is called the  topology on  and it is\ œ Ögß\×Þ \g g trivial

 the smallest possible topology on . is called a trivial topological space. The\ Ð\ß Ñg
 only open (or closed) sets are  and   If we put the trivial pseudometric  on , theng \Þ . \
 So a trivial topological space turns out to be pseudometrizable.g g. œ Þ

   At the opposite extreme, suppose . Then is called the  ong c gœ Ð\Ñ discrete topology

  and it is the largest possible topology on    is called a discrete topological\ \Þ Ð\ß Ñg
 space. Every subset is open (and also closed). Every point of  is isolated. If we put the\
 discrete unit metric  (or any equivalent metric) on , then So a discrete. \ œ Þg g.

 topological space is metrizable.
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 2)  Suppose and let .   is a topological space called\ œ Ö!ß "× œ Ögß Ö"×ß\× Ð\ß Ñg g
 .  In this case it is  possible to find a pseudometric  on  for whichSierpinski space not . \
 , so Sierpinski space is not pseudometrizable.  To see this, consider anyg g. œ
 pseudometric  on .. \

       If , then  is the trivial pseudometric on  and  ..Ð!ß "Ñ œ ! . \ Ögß\× œ Ág g.

  If , then the open ball so .Ð!ß "Ñ œ � ! F Ð!Ñ œ Ö!× − ß Á Þ$ g g g$ . .

   (In this case  is actually the discrete topology:  is just a rescaling of theg. .
  discrete unit metric.)

 Another possible topology on } is , although and\ œ Ö!ß " œ Ögß Ö!×ß\× Ð\ß Ñg gw

  seem very much alike:  both are two-point spaces, each with exactlyÐ\ß Ñg w

 one isolated point. One space can be obtained from the other simply renaming “ ” and!
 “ ” as “ ” and “ ” respectively. Such “topologically identical” spaces are called" " !
 “homeomorphic.” (We will give a precise definition later in this chapter.)

 3) For a set , let  or  is finite   is a topology on \ œ ÖS © \ À S œ g \ � S ×Þ \ Àg g

  i)  Clearly, and .g − \ −g g

        ii) Suppose for each  If  then .S − − EÞ S œ gß S −α α αα αg α g- -
−E −E

  Otherwise there is at least one .  Then  is finite, soS Á g \ � Sα α! !

   .  Therefore   is\ � S œ Ð\ � S Ñ © \ � S \ � S- + -
α α αα α α α−E −E −E!

  also finite, so .-
α α−ES − g

       iii) If  and some , then  so .S ß ÞÞÞß S − S œ g S œ g S −" 8 3 3 33œ" 3œ"
8 8g g+ +

  Otherwise each  is nonempty, so each  is finite  ThenS \ � S Þ3 3

   is finite, so .Ð\ � S Ñ ∪ ÞÞÞ ∪ Ð\ � S Ñ œ \ � S S −" 8 3 33œ" 3œ"
8 8+ + g

 In , a set  is closed iff  or  is finite. Because the open sets are  and theÐ\ß Ñ J J œ g J gg
 mplements of  sets,  is called the  on .co finite cofinite topologyg \

 If  is a finite set, then the cofinite topology is the same as the discrete topology on .\ \
 ( )  If  is infinite, then no point in  is isolated.Why? \ Ð\ß Ñg
 

 Suppose  is an infinite set with the cofinite topology   If  and  are nonempty\ Þ Y Zg
 open sets, then  and  must be finite so\ � Y \ � Z Ð\ � YÑ ∪ Ð\ � Z Ñ
  is finite.  Since  is infinite, this means thatœ \ � ÐY ∩ Z Ñ \ Y ∩ Z Á g Ðin fact,

  must be infiniteY ∩ Z Ñ Ð\ß Ñ. Therefore every pair of  nonempty open sets in  hasg
  nonempty intersection!  This shows us that an infinite cofinite space  is notÐ\ß Ñg
 pseudometrizable:

 

   i)  if  is the trivial pseudometric on , then certainly , and. \ Ág g.

      ii) if  is not the trivial pseudometric on , then there exist points. \
    for which .  In that case,  and +ß , − \ .Ð+ß ,Ñ œ � ! F Ð+Ñ F Ð,Ñ$ $Î# $Î#

   would be  nonempty open sets in so disjoint g g g. .ß Á Þ
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 4)  On , let : , .  It is easy to verify that  is a topology‘ g ‘ ‘ gœ ÖÐ+ß∞Ñ + − × ∪ Ög ×
 on , called the .   Is metrizable or pseudometrizable?‘ ‘ gright-ray topology  Ð ß Ñ

If , then  is the only possible topology on , and  is the only\ œ g œ Ög× \ œ Ögß Ö+××g g
possible topology on a singleton set . But for , there are many possible\ œ Ö+× l\l � "
topologies on .  For example, there are four possible topologies on the set .  These\ \ œ Ö+ß ,×
are the trivial topology, the discrete topology,  and  although, asÖgß Ö+×ß\×ß Ögß Ö,×ß\×
mentioned earlier, the last two can be considered as “topologically identical.”

If  is a topology on , then  is a collection of subsets of so .  This means thatg g g c\ \ß © Ð\Ñ

g c c c c− Ð Ð\ÑÑ Ð Ð\ÑÑ œ #, so | |  is an upper bound for the number of possible topologiesÐ# Ñl\l

on .  For example, there are   topologies on a set  with 7\ # ¸ $Þ% ‚ "! \no more than # $)(

elements.  But this upper bound is actually very crude, as the following table (given without

proof) indicates:

    Actual number of distinct8 œ l\l
     topologies on \

   0  1

   1  1

   2  4

   3  29

   4  355

   5  6942

   6  209527

   7  9535241  ( )many less than "!$)

Counting topologies on finite sets is really a question about combinatorics and we will not pursue

this topic.

Each concept we defined for pseudometric spaces can be carried over directly to topological

spaces that is  in terms of open (or closed) sets.if the concept was defined in topological terms � ß
This applies, for example, to the definitions of interior, closure, and frontier in pseudometric

spaces, so these definitions can also be carried over verbatim to a topological space Ð\ß ÑÞg

Definition 2.7   Suppose .  We defineE © Ð\ß Ñg

  int the  is open and }\E œ interior of  in E \ œ ÖS À S S © E×-
  cl the   is closed and \E œ ª E×closure of  in E \ œ ÖJ À J J+
  Fr the cl cl\ \ \E œ œfrontier (or boundary) of  in  E \ E ∩ Ð\ � EÑ

As before, we will drop the subscript “ ” when the context makes it clear.\

The properties for the operators cl, int, and Fr (except those that mention a pseudometric  or.
an -ball) remain true.  The proofs in the preceding chapter were deliberately phrased in%
topological terms so they would carry over to the more general setting of topological spaces.
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Theorem 2.8  Suppose .  ThenE © Ð\ß .Ñ

         1) a) int  is the largest open subset of   (that is, if  is open and , thenE E © ES O

      S © Eint ).

           Note: int  is true for  set  so web)  is open  iff  int  E E œ E Ð E © E Eevery

  could say:  is open iff intE E © EÞÑ
  c) int   iff  there is an open set  such that B − E B − © ES S

   a) cl  is the smallest closed set containing  (that is, if  is closed and , 2)   E E J J Eª
             then cl ).J ª E
        Note: cl  is true for  set , so web)  is closed  iff cl    E E œ E Ð E © E Eevery

  could say:   is closed iff clE E © EÞÑ
    c) cl   iff  for every open set  containing , B − E B ∩ E Á gS S

       closed and Fr Fr ( ). 3)   a) Fr  is E E œ EX �
  b) Fr   iff  for every open set  containing ,  andB − E B ∩ E Á gS S
                  S ∩ Ð\ � EÑ Á g
 c  is clopen  iff  Fr .  ÑE E œ g
    

See the proof of Theorem II.4.5

At this point, we add a few additional facts about these operators.  Some of the proofs are left as

exercises.

Theorem 2.9   Suppose ,  are subsets of a topological space   ThenE F Ð\ß ÑÞg

   1) cl cl clÐE F ÐE ∪ ÐF∪ Ñ œ Ñ Ñ
   2) cl Fr   E œ E ∪ E
   3)  int Fr clE œ E � E œ Ð\ � EÑ\ �
   4) Fr cl intE œ E � E
   5) int Fr int , and these 3 sets are disjoint.\ œ E ∪ E ∪ Ð EX � Ñ

Proof 1)  so, from the definition of closure, we have cl cl .E © E ∪ F E © ÐE ∪ FÑ
Similarly,  cl cl   Therefore cl cl clF © ÐE ∪ FÑ E ∪ F © ÐE ∪ FÑÞ
 On the other hand,  cl cl  is the union of two closed sets, so cl cl  is closedE ∪ F E ∪ F
and cl cl ,  so cl cl cl .  (E ∪ F ª E ∪ F E ∪ F ª ÐE ∪ FÑ As an exercise, try proving 1) instead

using the characterization of closures given above in Theorem 2.8.2c.)

     Is 1)  true if “ ” is replaced by “ ” ?∪ ∩

 2) Suppose cl  but   If  is any open set containing , then B − E B Â EÞ S B S ∩ E Á g
(because cl ) and  because the intersection contains ).  ThereforeB − E S ∩ Ð\ � EÑ Á g Ð B
B − E B − ∪Fr , so FrA AÞ
 Conversely, suppose Fr .  If , then cl And if , thenB − E ∪ E B − E B − EÞ B Â E
B − E œ E ∩ Ð\ � EÑ B − EÞ œ ∪Fr cl cl , so cl Therefore cl   FrA A AÞ

The proofs of 3) 5) are left as exercises.   � ñ
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Theorem 2.9 shows us that complements, closures, interiors and frontiers are interrelated and

therefore some of these operators are redundant. That is, if we wanted to very “economical,” we

could discard some of them. For example, we could avoid using “Fr” and “int” and just use “cl”

and complement because Fr cl cl  and int FrE œ E ∩ Ð\ � EÑ E œ E � E
œ E � Ð E ∩ Ð\ � EÑÑcl cl . Of course, the most economical way of doing things is not

necessarily the most convenient.  (Could we get by only using complements and “Fr” that is,�
can we define “int” and “”cl” in terms of “Fr” and complements?  Or could we use just “int”

and complements? )

Here is a famous related problem from the early days of topology:  for , is there anE © Ð\ß Ñg
upper bound for the number of different subsets of  which might created from  \ E using only

complements and closures, repeated in any order?  (As we just observed, using the interior and

frontier operators would not help to create any additional sets.)  For example, one might start

with  and then consider such sets as cl , cl  cl cl  and so on.  An oldE E \ � Eß Ð\ � Ð\ � EÑÑß
theorem of Kuratowski (1922) says that for  set  in  space , the upper bound isany anyE Ð\ß Ñg
14.  Moreover, this upper bound is “sharp” there  a set  from which 14 different sets� E ©is ‘
can actually be obtained!  Can you find such a set?

Definition 2.10   Suppose  is a topological space and .  is called  in  ifÐ\ß Ñ H © \ H \g dense

cl   The space is called  if there exists a countable dense set  in .H œ \Þ Ð\ß Ñ H \g separable

Example 2.11   Let  be the cofinite topology on .  Let g ‘ „ œ Ö#ß %ß 'ß ÞÞÞ×Þ
 

 int , because each nonempty open set  has finite complement and therefore„ œ g S
 In fact, for any   if  is infinite, then int//S © IÞ F © À � F F œ g‘ ‘
    /
 cl  because the only closed set containing  is . Therefore  is separable.„ ‘ „ ‘ ‘ gœ Ð ß Ñ
 In fact, any infinite set  is dense.F

 Fr cl cl„ „ ‘ „ ‘ ‘ ‘œ Ð Ñ ∩ Ð � Ñ œ ∩ œ
  

  is not pseudometrizable ( )Ð ß Ñ‘ g why?

Example 2.12  Let  be the right-ray topology on . In ( ,g ‘ ‘ gß Ñ

 int™ œ g

 cl , so  is separable™ ‘ ‘ gœ Ð ß Ñ

 Fr™ ‘œ

 Any two nonempty open sets intersect, so is not metrizable.  Is itÐ ß Ñ‘ g
   pseudometrizable?
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3.  Subspaces

There is a natural way to create a new topological space from a subset of a given topological

space. The new space is called a sub  (not merely a sub ) of the original space.space set

Definition 3.1  Suppose  is a topological space and that .  The Ð\ß Ñ E © \g subspace topology

on subspaceE is defined as } and is called a  of g g g gE Eœ ÖE ∩ S À S − ÐEß Ñ Ð\ß ÑÞ
We sometimes call  the “restriction of  to ” or the  “trace of  on ”S ∩ E S E S E

You should check the conditions in Definition 2.1 are satisfied: in other words, that reallygE

is a topology on When we say that  is a subspace of , we mean that  is a subset ofE E Ð\ß Ñ E. g
\ Þ E  the subspace topology   To indicate that  is a subspace, we sometimes writewith gE

E © Ð\ß Ñ E © \g rather than Þ

Example 3.2   Consider , where  has its usual topology.  For each , the interval	 ‘ ‘ 	© 8 −
Ð8 � "ß 8 1 "Ñ Ð8 � "ß 8 1 "Ñ ∩ œ Ö8× is open in . Therefore  is open in the subspace , so‘ 	 	
every point  is isolated in the subspace. The subspace topology is the discrete topology. Notice:8
the subspace topology on  is the same as what we get if we use the usual metric on  to	 	
generate open sets in .  Similarly, it is easy to check that in  the subspace topology on the -	 ‘# B
axis is the same as the usual metric topology on .‘

More generally: suppose , where  is a pseudometric space.  Then we can think ofE © \ Ð\ß .Ñ
two ways to make  into a topological space.E

  i)  gives a topology  on .  Take the open sets in  and intersect them. \g g. .

  with .  This gives us the subspace topology on , which we call  andE E Ð Ñg. E

   is a subspace of ÐEß Ð Ñ Ñ Ð\ß ÑÞg g. E

  2)  Or, we could view  as a pseudometric space by using  to measure distancesE .
  in . To be very precise,  , so we make a “new” pseudometricE . À \ ‚ \ Ä ‘
   defined by .  Then  is a pseudometric space and we can. . œ .lE ‚ E ÐEß . Ñw w w

  use  to generate open sets in : the topology . E Þw
.g w

     Usually, we would be less compulsive about notation and continue to

  use the name “d” also for the pseudometric on . But for a moment it will beE
  helpful to distinguish carefully between  and . . œ .lE ‚ Ew .

Fortunately, it turns out that 1) and 2) produce the same open sets in the open sets in E À ÐEß . Ñw

are just the open sets from  restricted to   That's just what Theorem 3.3 says, in “fancier”Ð\ß .Ñ EÞ
notation.

Theorem 3.3   Suppose where is a pseudometric space. Then   .E © \ß Ð\ß .Ñ Ð Ñ œg g. E . w

Proof    If , then  where . Let .  There is an  such thatY − Ð Ñ Y œ S ∩ E S − + − Y � !g g %. E .

F Ð+Ñ © SÞ . œ .lE ‚ E F Ð+Ñ œ F Ð+Ñ ∩ E © S ∩ E œ Y Y −% % %
. w . .

. Since , we get that , so .
w

wg
 Conversely, suppose   For each  there is an  such thatY − Þ + − Y � !g %. +w

F Ð+Ñ © Y ß Y œ F Ð+ÑÞ S œ F Ð+Ñß Þ% % %+ + +

w w. . .
+−Y +−Y . and Let an open set in   Since- - g

F Ð+Ñ œ F Ð+Ñ ∩ E S ∩ E œ Ð F Ð+ÑÑ ∩ E œ Ð F Ð+Ñ ∩ EÑ% % % %+ + + +

w. . . .
+−S +−S, we get - -

œ F Ð+Ñ œ Y Þ Y − Ð Ñ Þ ñ-
+−Y

.
. E%+

w
   Therefore g
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Exercise  Verify that in any topological space Ð\ß Ñg

       i) If  is open in   and  is an open set in the subspace then is open in Y Ð\ß Ñ E Y ß E \Þg
( )“An open subset of an open set is open.”

        ii) If  is closed in    and  is a closed set in the subspace  then  is closed in .J Ð\ß Ñ E Jß J \g
( )“A closed subset of a closed set is closed.”

4.  Neighborhoods

Definition 4.1 Let  be a topological space and suppose If int , then weÐ\ß Ñ R © \Þ B − Rg
say that  is a N neighborhood of B Þ
  The collection is a neighborhood of  is called theaB œ ÖR © B×\ À R
neighborhood system at BÞ

Note that

  1)   , because every point  has at least one neighborhood for example,aB Á g B �
  \ − ÞaB

  2)   If  and , then int int ( ) int .R R − B − R ∩ R œ ÐR ∩ R Ñ" # B " # " #a why?

  Therefore R" # B∩ R − a .

  3)  If  and then int int , so  (that is, ifR − R © R B − R © R R −a aB B
w w w, 

   contains a neighborhood of , then  is also a neighborhood of .)R B R Bw w

Just as in pseudometric spaces, it is clear that   a set  in is open iff  is a neighborhoodS Ð\ß Ñg O

of each of its points.  ( )See Theorem II.5.4

In a pseudometric space, we use the -balls centered at  to measure “nearness” to . For% B B
example, if “every -ball in  centered at  contains an irrational number,”  this tells us that% ‘ B
“there are irrational numbers arbitrarily near to .”  Of course, we could convey the sameB
information in terms of neighborhoods by saying “every neighborhood of  in  contains anB ‘
irrational number.”  Or, instead, we could say it in terms of “open sets”:  “every open set in ‘
containing  contains an irrational number.”  These are all equivalent ways to say “there areB
irrational numbers arbitrarily near to .” B This isn't that surprising since open sets and

neighborhoods in were defined in terms of -balls.Ð\ß .Ñ %

In a topological space  we don't have -balls, but we still have open sets andÐ\ß Ñg %
neighborhoods.  We now think of the neighborhoods in (or, if we prefer, the collection ofaB

open sets containing ) as the tool we use to talk about “nearness to .”B B

For example, suppose  has the trivial topology . For any the only neighborhood of \ B − \ß Bg
is : therefore    the neighborhoods of  are unable\ C \ À Bevery in is in every neighborhood of B
to “separate”  and , and that's  to having  (if we had a pseudometric).  InB C .ÐBß CÑ œ !analogous

that sense, all points in  are “very close together”: so close together, in fact, that they areÐ\ß Ñg
“indistinguishable.”   The neighborhoods of  tell us this.B

At the opposite extreme, suppose  has the discrete topology  and that  If  then\ B − \Þ B − [g
( ),  is a neighborhood of .  The  neighborhood of  is .  Sosince  is open[ [ B B R œ ÖB×smallest

every point  has a neighborhood that  :  for every , we couldB R C C Á Bexcludes all other points
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say “  is not within the neighborhood  of .”  This is  to saying “  is not within  ofC R B Canalogous %
B C R Bß B” (if we had a pseudometric).  Because  point  is “within  of ” we call  isolated. Theno

neighborhoods of  tell us this.B

Of course, if we prefer, we could use “  is an open set containing ” instead of  “  is aY B R
neighborhood of ” to talk about nearness to .B B

The complete neighborhood system of a point often contains more neighborhoods than weaB B
actually need to talk about nearness to .  For example, the open balls  in a pseudometricB F ÐBÑ"

8

space  are enough to let us talk about continuity at . Therefore, we introduce the idea of aÐ\ß .Ñ B
neighborhood base at B to choose a smaller collection of  neighborhoods of  that isB

  i) good enough for all our purposes, and

  ii) from which all the other neighborhoods of  can be obtained if we want them.B

Definition 4.2 A collection  is called a  at  if for everyU aB B© Bneighborhood base

neighborhood  of , there is a neighborhood  such that .  We refer to theR B F − B F © RUB −
sets in as  of .UB basic neighborhoods B

According to the definition, each set in  must  a neighborhood of , but the collection U UB Bbe B
may be much simpler than the whole neighborhood system  The crucial thing is that everyR ÞB
neighborhood  of  must contain a basic neighborhood  of .R B F B

Example 4.3  In , possible ways to choose a neighborhood base at  include:Ð\ß .Ñ B

  i)      the collection of all balls ,  orUB œ F ÐBÑ%

  ii)     the collection of all balls  , where  is a positive rational,  orU %B œ F ÐBÑ%

  iii)    the collection of all balls  for ,  orU 	B œ F ÐBÑ −"
8

8

  iv)     (U aB Bœ The neighborhood system is always a base for itself, but it

     is not an “efficient” choice; the goal is to get a base UB

     that's much simpler than RB.)

Which  to use is our choice: each of i)-iv) gives a neighborhood base at .  But  ii) or iii)UB B
might be more convenient because ii) and iii) are  neighborhood bases .  (� countable UB If

\ œ .‘ U, for example, with the usual metric , then the collections  in i) and iv) areB

uncountable.)  Of the four,  iii) is probably the simplest choice for .UB

Suppose we want to check whether some property that involves neighborhoods of  is true.B
Often all we need to do is to check whether the property holds for neighborhoods in the simpler

collection .   For example, in   is open iff  contains a neighborhood of eachUB Ð\ß .Ñ À S RO

B − SÞ S F ÐBÑ B  But that is true iff  contains a set  around each of its points ."
8

Similarly, cl  iff for every  iff for every ForB − E R ∩ R −A   . Á g F ∩ E Á g F −aB UB

example, suppose we want to check, in , that cl .  It is  just to check that‘ �" − sufficient

F Ð"Ñ ∩ Á g 8 − R ∩ Á g R − Þ"
8

� 	 � a for each , because this implies that  for  every "

Therefore it's often desirable to make an “efficient” choice of neighborhood base at each  UB

point B − \.
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Definition 4.4  We say that a space satisfies the  (or, moreÐ\ß Ñg first axiom of countability

simply, that  is ) if at each point , it is possible to choose a countableÐ\ß Ñ B − \g first countable

neighborhood base UBÞ

Example 4.5

 1) The preceding Example 4.3 shows that every pseudometric space is first countable.

 2) If  is the discrete topology on then  is first countable.  In fact, at eachg g\ß Ð\ß Ñ
point , we can choose a neighborhood base that consists of a single set: B œ Ö ÖB× ×ÞUB

 3) Let  be the cofinite topology on an uncountable set .  For any , there g \ B − \ cannot

be a countable neighborhood base at .UB B

  We prove this by contradiction: suppose we had a countable neighborhood base

  at some point   call it B À œ ÖF ß ÞÞÞß F ß ÞÞÞ×ÞUB " 8

  For any  is closed  so  is a neighborhood of .  Then, by theC Á Bß ÖC× ß \ � ÖC× B
  definition of neighborhood base, there is some  for which int5 B − F © F5 5

  .  Therefore  int .© \ � ÖC× C Â F+
8œ"
∞

8

  But int  so int .B − F F œ ÖB×+ +
8œ" 8œ"
∞ ∞

8 8

  

    Then int int . Since int is   \ � ÖB× œ \ � F œ Ð\ � F Ñ \ � F+ -
8œ" 8œ"
∞ ∞

8 8 8

  finite ( ?), this would mean that  is countable  which is impossible.why \ � ÖB× �

Since any pseudometric space  first countable, the example gives us another way to see that thisis

space   is not pseudometrizable.Ð\ß Ñg

In , the neighborhood system  at each point  is Ð\ß Ñ Bg aB completely determined by the

topology , but  is not.  As the preceding examples illustrate, there are usually many possibleg UB

choices for .  (UB Can you describe all the spaces  for which  is uniquely determined atÐ\ß Ñg UB

each point B ?)

On the other hand, if we were  at each point  we couldgiven UB B − \

  1) “reconstruct” the whole neighborhood system :aB

   such that , and  we coulda UB Bœ ÖR © \ À bF − B − F © R× then

  2) “reconstruct” the whole topology :g

    is a neighborhood of each of its pointsg œ ÖS À S ×
   , that is,œ ÖS À aB − S bF − B − F © S×UB

     is open iff  contains a basic neighborhood of each of its points.S S

This illustrates one method of describing a topology:  by telling the neighborhood basis  atUB

each point.  Various effective methods to describe topologies are discussed in the next section.
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5.  Describing Topologies

How can a topological space be described?  If , it is simple to give a topology by just\ œ Ö!ß "×
writing   However, describing all the sets in  explicitly is often not the easiestg gœ Ögß Ö!×ß\×Þ
way to go.

In this section we look at three important different but closely related ways to define a� �
topology on a set. All of the will be used throughout the course.  A fourth method by using a7 �
“closure operator”  is not used much nowadays.  It is included just as an historical curiosity.�

A.  Basic neighborhoods at each point

Suppose that at each point we have picked a neighborhood base .  As mentionedB − Ð\ß Ñg UB

above, the collections  implicitly contain all the information about the topology: a set  is inUB S
g  iff   contains a basic neighborhood of each of its points. This suggests that if we start withO

just a  , then we could define a topology on  if we  by saying what the 's shouldset begin\ \ UB

be.  Of course, we can't just put “random” sets in the sets in each  must “act the wayU UB BÀ
basic neighborhoods are supposed to act.”  And how is that?  The next theorem describes the

crucial behavior of a collection of basic neighborhoods at  in any topological space.B

Theorem 5.1 Suppose  is a topological space and that for each point  is aÐ\ß Ñ B − \ßg UB

neighborhood base.

  1)  and U UB BÁ g F Ê B − F © \−

  2) if  and , then   such that F F − b F − B − F" # $ " #U UB $ B © F ∩ F

  3) if , then   such that  and,F − b M BUB − M © F
  such that a C I,  B B IC − b − − ©C C CU  

  4)      such that .O O B B O− Í aB − b − Bg UB − ©

Proof 1) Since  is a neighborhood of , there is a  such that . Therefore\ B F − BUB − F © \
U U aB B BÁ g − © B B © F © \.  If , then  is a neighborhood of , so int .F − FB

 2) The intersection of the two neighborhoods  and  of  is a neighborhood of .F F B B" #

Therefore, by the definition of a neighborhood base, there is a set  such thatF −$ BU
B − F$ " #© F ∩ F .

 3) Let int Then  and because  is open,  is a neighborhood of each itsM F Bœ − ©. I B I I

points .  Since  is a neighborhood base at there is a set such that .C C − C − FU UC C,  F © MC C 

 4) : If is open, then  is a neighborhood of each of its points .  Therefore for eachÊ BO O

B − S F − B − F © SÞ there must be a set such that UB

  : The condition implies that  contains a neighborhood of each of its points.É O

Therefore   a neighborhood of each of its points, so  is open.   S S ñis
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Theorem 5.1 lists the crucial features of the behavior of a neighborhood base at . The nextB
theorem tells us that we can put a topology on a set  by assigning a “properly behaved"\
collection of sets to become the basic neighborhoods at each point .B

Theorem 5.2  (The Neighborhood Base Theorem)  Let  be a .  Suppose that for each\ set

B − \ \ we give a collection  of subsets  of  in such a way that conditions 1) - 3) of TheoremUB

5.1 are true.  { :   such that }     is aD Thenefine g U gœ aB − bF − B ÞO O O© \ − F ©B

topology on and  is now a neighborhood base at  in \ B Ð\ß ÑÞU gB

Note: In Theorem 5.2, we do not ask that the 's satisfy condition 4) of Theorem 5.1 since UB � \
is a  with no topology (yet), condition 4) would be meaningless. Rather, Condition 4) becomesset

the motivation for how to  a topology using the 's.define g FB

Proof We need to prove three things:  a)   a topologyg is

     b) each  is now a neighborhood  F − UB

             of  in , and        B Ð\ß Ñg
     c) the collection  is now a neighborhood base at .UB B

 a)  Clearly, .  If  then, by condition 1), we can choose any  andg − B − \ F −g UB

B − F © \Þ − Therefore .\ g

       Suppose  for all .  If { : }, then O  for someO Oα α α− − E B − − E B −g α α-
!

α g U α! B− E ß − B © − E.  By definition of there is a set  such that { : }, soF − ©B O Oα α!
--{ : } .Oα α g− E −

    To finish a), it is sufficient to show that if and , then .S S S ∩ S" # − −g g" #

Suppose By the definition of there are sets  and  such thatB F −− S ∩ S F" #.  ,  g " # BU
B © B B− F S − F © S − F ∩ F © S ∩ S" " # # and , so .  By condition 2), there is a set# " # "

F − B © F −$ B $U g such that .  Therefore .− F ∩ F © ∩ ∩" # " # " #O O O O

Therefore   a topology on so now we have a topological space and we mustg gis \ � Ð\ß Ñ �
show that  is a neighborhood base at  in .  Doing so involves the awkward-lookingU gB B Ð\ß Ñ
condition 3) which we have not yet used.�
  

 b)  If , then  (by condition 1) and (by condition 3), there is a set F − F M− B ©UB X

such that  and  .  The underlined phraseB − M © F M F F Ma C,C − b − − ©C C CU such that

states that  satisfies the condition for , so  is open.  Since  is open and  M M M M − M © F F− Bg , is

a neighborhood of , that is, .B ©U aB B

 c)   To complete the proof, we have to check that  is a neighborhood  at .  IfUB base B
R B B − R R R is a neighborhood of , then int .  Since int  is open, int  must satisfy the criterion

for membership in , so there is a set  such that int .  Therefore g U UF − B © R © RB B− F
forms a neighborhood base at .  B ñ
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Example 5.3  For each , let .  We can easily check the conditionsB − œ ÖÒBß ,Ñ À , � B×‘ UB

1) - 3) from Theorem 5.2:

  1)  For each , certainly and  for each set B − Á g B − ÒBß ,Ñ ÒBß ,Ñ −‘ U UB B

  2)  If  and  are in , then (in this example) we canF œ ÒBß , Ñ F œ ÒBß , Ñ" " # # BU
       choose , where minF œ F ∩ F œ ÒBß , Ñ − , œ Ö, ß , ×Þ$ " # $ B $ " #U
  3)  If , then (in this example) we can let F œ ÒBß ,Ñ − M œ FÞUB

       If pick  so . Then andC − M œ ÒBß ,Ñß - C @ - @ , F œ ÒCß -Ñ −C CU

       C − ÒCß -Ñ © MÞ

According to Theorem 5.2,  such that is ag ‘ Uœ ÖS © À aB − S − Bb ÒBß ,Ñ − ÒBß ,Ñ © S×B  

topology on  and is a neighborhood base at  in .  The space  is called the‘ U ‘ g ‘ gB B Ð ß Ñ Ð ß Ñ
Sorgenfrey line.

Notice that  each set : that is, the sets in  turn out to be open notin this example ÒBß ,Ñ − ßg UB

merely neighborhoods of BÞ Ð ÑThis does not always happen.

It is easy to check that sets of form  and are open, so Ð � ∞ß BÑ Ò,ß∞Ñ Ð � ∞ß BÑ ∪ Ò,ß∞Ñ
œ � ÒBß ,Ñ ÒBß ,Ñ B‘  is open.  Therefore  is also closed.  So at each point  in the Sorgenfrey line,

there is a neighborhood base consisting of clopen sets.UB

We can write , so  is open in the Sorgenfrey line.  Because everyÐ+ß -Ñ œ Ò+ 1 ß -Ñ Ð+ß -Ñ-
8œ"
∞ "

8

usual every usual open set in open set in  is a union of sets of the form , we conclude that ‘ Ð+ß -Ñ
‘ is also open in the Sorgenfrey line. The usual topology on  is strictly smaller that the‘
Sorgenfrey topology:  .g g. §

Á


 ‘ is dense in the Sorgenfrey line:  if , then every basic neighborhood  of  intersectsB − ÒBß ,Ñ B

 
, so cl   Therefore the Sorgenfrey line is separable. It is also clear that the SorgenfreyB − Þ
line is first countable: at each point  the collection  is a countableB ÖÒBß B 1 Ñ À 8 − ×"

8
	

neighborhood base.

 

Example 5.4   Similarly, we can define the  by putting a new topology on .Sorgenfrey plane ‘#

At each point , let .  The families ÐBß CÑ − œ ÖÒBß ,Ñ ‚ ÒCß -Ñ À , � Bß - � C ×‘ U U#
ÐBßCÑ ÐBßCÑ

satisfy the conditions in the Neighborhood Base Theorem, so they give a topology  for whichg
U ‘ÐBßCÑ

# is a neighborhood base at   A set  is open iff:  for each , there areÐBß CÑÞ S © ÐBß CÑ − S

, � B - � C ÐBß CÑ − ÒBß ,Ñ ‚ ÒCß -Ñ © SÞ Ð Ñ and such that    You should check thatMake a sketch!

the sets  are actually clopen in the Sorgenfrey plane.  It is also easy toÒBß ,Ñ ‚ ÒCß -Ñ − UÐBßCÑ

check the usual topology on the plane is strictly smaller that the Sorgenfrey topology. It isg.

clear that  is dense, so  is separable.  Is the Sorgenfrey plane first countable?
 ‘ g# #Ð ß Ñ

Example 5.5   At each point , let  and define: − G Ð:Ñ œ ÖB − À .ÐBß :Ñ Ÿ ×‘ ‘ %# #
%

U ‘:
#œ ÖG Ð:Ñ À : − ×% .  It is easy to check that the conditions 1) - 3) of Theorem 5.2 are

satisfied.   The topology generated by the 's is justÐFor in condition 3), let IG Ð:Ñ œ F Ð:ÑÞÑ% % U:

the usual topology the sets in are basic  of  in the usual topology as theyà : �U: neighborhoods

should be  but the sets in  did  turn out to be open sets.� U: not
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Example 5.6   Let the “closed upper half-plane.”> ‘œ ÖÐBß CÑ − À C   !× œ#

   For a point  with let : œ ÐBß CÑ − C � !ß œ ÖF Ð:Ñ À @ l C l×> U %: %

   For a point let: œ ÐBß !Ñ − ß>

   is a usual open disc in the upper half-plane, tangent to the -axis at U: œ ÖÖ:× ∪ E À E B :×Þ

It is easy to check that the collections satisfy the conditions 1) - 3) of Theorem 5.2 andU:

therefore give a topology on .  In this topology, the sets in turn out to be  neighborhoods> U: open

of .:

The space , with this topology, is called the “ .”  Notice that  is separable and first> >Moore plane

countable.  The subspace topology on the -axis is the discrete topology.  (B Verify these

statements! )  

B.  Base for the topology

Definition 5.7     A collection of  sets in  is called a  if eachopen Ð\ß Ñg base for the topology g
S − Þ © S − ßg U U U g g is a union of sets from   More precisely,  is a base if  and for each 

there exists a subfamily  such that .   We also call  a  andT U T U© S œ - base for the open sets

we refer to the open sets in  as .U basic open sets

If  is a base, then it is easy to see that:  iff   such that .  ThisU g US − aB − bF − B FO O− ©
means that if we were given , we could use it to decide which sets are open and thusU
“reconstruct” .g

Of course, one example of a base is : every topology  is a base for itself.  But usuallyU g gœ
there are many ways to choose a base, and the idea is that a simpler base  would be easier toU
work with.  For example, the set of  is a base for the topology  in any pseudometricall balls g.

space a different base would be the set containing only the Ð\ß .Ñà balls with positive rational

radii.    ( ?)Can you describe those topological spaces for which  is the  base for g gonly

The following theorem tells us the crucial properties of a base  in U gÐ\ß ÑÞ

Theorem 5.8   If  is a topological space with a base  for , thenÐ\ß Ñg U g

    1) \ œ ÖF À F − ×- U

    2) if  and  and ,  then there is a set F F − B F F F −" # # $U U− ∩"

      such that .B − F © F F$ " #∩

Proof  1) Certainly  and since  is open the definition of base implies that  is the-U © \ � \ � \
union of a subfamily of .  Therefore U U- œ \Þ

2)  If and , then  is open so  must be the union of some setsF F − F ∩ F F ∩ F" # " # " #U
from .  Therefore, if ,  there must be a set  such that .  U UB F F F − B F F F ñ− ∩ − © ∩" # $ " #$
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The next theorem tells us that if we are given a collection  of subsets of a set  with propertiesU \
1) and 2), we can use it to define a topology.

Theorem 5.9 (The Base Theorem)   Suppose  is a  and that  is a collection of subsets of\ set U
\ œ Ö that satisfies conditions 1) and 2) in Theorem 5.8.    is a union of setsDefine g O O© \ À
from such that .U U× œ ÖS © \ À aB − S bF − B − F © S×
Then  is a topology on  and  is a base for .g U g\

Proof   First we show that   a topology on .  Since  is the union of the empty subfamily ofg is \ g
U g g, we get that , and condition 1) simply states that .g − \ −

If   ( ), then  is a union of sets each of which is itself a union ofOα α α− − E ÖS À − E× Sg α α-
sets from .  Then clearly is a union of sets from , so  .U α U α g- -ÖS À − E× ÖS À − E× −α α

Suppose  and  and that .  For each such  we can use 2) to pick a setO O O" # #− B − S Bg " ∩
F − B ©B B # BU such that .   Then  is the union of all the 's chosen in this− F ∩ ∩O O O O B" # "

way, so .O O" ∩ # − g

Now we know that we have a topology, , on . By definition of  it is clear that  andg g U g\ ©
that each set in  is a union of sets from   Therefore  is a base for .  g U U gÞ ñ

Example 5.10   The collections  

    , U % ‘ %œ ÖF Ð Ñ À : − � ! ×:
#

    ,  andU 
 	w #
:

"
5œ ÖF Ð Ñ À : − 5 − ×

   , U ‘
ww

œ ÖÐ+ß ,Ñ ‚ Ð-ß .Ñ À +ß ,ß -ß . − + @ ,ß - @ .×

each satisfy the conditions 1) - 2) in Theorem 5.9, so each collection is the base for a topology on

‘ ‘# #Þ � Ð In fact, all three are bases for the same topology on that is, the usual topology check

this!Ñ �  Of the three,  is the simplest choice it is a  base for the usual topology.U w countable

Example 5.11  Suppose  and are topological spaces. Let the set of “openÐ\ß Ñ Ð] ß Ñ œg g Uw ww

boxes” in  and  (\ ‚ ] œ ÖY ‚ Z À Y − Z − ×Þg gw ww Verify that  satisfies conditions 1) andU
2) of The Base Theorem.)   The  on the set is the topology for which  isproduct topology \ ‚ ] U
a base.      unless something else is stated.We always assume that has the product topology\ ‚ ]

Therefore a set is open (in the product topology) iff  for all  there areE © \ ‚ ] À ÐBß CÑ − Eß
open sets  and  such that   Y © \ Z © ] ÐBß CÑ − Y ‚ Z © EÞ ÐNote that  itself might not be aE
“box.”Ñ

Let  be the “projection” defined by .  If  is any open set in ,1 1" "À \ ‚ ] Ä \ ÐBß CÑ œ B Y \
then .  Therefore  is open.   Similarly, for  defined1 U 1 1" "

�" �"
#ÒY Ó œ Y ‚ ] − ÒY Ó À \ ‚ ] Ä ]

by if is open in , then  is open in   (1 1# #
�"ÐBß CÑ œ C À Z ] ÒZ Ó œ \ ‚ Z \ ‚ ] Þ As we see in

Section 8, this means that the projection maps are continuous. It is not hard to show that
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the projection maps  and  are also open maps: that is, the image of open sets in the1 1" #

product is open).

If  is dense in  and  is dense in , we claim that  is dense in . IfH \ H ] H ‚ H \ ‚ ]" # " #

ÐBß CÑ − E E Y © \ Z © ], where  is open, then there are nonempty open sets  and  for which

ÐBß CÑ − Y ‚ Z © EÞ B − H Y ∩ H Á g Z ∩ H Á gÞ  Since cl , we know that ; and similarly " " #

Therefore , so ÐY ‚ Z Ñ ∩ ÐH ‚ H Ñ œ ÐY ∩ H Ñ ‚ ÐZ ∩ H Ñ Á g E ∩ ÐH ‚ H Ñ Á gÞ" # " # " #

Therefore cl   So  is dense in .  In particular, this shows thatÐBß CÑ − ÐH ‚ H ÑÞ H ‚ H \ ‚ ]" # " #

the product of two separable spaces is separable.

Example 5.12    The open intervals  form a base for the usual topology in ,  so each setÐ+ß ,Ñ ‘
Ð+ß ,Ñ ‚ Ð-ß .Ñ ‚ is  the base  for the product topology on .  It is easy to see that in everyU ‘ ‘
“open box”  in  can be written as a union of “simple open boxes” like .Y ‚ Z Ð+ß ,Ñ ‚ Ð-ß .ÑU
Therefore  also is a (simpler) base for the product topologyUw œ ÖÐ+ß ,Ñ ‚ Ð-ß .Ñ À + @ ,ß - @ .×
on .  From this, it is clear that the product topology on  is the usual topology on the‘ ‘ ‘ ‘‚ ‚
plane ( ).‘# see Example 5.10

In general, the open sets  and  in the base for the product topology on can beY Z \ ‚ ]
replaced by sets “  chosen from a base for ” and “  chosen from a base for ,” as inY \ Z ]
this example.  So in the definition of the product topology, it is sufficient to say that basic

open sets are of the form where V are  basic open sets from  and from Y ‚ Z ß Y +8. \ ] Þ

Definition 5.13  We say that a space satisfies the  (or, moreÐ\ß Ñg second axiom of countability

simply, that is a  space) if it is possible to find a countable base  forÐ\ß Ñg Usecond countable

the topology .g

For example,  is second countable because, for example,  is a countable‘ U 
œ ÖÐ+ß ,Ñ À +ß , − ×
base.  Is  is second countable ( ) ?‘# why or why not

Example 5.14 The collection  is a base for the SorgenfreyU ‘ 	œ ÖÒBß B 1 Ñ À B − ß 8 − ×"
8

topology on .  But the collection  is  a countable base for the‘ 
 	ÖÒBß B 1 Ñ À B − ß 8 − ×"
8 not

Sorgenfrey topology.  Why not?

Since the sets in a base may be simpler than arbitrary open sets, they are often more convenient

to work with, and working with the basic open sets is often all that is necessary not a surprise�
since all the information about the open sets in contained in the base . For example, you shouldU
check that

 1) If  is a base for , then cl  iff each  open set  containing  satisfiesU g B − E F Bbasic

F ∩ E Á gÞ

 2) If  and is a base for the topology on , then is0 À Ð\ß .Ñ Ä Ð] ß . Ñ ] 0w
.U g w

continuous iff  is open for each .  This means that we needn't check the inverse0 ÒFÓ F −�" U
images of  open sets to verify that  is continuous.all 0
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C.  Subbase for the topology

Definition 5.15  Suppose  is a topological space.  A family  of  sets is called aÐ\ß Ñg Æ open

subbase for the topology all finite intersections  if the collection  of  of sets from  is a baseg U Æ
for .   ( .)g Clearly, if  is a base for , then  is automatically a subbase for U g U g

Examples  i)  The collection  or  is a subbase forÆ ‘œ ÖM À M œ Ð � ∞ß ,Ñ M œ Ð+ß∞Ñß +ß , − ×
a topology on .  All intervals of the form  are in , so  is a base‘ U UÐ+ß ,Ñ œ Ð � ∞ß ,Ñ ∩ Ð+ß∞Ñ
for the usual topology on .‘
 

     ii) The collection  of all sets  and for open in  and open in )Æ Y ‚ ] Z ‚ \ Ð Y \ Z ]
is a subbase for the product topology on :  these sets are open in  and the\ ‚ ] \ ‚ ]
collection  of all finite intersections of sets in  includes all the open boxesU Æ
 .Y ‚ Z œ ÐY ‚ ] Ñ ∩ Ð\ ‚ Z Ñ

We can define a topology on a set  by giving a collection of subsets as the subbase for a\ Æ
topology. Surprisingly, any collection  can be used: no special conditions on are required.Æ Æ

Theorem 5.16  (The Subbase Theorem)   Suppose  is a set and  is  collection of subsets\ Æ any

of .  Let  be the collection of all finite intersections of sets from .  Then  is a base for a\ U Æ U
topology , and  is a subbase for .g Æ g

Proof    First we show that  satisfies conditions 1) and 2) of The Base Theorem.U

  1)  since  is the intersection of the empty subcollection of  (\ − \U Æ this follows

the convention that the intersection of an empty family of subsets of  is  itself. See Example\ \
I.4.5.5 : ).  Since certainly { }\ − ß \ œ − ÞU U- F F
  2) Suppose  and , and .   We know that ...F F − B − F ∩ F F œ ∩ ∩" # " # " " 7U S S

and for some soF ∩ ∩ −# œ S ... S  S ,..., S , ..., S , 71" 715 " 7 715 Æ

  ... ...B − F œ F ∩ F œ W ∩ ∩ W ∩ W ∩ ∩ W −$ " # " 7 71" 715 U

Therefore  is a union of sets from  is a topology, and  is a base for .  Byg U U gœ ÖS À S ×
definition of  and , we have  and each set in  is a union of finite intersections ofU g Æ U g g© ©
sets from .  Therefore  is a subbase for .   Æ Æ g ñ

Example 5.17

  1) Let  and  is a subbase for a topology on„ 	 Æ „ Æœ Ö#ß %ß 'ß ÞÞÞ × © œ ÖÖ"×ß Ö#×ß ×Þ
	 U Æ.   A base for this topology is the collection  of all finite intersections of sets in :

   , .  U 	 „œ Ög ß Ö#×ß Ö"×ß ×

The not-very-interesting topology  generated by the base  is collection of all possible unionsg U
of sets from :U
   , , }, {2}, {1,2}, , g 	 „ „œ Ög Ö" ∪ Ö"××
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 2) For each let   The collection  is8 − ß W œ Ö8ß 8 1 "ß 8 1 #ß ÞÞÞ×Þ œ ÖW À 8 − ×	 Æ 	8 8

a subbase for a topology on .  Here,  where max ,  so the collection of	 W ∩ W œ W 5 œ Ö7ß 8×8 7 5

all finite intersections from  is just  itself.  So  is actually a base for a topology.  TheÆ Æ U Æœ
topology is .g Æœ ∪ Ög×

 3) Let  is a straight line in in .  For every point ,  is theÆ ‘ ‘ ‘œ Öj À j × : − Ö:×# # #

intersection of two sets from , so  is a subbase for the discrete topology on .Æ U Æ ‘Ö:× − Þ #

 4) Let  is a vertical line in   generates a topology on  for whichÆ ‘ Æ ‘œ Öj À j ×Þ# #

U ‘ Æ gœ Ö ß g ∪ œ ÖS À S ×Þ# }  is a base and   is a union of vertical lines

 5) Let be a collection of subsets of  and suppose that  is  topology on  forÆ g\ \w any

which   Since  is a topology, it must contain all finite intersections of sets in , andÆ g g Æ© Þw w

therefore must contain all possible unions of such intersections.  Therefore  contains theg w

topology  for which  is a subbase.  To put it another way, g Æ Æthe topology for which  is a

subbase is in the smallest topology on  containing the collection \ Æ.  In fact, as an exercise, you

can check that

   and  is a topology on .g g g Æ gœ Ö À ª \×+ w w w

Caution   We said earlier that for some purposes it is sufficient (and simpler) to work with basic

open sets, rather than  open sets for example to check whether cl , it is sufficientarbitrary � B − E
to check whether  for every  open set  that contains .  However, it is Y ∩ E Á g Y Bbasic not

always subbasic sufficient to work with  open sets.  Some caution is necessary.

   For example,  or  is a subbase for theÆ ‘œ ÖM À M œ Ð � ∞ß ,Ñ M œ Ð+ß∞Ñß +ß , − ×
usual topology on .   We have  for every  open set  containing , but‘ ™M ∩ Á g Msubbasic "

#
"
# Â Þcl™

D. The closure operator

Usually we describe a topology by giving a subbase , a base , or by giving collections  tog Æ U UB

be the basic neighborhoods at each point .  In the early history of general topology, one otherB
method was sometimes used.  We will never actually use it, but we include it here as a curiosity.

Let cl  be the closure operator in   (g Ð\ß Ñg normally, we would just write “cl” for the closure

operator; here we write “cl ” to emphasize that this closure operator comes from the topologyg

g  on \).  It gives us all the information about .  That is, using cl we can decide whether anyg g ß
set  is closed  (by asking “is cl ? ”)  and therefore can decide whether any set  is openE E œ E Fg

(by asking “is  closed ?”).  It should be not be a surprise, then, that we can define a\ � F  

topology on a  if we are start with an “operator” which “behaves like a closure operator.”set \
How is that?  Our first theorem tells us the crucial properties of a closure operator.
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Theorem 5.18   Suppose is a topological space and are subsets of .    ThenÐ\ß Ñ EßF \g

    1)  clg g œ g
    2)  clE © Eg

    3)   is closed iff clE E œ Eg

      4) cl cl clg E œ Ñg gÐ E
    5)  cl cl clg g gÐE E ∪ F∪ Ñ œB

Proof   1) Since  is closed, clg g œ gg

           2)  is closed and clE © ÖJ À J E © J × œ E+
g

           3) :  If  is closed, then  itself is one of the closed sets  used in the definitionÊ E E J
cl is closed and  so clg gE œ ∩ ÖJ À J J ª E×ß E œ E.

        :  If cl then  is closed because cl is an intersection of closed sets.É E œ E E Eg g,  

           4)  cl  is closed, so by 3), cl cl clg g g gE E Ð EÑœ

          5) , so cl cl Similarly, cl clE F E ÐE ª E ÐE ª F∪ ª ∪ FÑ ∪ FÑg g g g.   .

           Therefore cl cl cl .g g gÐE F ª ÐE ∪ ÐF∪ Ñ Ñ Ñ
               On the other hand, cl cl  is a closed set that contains , and thereforeg gE ∪ F E F∪
           cl cl cl .  g g gE ∪ F ª ÐE F ñ∪ Ñ

The next theorem tells us that we can use an operator “cl” to create a topology on a set.

   

Theorem 5.19  (The Closure Operator Theorem)  Suppose  is a  and that for each\ set

E © \ E Ð\Ñ Ä Ð\Ñ, a subset cl  is defined (  ) in such a way that is, we have a function cl À c c
that conditions 1), 2), 4) and 5) of Theorem 5.18 are satisfied.  {Define g œ S À
cl }.  Then  is a topology on , and cl is the closure operator for thisÐ\ � SÑ œ \ � S \g
topology ( ).that is, cl clœ g

Note:  i)  Such a function cl is called a “Kuratowski closure operator,” or just “closure

operator” for short.

   ii) The Closure Operator Theorem does not ask that cl satisfy condition 3):  initially,

there is no topology on the given set , so 3) would be meaningless.  But 3) motivates the\
definition of as the collection of sets whose complements are unchanged when “cl” isg
applied..

Proof   ( )Numbers in parentheses refer to properties of “cl”

First note that:

  (*)   if , then cl cl cl  cl cl
(5)

 E © F ∪ FÑ œE © E ∪ F œ ÐE F

g  has the properties required for a topology on the set \ À

 i) cl , so cl  Therefore cl cl , so .
 

\ © \ \ œ \Þ Ð\ � gÑ œ \ œ \ œ \ � g g −
Ð#Ñ

g

                Also, cl cl , so therefore 
(1)

Ð\ � \Ñ œ g œ g œ \ � \ \ − Þg
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 ii) Suppose  for each .  For each particular , we haveOα − − E − Eg α α!

 cl cl  because .   This is true for 
(*)

Ð\ � Ñ © Ð\ � Ñ œ \ −-O O O Oα α α α! ! !
� g every

  , so cl ) .α A! − Ð\ � Ñ © Ð\ œ \ �- + -O O Oα α α�

 But by 2),  we know that  cl .\ � © Ð\ � Ñ- -O Oα α

 Therefore cl , so .Ð\ � Ñ œ \ � −- - -O O Oα α α g

 iii) If  and  are in , then cl ( clO O O O O O" # # " #g Ð\ � ÑÑ œ ÐÐ\ Ñ ∪ Ð\ ÑÑ" ∩ � �

 cl cl    (since  and )
(5)
œ Ð\ Ñ ∪ Ð\ Ñ œ Ð\ Ñ ∪ Ð\ Ñ −� � � �O O O O O O" # " # " # g

  ( ).   Therefore .    Therefore  is a topology on .œ \ − \� ∩ ∩O O O O" "# # g g

Having this topology  now gives us an associated closure operator cl  and we want to showg g

that cl cl.  First, we observe that for  sets in g œ Ð\ß Ñ Àclosed g
  

        (**)  cl   iff  is closed in  g F œ F F Ð\ß Ñg
                       iff  iff  cl iff cl .\ � F − Ð\ F œ Fg � Ð\ � FÑÑ œ \ � Ð\ � FÑ

To finish, we must show that  cl cl for  .E œ E E © \g every

      cl , so (*) gives that cl cl cl . But cl  is closed in ,E © E E © Ð E E Ð\ß Ñg g gÑ g
      so using cl  in (**) gives cl cl cl .  Therefore cl cl .F œ E E œ E E © Eg g g g

      On the other hand, cl cl cl , so using  cl  in (**)  gives
(4)

E E F œ Eœ
      that cl  is closed in E Ð\ß ÑÞg

                 But cl , so cl  is one of the closed sets in the intersection that defines
(2)

E ª E E
      cl .  Therefore cl cl  Therefore cl cl .   g g gE E ª EÞ E œ E ñ

Example 5.20

 1) Let  be a set.  For , define cl  .
if  is finite

if  is infinite
\ E œ

E E
\ E

E © \ œ
Then cl satisfies the conditions in the Closure Operator Theorem.   Since cl  iff  is finiteE œ E E
or , the closed sets in the topology generated by cl are precisely  and the finiteE œ \ \
sets that is, cl generates the cofinite topology on .� \

 2) For each subset  of , defineE ‘

 cl there is a sequence  in  with each  and | .E œ ÖB − À Ð+ Ñ E +   B + � Bl Ä !×‘ 8 8 8

It is easy to check that cl satisfies the hypotheses of the Closure Operator Theorem.  Moreover, a

set  is open in the corresponding topology iff     such that .  ThereforeE aB − E b, � B ÒBß ,Ñ © E
the topology generated by cl is the Sorgenfrey topology on . What happens in this example if‘
“ ” is replaced by “ ” in the definition of cl ?  �

Since closures, interiors and Frontiers are all related, it shouldn't be surprising that we can also

describe a topology by defining an appropriate “int” operator or “Fr” operator on a set .\
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E1.  Let .  For , let\ œ Ö!ß "ß #ß Þß Þß Þ× œ Ö!× ∪ S © \	
  

  the number of elements in [ Then define9SÐ8Ñ œ S ∩ Ò"ß 8Ó œ lS ∩ "ß 8Ó lÞ

           or   and lim 1) .g œ Ö S À ! Â S Ð! − S œ ×
8 Ä ∞

9SÐ8Ñ
8

 a) Prove that  is a topology on .g \

 b)  In any topological space:  a point  is called a  ifB limit point of the set E
  for every neighborhood  of .R ∩ ÐE � ÖB×Ñ Á g R B   Informally,  is a limit point of B E
 means that there are points of  other than  itself  arbitrarily close to .Eß B ß B   Prove that

 in any topological space, a set  is closed iff  contains all of its limit points.F F

 c) For  as defined in a):  prove that  is a limit point of  if and only if .Ð\ß Ñ B \ B œ !g

E2.  Suppose  is a topological space and that  for each .Ð\ß Ñ E © \ − Eg αα

 a) Prove that if  cl  is closed,  then- Ö E À − E×α α

  cl  cl- -� �Ö E À − E× œ ÖE À − E×α αα α

 ( )Note that “ ” is true for  collection of sets .© Eany α

 b) A family  of subsets of  is called  ifÖF À − E× \α α locally finite

 each point  has a neighborhood  such that  for onlyB − \ R R ∩ F Á gα

 finitely many 's.  Prove that if  is locally finite, thenα αÖF À − E×α

  cl  cl- -� �Ö F À − E× œ ÖF À − E×α αα α

 c) Prove that in , the union of a locally finite family of closed sets  is closed.Ð\ß Ñg

E3.   Suppose   Let  be a  for the topology  and let  be a0 À Ð\ß .Ñ Ä Ð] ß =ÑÞ U g Æbase =

  for   Prove or disprove:  is continuous iff   is open for all  iffsubbase g U=
�"Þ 0 0 ÒSÓ S −

  is open for all 0 ÒSÓ S − Þ�" Æ

E4.   A space  is called a  if  is closed for every Ð\ß Ñ ÖB× B − \Þg X"-space

        a) Give an example where is not a -space and  is not the trivial topology.Ð\ß Ñ Xg g"

 b) Prove that  is a -space if and only if, given any two distinct points , each\ X Bß C − \"

         point is contained in an open set not containing the other point.

         c) Prove that in a -space, each set  can be written as an intersection of open sets.X ÖB×"

 d) Prove that a subspace of a -space is a -space.X X" "

 e) Prove that if a pseudometric space  is a -space, then  must in fact be aÐ\ß .Ñ X ."

 metric.

 f) Prove that if  and  are -spaces, so is \ ] X \ ‚ ] Þ"
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E5.    is called a  ( or ) if whenever  and , thenÐ\ß Ñ X Bß C − \ B Á Cg #-space eHausdorff spac

 there exist disjoint open sets  and  with  and .Y Z B − Y C − Z

 a) Give an example of a space which is a -space but not a -space  ( ) .Ð\ß Ñ X Xg " # see E4.

 b) Prove that a subspace of a Hausdorff space is Hausdorff.

 c) Prove that if  and  are Hausdorff, then so is .\ ] \ ‚ ]

E6.   Prove that every infinite -space contains an infinite discrete subspace that is, aX �#

 subset which is discrete in the subspace topology  ( ).see E5

E7.  Suppose that  and  are topological spaces.  Recall that the Ð\ß Ñ Ð] ß Ñg g w product

  on  is the topology for which a  is the collection of “open boxes”topology base\ ‚ ]

   U g gœ ÖY ‚ Z À Y − ß Z − ×w

 Therefore a set  is open in the product topology iff for all , thereS © \ ‚ ] ÐBß CÑ − S
 exist open sets  in  and  in  such that   (Y \ Z ] ÐBß CÑ − Y ‚ Z © SÞ Note that the

 product topology on  is the usual topology on .  (We always assume that the‘ ‘ ‘‚ #

 topology used on a product of two spaces  is the product topology unless\ ‚ ]
 something different is explicitly stated. )

 a) Verify that  is, in fact, a base for a topology on .U \ ‚ ]
 b) Consider the projection map .  Prove that if  is any open set in1" À \ ‚ ] Ä \ S
  , then  is open in .  (\ ‚ ] Ð Ñ ÒSÓ \not necessarily a “box” We say  is an .1" 1" open map

 The same is true for the projection )1#Þ
 c) Prove that if  and , then cl cl cl   Use this toE © \ F © ] ÐE ‚ FÑ œ E ‚ FÞ\‚] \ ]

 explain why “the product of two closed sets is closed in .”\ ‚ ]
 d) Show that has a countable base iff each of  and  has a countable base.\ ‚ ] \ ]
 e) Show that there is a countable neighborhood base at iff there is aÐBß CÑ − \ ‚ ]
 countable neighborhood base at and a countable neighborhood base atU UB CB − \
 C − ] Þ
 f) Suppose  and  are pseudometric spaces.  Define a pseudometric  on theÐ\ß . Ñ Ð] ß . Ñ ." #

 set  by\ ‚ ]

   .ÐÐB ß C Ñß ÐB ß C ÑÑ œ . ÐB ß B Ñ 1 . ÐC ß C ÑÞ" " # # " " # # " #

 Prove that the product topology on  is the same as the topology .\ ‚ ] g.

 :  is the analogue of the taxicab metric in  There are other equivalentNote . Þ‘#

 pseudometrics that produce the product topology on , for example\ ‚ ]

   . wÐÐB ß C Ñß ÐB ß C ÑÑ œ Ð. ÐB ß B Ñ 1 . ÐC ß C Ñ Ñ ß" " # # " " # # " #
# # "Î#  and 

   max  . ÐÐB ß C Ñß ÐB ß C ÑÑ œ Ö. ÐB ß B Ñß . ÐC ß C Ñ×Þww
" " # # " " # # " #



125

E8.   Suppose The set  is called  if int cl  and  is E © Ð\ß ÑÞ E E œ Ð EÑ Eg regular open regular

   if cl (int ).closed E œ E
 

 a) Show that for any subset F

   i)   cl   int\ � F œ Ð\ � FÑ
   ii)   int   cl\ � F œ Ð\ � FÑ

 b) Give an example of a closed subset of  which is not regular closed.‘

 c) Show that the complement of a regular open set in is regular closedÐ\ß Ñg
 and vice-versa.

  d) Show that the interior of any closed set in  is regular open.Ð\ß Ñg

 e) Show that the intersection of two regular open sets in  is regular open.Ð\ß Ñg

 f) Give an example of the union of two regular open sets that is not regular open.

E9.  In each part, prove the statement or provide a counterexample:

        a) For any  in a topological space  is equal to the intersection of allB Ð\ß Ñß ÖB×g
 open sets containing .B
 

 b) In a topological space, a finite set must always be closed.

 

 c) Suppose we have topologies on , one for each .  Then { : } isg α g αα α\ − E − E+
 also a topology on .\

 

 d) If  and  are topologies on , then there is a unique smallest topology  on g g g" # $X X

 such that .g g g" # $∪ ©
 

 e) Suppose, for each , that  is a topology on .  Then there is a unique smallestα g− E \α

 topology on  such that for each ,  g α g g\ ª Þα

E10. Assume that natural number, except , can be factored into primes; you shouldn't need"
any other information about prime numbers.  For and , let+ − . −™ 	

  F œ ÖÞÞÞß + � #.ß + � .ß +ß + 1 .ß + 1 #.ß ÞÞÞ× œ Ö+ 1 5. À 5 − ×+ß. ™

and let   U ™ 	œ ÖF À + − ß . − ×+ß.

 a) Prove that  is a base for a topology  on U g ™
 b) Show that each set  is closed in F Ð ß Ñ+ß. ™ g

 c) What is the set  is a prime number ?-ÖF À : ×!ß:

 d)  Part c) tells you what famous fact about the set of prime numbers?
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6.  Countability Properties of Spaces

Countable sets are often easier to work with than uncountable sets, so it is not surprising that

spaces with certain “countability properties” are viewed as desirable. Most of these properties

have already been defined, but the definitions are collected together here for convenience.

Definition 6.1  Ð\ß Ñg  is called

first countable if we can choose a countable neighborhood base  at every point .UB B − \
 ( )We also say that  satisfies the .\ first axiom of countability

second countable if there is a countable base  for the topology .  (U g We also say that \
 satisfies the .second axiom of countability )

separable if there is a countable dense set  in H \

Lindelöf if whenever  is a collection of open sets for which , then there ish h- œ \
 a countable subcollection  for which h h hw w

" # 8œ ÖY ßY ß ÞÞÞß Y ß ÞÞÞ× © œ \Þ-
   is called an  of , and  is called a  from .  Thus,  ish h hopen cover subcover\ \w

  Lindelöf if  “ .”)every open cover has a countable subcover

Example 6.2 

 1) A countable discrete space  is second countable because  isÐ\ß Ñ œ ÖÖB× À B − \×g U
a countable base.  Is  first countable?  separable?  Lindelöf ?\

 2)  is second countable because  is a countable base. Similarly,‘ U 
œ ÖÐ+ß ,Ñ À +ß , − ×
‘ U8

" " # # 8 8 is second countable since the  collection  of boxes  withÐB ß C Ñ ‚ ÐB ß C Ñ ‚ ÞÞÞ ‚ ÐB ß C Ñ
rational endpoints is a countable base ( )check!

 3) Let  be a countable set with the cofinite topology .   has only countably many\ \g
finite subsets ( ) so there are only countably many sets in .  is secondsee Theorem I.11.1 g gÐ\ß Ñ
countable because we could choose  as a countable base.U gœ

The following theorem implies that each of the spaces in Example 6.2 is  first countable,also

separable, and Lindelöf.  (However, it is really worthwhile to try to verify these properties, in

each example, directly from the definitions.)

Theorem 6.3  A second countable topological space (  is also separable, first countable,\ß Ñg
and Lindelöf.

Proof    Let  be a countable base for .U gœ ÖS ßS ß ÞÞÞS ß ÞÞÞ ×" # 8

 

 i) For each , pick a point and let .  The countable set  is8 B − S H œ ÖB À 8 − × H8 8 8 	
dense.  To see this, notice that if  is  nonempty open set in , then for some ,Y \ 8any

B − S © Y Y ∩ H Á g \8 8  so .  Therefore  is separable.
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 ii) For each let { .  Clearly  is a neighborhood base at ,B − \ß œ S − À B − S× BU U UB B

so  is first countable.\

 iii) Let  be any open cover of .  If , then some set   For each , weh h\ B − \ B − Y − Þ BB

can then pick a basic open set  such that .   Let SinceS − B − S © Y œ ÖS À B − \×ÞB B B BU i
each there can be only countably many  sets : that is,  may containS − ß SB BU idifferent

“repeats.”  Eliminate any “repeats” and list only the different sets in , soi
i hœ ÖS ßS ß ÞÞÞS ß ÞÞÞ × S © Y − Þ B SB B B B B B" # 8 8 8 8

where   Every  is in one of the sets , so

h hw
B B Bœ ÖY ßY ß ÞÞÞY ß ÞÞÞ× \ ñ
" # 8

 is a countable subcover from .   Therefore  is Lindelöf.   

The following examples show that  among the countability propertiesno other implications exist

in Theorem 6.3.

Example 6.4

 1) Suppose  is uncountable and let  be the cofinite topology on .\ \g

   is separable since  infinite set is dense.Ð\ß Ñg any

      is Lindelöf.   To see this  let  be an open cover of .  Pick any oneÐ\ß Ñ ß \g h
  nonempty set . Then  is finite, say  ForY − \ � Y \ � Y œ ÖB ß ÞÞÞß B ×Þh " 8

  each  pick a set  with  Then  B ß Y − B − Y Þ œ ÖY× ∪ ÖY À 3 œ "ß ÞÞÞß 8×3 3 3 3 3
wh h

  is a countable (actually, ) subcover chosen from .finite h

     However is not first countable (Example 4.5.3), and therefore, by\
  Theorem 6.3,  is also not second countable.\

 2) Suppose  is uncountable.  Define  or is countable .\ œ ÖS © \ À S œ g \ � S ×g
  

      a topology on  ( ) called the  topology.  A set isg is cocountable\ G © \check!

  closed iff  or  is countable.  (G œ \ G This is an “upscale” analogue of the

  cofinite topology.)

  An argument very similar to the one in the preceding example shows that Ð\ß Ñg
  is Lindelöf.  But  is not separable every countable subset is closedÐ\ß Ñ �g
  and therefore not dense.  By Theorem 6.3,  also cannot be secondÐ\ß Ñg
  countable.

 3) Suppose  is uncountable set and choose a particular point \ : − \Þ
 Define or .  ( )g œ ÖS © \ À S œ g : − S× Check  that  is a topology.g

   is separable because  is dense.Ð\ß Ñ Ö:×g

   is not Lindelöf because the cover   has noÐ\ß Ñ � œ ÖÖBß :× À B − \×g h
  countable subcover.

  Is  first countable?Ð\ß Ñg
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 4)  Suppose is uncountable and let  be the discrete topology on .   \ \ Ð\ß Ñg gThen is

     because  is a neighborhood base at first countable UB œ ÖÖB×× B
    because each open set  would have to be in a base not second countable ÖB× U
     because cl  for any countable set not separable H œ H Á \ H
      because the cover has no countablenot Lindelöf h œ ÖÖB× À B − \×
     subcover. (In fact, not a single set can be omitted from

     :   has no proper subcoverh h ÞÑ

For “special” topological spaces pseudometrizable ones, for example it turns out that things� �
are better behaved.  For example, we noted earlier that  pseudometric space  is every firstÐ\ß .Ñ
countable ( ). The following theorem shows that in  the other three countabilityExample 4.3 Ð\ß .Ñ
properties are equivalent to each other: that is, either all of them are true in  or none areÐ\ß .Ñ
true.

Theorem 6.5   Any pseudometric space  is first countable.   is second countable iffÐ\ß .Ñ Ð\ß .Ñ
Ð\ß .Ñ Ð\ß .Ñ is separable iff  is Lindelöf.

Proof i)  Second countable Lindelöf:   by Theorem 6.3, this implication is true in anyÊ
topological space.

 ii) Lindelöf separable:  suppose  is Lindelöf.    For each , letÊ Ð\ß .Ñ 8 − 	
h 	 h h8 8 8œ ÖF ÐBÑ À 8 − ß B − \× 8"

8
.  For each ,  is an open cover so  has a countable

subcover that is, for each  we can find countably many -balls that cover  say� 8 \ À"
8

\ œ F ÐB ÑÞ H H œ ÖB À 8ß 5 − ×Þ-
5œ"
∞

8ß5 8ß5"
8

   Let  be the set of centers of all these balls:    For	

any  and every ,  we have  for some , so  .  Therefore, forB − \ 8 B − F ÐB Ñ 5 .ÐBß B Ñ @"
8

8ß5 8ß5
"
8

every , in other words, can be approximated arbitrarily closely by points8 F ÐBÑ ∩ H Á g � B"
8

from .  Therefore  is dense, so is separable.H H Ð\ß .Ñ

 iii) Separable second countable:  suppose  is separable and thatÊ Ð\ß .Ñ
H œ ÖB ß B ß ÞÞÞß B ß ÞÞÞ× œ ÖF ÐB Ñ À 8ß 5 − ×" # 5 5 is a countable dense set.  Let .   is aU 	 U"

8

countable collection of open balls and we claim  is a base for the topology U g.Þ

  Suppose   By the definition of “open,”  there is an  > 0 for whichC − S − X Þ. %
  .   Pick  so that and pick so thatF ÐCÑ © S 8 @ ß B − H .ÐB ß CÑ @ Þ%

%" "
8 # 85 5

  Then    (because  C − F ÐB Ñ © F ÐCÑ © S D − F ÐB Ñ" "
8 8

5 5%

  ).   Ê .ÐDß CÑ Ÿ .ÐDß B Ñ 1 .ÐB ß CÑ @ 1 @ #Ð Ñ œ ñ5 5
" "
8 8 #

% %

It's  to call a metric space that has these three equivalent properties a “separablecustomary

metric space” rather than a “second countable metric space” or “Lindelof metric space.”¨

Theorem 6.5  that the spaces in parts 1), 2), 3) of Example 6.4 are not pseudometrizable.implies

In general, to show a space is  pseudometrizable we can  i) show that it fails to haveÐ\ß Ñg not

some property shared by all pseudometric spaces (for example, first countability), or  ii) show

that it has  of the properties “second countable,” “Lindelöf,” or “separable.”one but not all
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Exercises

E11.  Define  is open in the usual topology on  and .g ‘ �œ ÖY ∪ Z À Y Z © ×

  a) Show that  is a topology on .  If  is irrational, describe an “efficient”g ‘ B
neighborhood base at  .  Do the same if  is rational.B B

  b)  Is  first countable? second countable? Lindelöf ? separable?Ð ß Ñ‘ g
The space  is called the “scattered line.”  We could change the definition of byÐ ß Ñ‘ g g
replacing  with some other set .  This creates a space in which the set  is “scattered.”� ‘E © E
Hint: See Example I.7.9.6. It is possible to find open intervals  such that  M M ª8 88œ"

∞- 


and for which �
8œ"

∞

length .ÐM Ñ @ "8

E12.  A point  is called a   if every neighborhood of  isB − Ð\ß Ñ Bg condensation point

uncountable.

  a) Let  be the set of all condensation points in  Prove that  is closed.G \Þ G

  b) Prove that if  is second countable, then  is countable.\ \ � G

E13.   Suppose is a second countable space and let  be a countable base for theÐ\ß Ñg U
topology.  Suppose is another base (   ) for  containing  open sets allU gw not necessarily countable

of which have some property .  (For example,  “ ” could be “clopen” or “separable.”)  ShowT T
that there is a  base consisting of open sets with property countable U ww T Þ
Hint: think about the Lindelof property.¨

E14.   A space  is called  if every subspace of  is LindelöfÐ\ß Ñ \ Þg hereditarily Lindelof ¨

  a)  Prove that a second countable space is hereditarily Lindelöf.

In any space, a point  is called a  if   for everyB R ∩ ÐE � ÖB×Ñ Á glimit point of the set E
neighborhood  of   Informally,  is a limit point of  if there are points in  differentR BÞ B E E
from  and arbitrarily close to .B B )

  b) Suppose  is hereditarily Lindelöf    Prove that  the set\ Þ
E œ ÖB − \ À B \× is not a limit point of  is countable.
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E15.   A space  is said to satisfy the (  if everyÐ\ß Ñ œ Ñg countable chain condition CCC

family of disjoint open sets must be countable.

        a)  Prove that a separable space  satisfies the CCC.Ð\ß Ñg

        b) Give an example of a space that satisfies the CCC but that is not separable.  (It is not

 necessary to do so, but can you find an example which is a metric space?)

E16.  Suppose  is a topological space and that  and  are two bases for the topologyÐ\ß Ñg c U
g c U, and that  and   are infinite.

 a) Prove that there is a subfamily such that  is also a base and  .U U U U cw w w© l l Ÿ l l
(Hint: For each pair , pick, if possible, a set  such that> œ ÐY ß Z Ñ − ‚ [ −c c U>

Y © [ © Z [ œ gÞ;  otherwise set > )

 b) Use part a) to prove that the Sorgenfrey line is not second countable.

(Hint: Show that otherwise there would be a countable base of sets of the form  butÒ+ß ,Ñß
that this is impossible. Ñ
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7.  More About Subspaces

Suppose  is a topological space   In Definition 3.1, we defined the subspace topology Ð\ß Ñ Þg gE

on     .  In this section we explore some simple but importantE © \ À œ ÖE ∩ S À S − ×g gE

properties of subspaces.

If , there are  ways to put a topology on E © F © \ E Àtwo

 1) we can give  the subspace topology  from , orE \gE

 2) we can give  the subspace topology , and then give  the subspace topology fromF EgF

 the space that is, we can give  the topology ÐFß Ñ � E Ð Ñ Þg gF F E

In other words, we can think of  as a subspace of  or as a subspace of the subspace .E \ F
Fortunately, the next theorem says that these two topologies are the same.  More informally,

Theorem 7.1 says that in a space “a subspace of a subspace is a subspace.”\

Theorem 7.1  If , and  is a topology on , then   ( ) .E © F © \ \ œg g gE F E

Proof   iff  for some  iff  iff  .Y − Y œ S ∩ E S − Y œ S ∩ ÐF ∩ EÑ Y œ ÐS ∩ FÑ ∩ Eg gE

But  , so the last equation holds iff  .   S ∩ F − Y − Ð Ñ ñg gF F E

We always assume a subset  has the subspace topology (unless something else is explicitlyE
stated).  The notation  emphasizes that  is considered a sub , not merely aE © Ð\ß Ñ Eg space

subsetÞ

By definition, a set is open in the subspace topology on  iff it is the intersection with  of anE E
open set in .  The same is also true for closed sets.\

Theorem 7.2  Suppose .   is closed in  iff where  is closedJ © E © Ð\ß Ñ J E J œ E ∩ G Gg
in .\

Proof  J E E � J E E � J œ S ∩ E S \ is closed in  iff  is open in  iff  (for some open set in )

iff (where  is a closed set in ).  J œ E � ÐS ∩ EÑ œ Ð\ � SÑ ∩ E œ G ∩ E G œ \ � S \ ñ

Theorem 7.3  Suppose .E © Ð\ß Ñg

 1) Let .  If  is a neighborhood base at  in , then  is aa a− E \ ÖF ∩ E À F − ×U U+ +

neighborhood base at in + EÞ
 

 2)  If  is a base for , then  is a base for U g gÖF ∩ E À ÞF − ×U E

With a slight abuse of notation, we can informally write these collections as   and.U U+ ∩ E ∩ EÞ
Why is this an “abuse?”  What do mean if taken literallyU+ ∩ E and  ?U ∩ E
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Proof    1) Suppose  and that  is a neighborhood of  in . Then int , so+ − E R + E + − R © RE

there is an open set in  such that intS \ + − R œ S ∩ E © SÞE

             Since  is a neighborhood base at  in , there is a neighborhood  such thatU U+ ++ \ F −
+ − F © SÞ + − Ð FÑ ∩ E © F ∩ E − ∩ E Ð FÑ ∩ E E Then int .  Since int  is open in , we\ + \U
see that  is a  of  in .  And since int , weF ∩ E + E + − F ∩ E © S ∩ E œ R © Rneighborhood E

see that   is a neighborhood  at  in .  U+ ∩ E + E ñbase

 2) Exercise 

Theorem 7.3 tells us that in the subspace  we can get a neighborhood base at a point byE +
choosing a neighborhood base at  in  are then restricting all its sets to ; and that the same+ \ E
applies to a base for the subspace topology.

Corollary 7.4  Every subspace of a first countable (or second countable) space  is firstÐ\ß Ñg
countable (or second countable).

Example 7.5   Suppose  is a circle in and that   is aW : − W © Þ œ ÖF Ð:Ñ À � !×" # " #
:‘ ‘ U %%

neighborhood base at  in ,  and therefore  is a neighborhood base at  in the subspace: ∩ W :‘ U# "
:

W ∩ W W :" " "
:.  The sets in  are “open arcs on containing .”  (See the figure,)U

 

The following theorem relates closure in a subspace to closure in the larger space.  It turns out to

be a very useful technical observation.

Theorem 7.6   Suppose then cl clE E œ F ∩ EÞ© F © Ð\ß Ñg , F \

Proof   cl  is a closed set in  that contains so cl clF ∩ E F Eß F ∩ E ª EÞ\ \ F

 On the other hand, suppose cl .  To show that cl , pick an open set , − F ∩ E , − E Y\ F

in  that contains .  We need to show .  There is an open set  in  such thatF , Y ∩ E Á g S \
S ∩ F œ Y , − E g Á S ∩ E œ S ∩ ÐF ∩ EÑ œ ÐS ∩ FÑ ∩ E.  Since cl , we have that \

œ Y ∩ E ñ.  
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Example 7.7 1)  cl cl
 
 
 
œ œ ∩
 ‘

  2)  cl clÐ!ß#Ó Ð!ß "Ñ œ Ð!ß "Ñ ∩ Ð!ß #Ó œ Ò!ß "Ó ∩ Ð!ß #Ó œ Ð!ß "Ó‘

  3) The analogous calculations are not necessarily not true for interiors and

  .  For example:boundaries

    int int  ,  and
 
 
 
œ Á ∩ œ g
 ‘

    Fr Frg œ Á ∩ œ Þ
 ‘
 
 
 


Why does “cl” have a privileged position here?  Is there a “reason” why you would expect a

better connection between closures in  and closures in  than you would expect betweenE \
interiors in and interiors in ?E \

Definition 7.8   A property  of topological spaces is called  if whenever a space T \hereditary

has property , then every subspace  also has property .T E T

For example, Corollary 7.4 tells us that first and second countability are hereditary properties.

Other hereditary properties include “finite cardinality” and “pseudometrizability.”  On the other

hand, “infinite cardinality” is not a hereditary property.

Example 7.9

 

 1) Separability is not a hereditary property.  For example, consider the Sorgenfrey plane

\ Ð Þ \see Example 5.4)    is separable because  is dense.
#

     Consider the subspace . The set  H œ ÖÐBß CÑ À B 1 C œ "× Y œ Ò+ß + 1 "Ñ ‚ Ò,ß , 1 "Ñ
is open in  so if then  is open in the subspace  Therefore  is\ Ð+ß ,Ñ − Hß Y ∩ H œ ÖÐ+ß ,Ñ× HÞ H
a discrete subspace of , and an uncountable discrete space is not separable.\
   Similarly, the Moore place  is separable ( ); the -axis in  is an> >see Example 5.6 B
uncountable discrete subspace which is not separable.

 2) The Lindelöf property is not heredity.  Let  be an uncountable set and letE
\ œ E ∪ Ö:× : E \, where  is any additional point not in . Put a topology on  by giving a

neighborhood base at each point.

    
  for 

and  is finiteœU

U
+

:

œ ÖÖ+×× + − E
œ ÖF À : − F \ � F ×

( )Check that the collections  satisfy the hypotheses of the Neighborhood Base Theorem 5.2.UB

If  is an open cover of ,  then for some .  By ii), every neighborhood of  in i i\ : − Z Z − : \
has a finite complement, so  is finite. For each  in the finite set ,  we can choose a\ � Z C \ � Z
set with Then  is a countable (in fact, finite)Z − C − Z Þ œ ÖZ × ∪ ÖZ À C − \ � Z ×C C C

wi i

subcover from ,  so  is Lindelöf.i \

The definition of  implies that each point of  is isolated in ; that is,  is an uncountableU+ E E E
discrete subspace.  Then is an open cover of  that has no countableh œ ÖÖ+× À + − E× E
subcover.  Therefore the subspace  is not Lindelöf.E
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Even when a property is not hereditary, it is sometimes “inherited” by certain

subspaces perhaps, for example, by closed subspaces, or by open subspaces.  The next theorem�
illustrates this.

Theorem 7.10  A  subspace of a Lindelöf space is Lindelöf (closed so we say that  the Lindelof¨

property is “closed hereditary” ).

Proof   Suppose  is a closed subspace of the Lindelöf space .  Let   be aO \ œ ÖY À − E×h αα

cover of  by sets  that are open .  For each , there is an open set  in  such thatO Y Z \α αin O α
Z ∩ O œ Y Þα α

Since  is closed,  is open and  is an open cover of O \ � O œ ÖÖ\ � O×× ∪ ÖZ À − E× \Þi αα

But  is Lindelöf, so  has a countable subcover from , say \ œ Ö\ � Oß Z ß ÞÞÞß Z ß ÞÞÞ×Þi i i w
" 8

( )  Clearly then, theThe set  might not be needed in  , but it can't hurt to include it.\ � O i w

collection  is a countable subcover of  from .  ÖY ß ÞÞÞß Y ß ÞÞÞ× O ñ" 8 h

Note:

 1.  A little reflection on the proof shows that to prove  is Lindelof, it would be¨O
 equivalent to  show that every cover of  by sets open has a countable subcoverO in \ ÞÑ

 2.  A space  with the property that every open cover has a a  subcover is called\ finite

 .  See, for example, the space in Example 6.4.1.compact

     An obvious “tweak” to the proof for Theorem 7.10 shows that a closed subspace of

 a compact space is compact.  We will look at the properties of compact spaces in much

 more detail in Chapter 4 and beyond.
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8.  Continuity

We first defined continuous functions between pseudometric spaces by using the distance

function  to mimic the definition of continuity as given in calculus. But then we saw that our.
definition could be restated in other equivalent ways in terms of open sets, closed sets, or

neighborhoods. For topological spaces, we do not have distance functions available to use in a

definition of continuity.  But we can still make a definition using neighborhoods (or open sets, or

closed sets) since the neighborhoods of  describe “nearness” to .  Of course, the definition+ +
parallels the way neighborhoods describe continuity in pseudometric spaces.

Definition 8.1  A function  is  if whenever  is a0 À Ð\ß Ñ Ä Ð] ß Ñ Rg g w continuous at + − \
neighborhood of , then  is a neighborhood of .   We say  is  if  is0Ð+Ñ 0 ÒRÓ + 0 0�" continuous

continuous at each point of .\

The statement that  is continuous at  is clearly equivalent to each of the following statements: :0 +

 i)   for each neighborhood  of  there is a neighborhood  of  suchR 0Ð+Ñ [ +
 that 0 Ò[ Ó © R
 ii)  for each open set  containing  there is an open set  containing  suchZ 0Ð+Ñ Y +
 that 0 ÒY Ó © Z
 iii) for each basic open set  containing  there is a basic open set Z 0Ð+Ñ Y
 containing  such that .+ 0 ÒY Ó © Z

In the following theorem, the conditions i) - iii) for continuity are the same as those in Theorem

II.5.6 for pseudometric spaces.  Condition iv) was not mentioned in Chapter II, but it is

sometimes handy.

Theorem 8.2   Suppose .  The following are equivalent.0 À Ð\ß Ñ Ä Ð] ß Ñg g w

 i)  is continuous0
 ii) if then   ( )S − ß 0 ÒSÓ −g gw �" the inverse image of an open set is open

 iii)  if  is closed in , then  is closed in    (J ] 0 ÒJ Ó \�" the inverse image of a

        closed set is closed)

 iv)  for every  cl cl .E © \ À 0 Ò ÐEÑÓ © Ð0 ÒEÓÑ\ ]

Proof The proof that i) - iii) are equivalent is identical to the proof for Theorem II.5.6 for

pseudometric spaces.  That proof was deliberately worded in terms of open sets, closed sets, and

neighborhoods so that it would carry over to this new situation.

 iii iv)  cl .  Since cl  is closed in iii) tellsÑ Ê E © 0 Ò0 ÒEÓÓ © 0 Ò Ð0 ÒEÓÑÓ Ð0 ÒEÓÑ ] ß�" �"
] ]

us that cl  is a closed set in  that contains Therefore cl cl ,0 Ò Ð0 ÒEÓÑÓ \ EÞ ÐEÑ © 0 Ò Ð0 ÒEÓÑÓ�" �"
] \ ]

so cl cl0 Ò ÐEÑÓ © Ò Ð0 ÒEÓÑÓÞ\ ]

 iv i)  Suppose and that  is a neighborhood of   Let Ñ Ê + − \ R 0Ð+ÑÞ O œ \ � 0 ÒRÓ�"

and cl   is open, and we claim that which will showY œ \ � O © 0 ÒRÓÞ Y + − Y �\
�"

that  is a neighborhood of , completing the proof.  So we need to show that0 ÒRÓ +�"

+ Â O + − Ocl .   But this is clear because:   if  cl , then using iv) would give us that\ \

0Ð+Ñ − 0 Ò O Ó © 0ÒOÓ R ∩ 0ÒOÓ œ gÞ ñcl cl , which is impossible since  \ ]
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Example 8.3 Sometimes we want to know whether a certain property is “preserved by

continuous functions” that is, if  has property  and  is continuous and ,� \ T 0 À \ Ä ] onto

must the image also have the property ?] T
 For example, condition iv) in Theorem 8.2 implies that continuous maps preserve

separability.  Suppose  is a countable dense set in .  Then  is countable and  isH \ 0ÒHÓ 0 ÒHÓ
dense in  because cl cl] ] œ 0Ò\Ó œ 0Ò HÓ © 0ÒHÓÞ
 By contrast, : for example, let continuous maps do not preserve first countability Ð] ß Ñg
be  topological space.  Let  be the discrete topology on .   is first countable andany g gw w] Ð] ß Ñ
the identity map  is continuous and onto. Thus,   is the3 À Ð] ß Ñ Ä Ð] ß Ñ Ð] ß Ñg g gw every space

continuous image of a first countable space.

 Do continuous maps preserve other properties that we have studied such as Lindelöf,�
second countable, or metrizable?

The following theorem makes a few simple and useful observations about continuity.

Theorem 8.4  Suppose .0 À Ð\ß Ñ Ä Ð] ß Ñg g w

  1) Let ran Then  is continuous iff  is continuous.F œ Ð0Ñ © ] Þ 0 0 À Ð\ß Ñ Ä ÐFß Ñg g w
F

 In other words, the range of  f a subspace of the codomain  is what mattersF œ Ð ] Ñ
 for the continuity of ; points of not in  (if any) are irrelevant.  For example, the0 ] F
 function   is continuous iff the function  is continuous.sin sinÀ Ä À Ä Ò � "ß "Ó‘ ‘ ‘

  2) Let .  If  is continuous, then  is continuousE © \ 0 0lE œ 1 À E Ä ] Þ
 That is, the restriction of a continuous function to a subspace is continuous.

            For example, sin  is continuous, so sin  is continuous.À Ä À Ä Ò � "ß "Ó‘ ‘ 

 (The second function is really sin , but it's abbreviated here to just “sin”.l


  3) If  is a subbase for  (in particular, if  is a base), then  is continuous iff f g fw �"0 0 ÒY Ó
 is open whenever .  In other words, tY − f o check continuity,  it is sufficient to show

 that the inverse image of every basic open set is open.=?,

Proof   1) Exercise: the crucial observation is that if , then .S © ] 0 ÒSÓ œ 0 ÒF ∩ SÓ�" �"

            2)  If  is open in , then which is an open set in .S ] 1 ÒSÓ œ 0 ÒSÓ ∩ E � E�" �"

            3)  Exercise:  the proof depends only on the definition of a subbase and set theory:

     and0 Ò Y À − EÓ œ Ö0 ÒY Ó À − E×�" �"- -
α αα α

                                     0 Ò Y À − EÓ œ Ö0 ÒY Ó À − E× ñ�" �"+ +
α αα α

Example 8.5

 1)  For  topological spaces  and , every constant function  must beany \ ] 0 À \ Ä ]
  continuous.  ( )Suppose  for all . If  is open in , then  ?0ÐBÑ œ C B S ] 0 ÒSÓ œ!

�"

 If has the discrete topology and  is any topological space, then every function\ ]
 is continuous.0 À \ Ä ]
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 2)  Suppose  has the trivial topology and that .  If  is  constant, then\ 0 À \ Ä 0‘ not

 there are points  for which  Let  be an open set in  containing+ß , − \ 0Ð+Ñ Á 0Ð,ÑÞ M ‘
  but not   Then  is not open in so  is not continuous.  We conclude0Ð+Ñ 0Ð,ÑÞ 0 ÒMÓ \ 0�"

 that  is continuous iff  is constant.0 0
 In this example,  we could replace  by any metric space ;  or, for that matter,‘ Ð] ß .Ñ
 by any  topological space  that has what property?Ð] ß Ñg

 3)  Let  be a rectangle inscribed inside a circle  centered at .  For , let\ ] T + − \
 be the point where the ray from  through  intersects .  (0Ð+Ñ T + ] The function  is called0
 a “central projection.” ).  Then both  and are continuous0 À \ Ä ] 0 À ] Ä \�"

 bijections.

    

Example 8.6 (Weak topologies)  Suppose  is a set.  Let  be a collection of\ œ Ö0 À − E×Y αα

functions where each   If we put the discrete topology on , then all of the functions0 À \ Ä Þ \α ‘
0 \α  will be continuous. But a topology on smaller than the discrete topology might also make

all the 's continuous. The  topology on  that makes all the given 's continuous is0 \ 0α αsmallest

called the  .weak topology on  generated by the collection g Y\

How can we describe that topology more directly?  makes all the 's continuous iff for eachg 0α
open  and each , the set  is in .  Therefore the weak topology generated byS © − E 0 ÒSÓ‘ α gα

�"

Y  is the  topology that contains all these sets.  According to Example 5.17.5, this meanssmallest

that weak topology  is the one for which the collection  open in , g Æ ‘ αœ Ö0 ÒSÓ À S − E×α
�"

is a subbase.  (It is clearly sufficient here to use only basic open sets  from that is, openS �‘
intervals why ?  Would using all open sets  put any additional sets into ? Ð+ß ,Ñ À S g )

For example, suppose  and that  contains the two projection maps\ œ œ Ö ß ×‘ Y 1 1#
" #

1 1 ‘ 1" # "
�"ÐBß CÑ œ B ÐBß CÑ œ C Y œ Ð+ß ,Ñ © ÒY Ó and .  For an open interval ,  is the “open

vertical strip” ;  and  is the “open horizontal strip” .  Therefore a subbaseY ‚ ÒZ Ó ‚ Z‘ 1 ‘�"
#

for the weak topology on  generated by  consists of all such open horizontal or vertical‘ Y#

strips.  Two such strips intersect in an “open box”  in , so it is easy to see thatÐ+ß ,Ñ ‚ Ð-ß .Ñ ‘#

the weak topology is the product topology on , that is, the usual topology of .‘ ‘ ‘‚ #

Suppose  and that  is the identity function What is the weak topologyE © 3 À E Ä 3ÐBÑ œ BÞ‘ ‘
on the domain  generated by the collection ?E œ Ö3×Y
 



138

Definition 8.7  A mapping  is called0 À Ð\ß Ñ Ä Ð] ß Ñg g w

     if whenever  is open in , then  is open in ,   andopen S \ 0ÒSÓ ]
     if whenever  is closed in , then  is closed in .closed J \ 0ÒJ Ó ]

Suppose .  Let  be the discrete topology on  and let be the trivial topology on .l\l � " \ \g g w 

The identity map  is continuous but neither open nor closed, and3 À Ð\ß Ñ Ä Ð\ß Ñg g w

3 À Ð\ß Ñ Ä Ð\ß Ñg gw  is both open and closed but not continuous.  Open and closed maps are

quite different from continuous maps even when the mapping is a bijection!  Here are some�
examples that are more interesting.

Example 8.8

 1)  given by cos , sin .0 À Ò!ß # Ñ Ä W œ ÖÐBß CÑ − À B 1 C œ "× 0Ð Ñ œ Ð Ñ1 ‘ ) ) )" # # #

It is easy to check that  is continuous, one-to-one, and onto.  The set  is closed in0 J œ Ò ß # Ñ1 1
Ò!ß # Ñ 0 Ò Ò ß # ÑÓ W Ò!ß Ñ Ò!ß # Ñ 0 Ò Ò!ß Ñ Ó Ó1 1 1 1 1 1 but  is  closed in .  Also,  is open in but  is not not"

open in .  W x" A continuous, one-to-one, onto mapping does not need to be open or closed

 2) Suppose  and  are topological spaces and that  is a .  Then\ ] 0 À \ Ä ] bijection

there is an inverse function , and  is continuous iff  is open. To check1 œ 0 À ] Ä \ 0 0�" �"

this, consider an open set  in . Then iff  iff , soÑ \ C − 1 ÒSÓ 1ÐCÑ − S C œ 0Ð1ÐCÑÑ − 0 ÒSÓ�"

0 ÒSÓ œ 1 ÒSÓ 0 ÒSÓ 1 ÒSÓ 0 0 0�" �" �".  So  is open iff  is open.  So, for a ,  is open iff  isbijection

continuous.

    If  is replaced in the argument by a closed set , then similar reasoning showsS J © \
that a   is closed iff  is continuous.bijection 0 0�"

   In part 1), the bijection  is not open and therefore  is not0 0 À W Ä Ò!ß # Ñ�" " 1
continuous.  ( )Explain directly, without part 2), why  is not continuous.0�"

 

Definition 8.9  A mapping  is called a  if  is a bijection0 À Ð\ß Ñ Ä Ð] ß Ñ 0g g w homeomorphism

and  and  are  continuous.  If a homeomorphism  exists, we say that  and  are0 0 0 \ ]�" both

homeomorphic and write .\ ¶ ]

   Note: The term is “hom omorphism,”  “homomorphism” (a term from algebra)   Thee not Þ
   etymologies are closely related: “-morphism” comes from the Greek word ´ forÐ 9 Ñ. 39(
 “shape” or “form.”  The prefixes “homo” and “homeo” come from Greek words meaning

  same” and “similar” respectively.  There was a major dispute in western religious history,

  mostly during the 4 century AD, that hinged on the distinction between “homeo” and “homo.”>2

As noted in the preceding example, we could also describe a homeomorphism as a “continuous

open bijection” or a “continuous closed bijection.”

It is obvious that among topological spaces, homeomorphism is an equivalence relation, that is,     

for topological spaces  and \ß] ß ^ À

    i)  \ ¶ \
    , ii)  if then \ ]¶ ] ¶ \
     , .iii) if and then\ ¶ ] ] ¶ ^ \ ¶ ^
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Example 8.10

 1) The function  given by cos ,sin  is  a0 À Ò!ß # Ñ Ä W 0Ð Ñ œ Ð Ñ1 ) ) )" not

 homeomorphism even though  is continuous, one-to-one, and onto.0

 2) The “central projection” from the rectangle to the circle ( ) is aExample 8.5.3

 homeomorphism.

 3) It is easy to see that any two open intervals in  are homeomorphic (just useÐ+ß ,Ñ ‘
 a linear map of one interval onto the other).

     The mapping tan  is a homeomorphism, so that eachÀ Ð � ß Ñ Ä1 1
# # ‘

 nonempty open interval in  is actually homeomorphic to  itself.‘ ‘

 3)  If  is an isometry (onto)  between metric spaces, then both  and0 À Ð\ß .Ñ Ä Ð] ß =Ñ 0
  are continuous, so  is a homeomorphism.0 0�"

 4)  If  and  are equivalent metrics (so , then the identity map. . œ Ñw
. .g g w

  is a homeomorphism.  Notice, however, that  doesn't preserve3 À Ð\ß .Ñ Ä Ð\ß . Ñ 3w

 distances (unless ).. œ .w

      In general, a homeomorphism between metric spaces need not be an isometry. But, of 

 course, an isometry is automatically a homeomorphism 

 5)  The function  given by  is a homeomorphism 0 À Ö À 8 − × Ä 0Ð Ñ œ 8 Ð" "
8 8	 	 both

 spaces have the discrete topology! ) , these spaces are the identical: bothTopologically

           are just countable infinite sets with the discrete topology.   is not an isometry0
          In general, two  spaces  and  are homeomorphic iff they have the samediscrete \ ]
 cardinality:any bijection between them is a homeomorphism.  Roughly speaking, “size is

 the only possible topological difference between two discrete spaces.”
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 6)  Let  denote the “north pole” of the sphereT

   W œ ÖÐBß Cß DÑ À B 1 C 1 D œ "× © Þ# # # # $‘

The function  illustrated below is a “stereographic projection”.  The arrow starts at ,  runs for0 T
a while inside the sphere and then exits through the surface of the sphere at a point .  LetÐBß Cß DÑ
0ÐBß Cß DÑ BC 0 be the point where the tip of the arrow hits the -plane .  In this way  maps each‘#

point in  to a point in .  The function   is a homeomorphism. (W � ÖT× 0# #‘ See the figure below.

Consider the images or inverse images of open sets.)

 

In general, what is the significance of a homeomorphism ?0 À \ Ä ]

 i)  is a bijection so it sets up a perfect one-to-one correspondence between the points in0
\ ] B Ç C œ 0ÐBÑ 0 \ and :   .  We can imagine that  just “renames” the points in .  There is also

a perfect one-to-one correspondence between the subsets  and  of  and :\ ] \ ]α α

\ Ç ] œ 0Ò\ Ó 0 ] © ]α α α α.  Because  is a bijection, each subset  corresponds in this way to

one and only one subset .\ © \α

 ii)  is a bijection, so  treats unions, intersections and complements “nicely”:0 0

  a)   0 Ò ] À − EÓ œ Ö0 Ò] Ó À − E×�" �"- -
α αα α

  b)  , and0 Ò ] À − EÓ œ Ö0 Ò] Ó À − E×�" �"+ +
α αα α

      c)        0 Ò \ À − EÓ œ Ö0 Ò\ Ó À − E×- -
α αα α

  d)        and0 Ò \ À − EÓ œ Ö0 Ò\ Ó À − E×ß+ +
α αα α

  e)                        0 Ò\ � GÓ œ 0Ò\Ó � 0ÒGÓ œ ] � 0ÒGÓ

( )Actually a), b), c) are true for  function ; but d) and e) depend on  being a bijection.any 0

These properties say that this correspondence between subsets preserves unions:  if each

\ Ç ] ß \ Ç ] œ 0Ò\ Ó œ 0Ò \ Ó 0α α α α α αthen   .  Similarly,  preserves intersection and- - - -
complements.
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iii) Finally if and are continuous, then open (closed) sets in  correspond to open0 0 \�"

(closed) sets in  and vice-versa.]

The total effect is that all the “topological structure” in  is exactly “duplicated” in  and vice\ ]
versa: we can think of points, subsets, open sets and closed sets in  are just “renamed” copies]
of their counterparts in .  Moreover  preserves unions, intersections and complements, so \ 0 0
also preserves all properties of  that can defined be using unions, intersections and\
complements of open sets.  For example, we can check that if  is a homeomorphism and0
E © \ 0Ò EÓ œ 0ÒEÓ 0 Ò EÓ œ 0ÒEÓ 0 Ò EÓ œ 0ÒEÓÞ, then int int ,  that cl cl , and that Fr Fr\ ] \ ] \ ]

That is,  takes interiors to interiors, closures to closures, and boundaries to boundaries.0

Definition 8.11  A property  of topological spaces is called a  if, wheneverP topological property

a space  has property  and , then the space  also has property .\ T ] ] T¶ \

If  and  are homeomorphic, then the very definition of “topological property” says that  and\ ] \
] \ ] have the same topological properties.  , if two topological spaces  and  have theConversely

same topological properties, then  and  must be homeomorphic.  (\ ] Why? Let  be the propertyT
“is homeomorphic to .”   is a  property because if  has  (that is, if )\ T ] T ] ¶ \topological

and  then  also has .   Moreover,  has this property , because .  So if we^ ¶ ] ß ^ T \ T \ ¶ \
assume that  has  topological properties as , then  has the property , that is,  is] \ ] T ]the same

homeomorphic to .\ )

So we think of two homeomorphic spaces as “topologically identical”  they are homeomorphic�
iff they have exactly the same topological properties.  We can show that two spaces are not

homeomorphic by naming a topological property of one space that the other space doesn't

possess.

Example 8.12  Let  be the property that “every continuous real-valued function achieves aT
maximum value.”  Suppose a space  has property  and that   is a homeomorphism.\ T 2 À \ Ä ]
We claim that  also has property .] T

Let  be any continuous real-valued function defined on .0 ]

Then  is continuous0 ‰ 2 À \ Ä À‘

        ‘

                     1 ß Å 0
              \ ]Ò
                  2

By assumption,  achieves a maximum value at some point , and we claim1 œ 0 ‰ 2 + − \
that  must achieve a maximum value at the point  If not, then there is a0 , œ 2Ð+Ñ − ] Þ
point  where .  Let   ThenC − ] 0ÐCÑ � 0Ð,Ñ B œ 2 ÐCÑÞ�"

           ,1ÐBÑ œ 0Ð2ÐBÑÑÑ œ 0Ð2Ð2 ÐCÑÑÑÑ œ 0ÐCÑ � 0Ð,Ñ œ 0Ð2Ð+ÑÑ œ 1Ð+Ñ�"

which contradicts the fact that  achieves a maximum value at .1 +

Therefore  is a topological property.  T
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For example, the closed interval  has property  discussed in Example 8.12 (Ò!ß "Ó T this is a well-

known fact from elementary analysis which we will prove later� ).  But  and do notÐ!ß "Ñ Ò!ß "Ñ
have this property  ( ).  So we can conclude that is not homeomorphic to either T Ò!ß "Ó Ð!ß "Ñwhy?

or Ò!ß "ÑÞ

Some other simple examples of topological properties are cardinality, first and second

countability, Lindelöf, separability, and (pseudo)metrizability. In the case of metrizability, for

example:

 If is a metric space and  is a homeomorphism, then we canÐ\ß .Ñ 0 À Ð\ß .Ñ Ä Ð] ß Ñg
 define a metric  on  as  for .  You then need. ] . Ð+ß ,Ñ œ .Ð0 Ð+Ñß 0 Ð,ÑÑ +ß , − ]w w �" �"

 to check that  (using the properties of a homeomorphism and the definition ofg g. w œ
 ).  This shows that  is metrizable.  Be sure you can do this!. Ð] ß Ñw g

9.  Sequences

In Chapter II we saw that sequences are a useful tool for working with pseudometric spaces.  In

fact, sequences are sufficient to describe the topology in a pseudometric space because the�
convergent sequences in  determine the closure of a set.Ð\ß .Ñ

We can easily define convergent sequences in any topological space .  But, as we will see,Ð\ß Ñg
sequences need to be used with more care in spaces that are not pseudometrizable.  Whether or

not a sequence converges to a particular point  is a “local” question it depends on “theÐB Ñ B �8

B B ß8 's approaching nearer and nearer to ” and in the absence of a distance function, we use the

neighborhoods of  to determine “nearness to .” If the neighborhood system is “too large”B B aB

or “too complicated,” then it may be impossible for a sequence to “get arbitrarily close” to .B
Soon we will see a specific example where such a difficulty actually occurs.  But first, we look at

some of the things that  work out just as nicely for topological spaces as they do indo

pseudometric spaces.

Definition 9.1   Suppose  is a sequence in .  We say that   if, forÐB Ñ Ð\ß Ñ ÐB Ñ8 8g converges to B
every neighborhood  of ,  such that  when .  In this case we write[ B b5 − B − [	 8 8   5
ÐB Ñ Ä B ÐB Ñ Ä B ÐB Ñ8 8 8.  More informally, we can say that  if  is eventually in every

neighborhood  of .[ B

Clearly, we can replace “every neighborhood of ” in the definition with “every basic[ B
neighborhood of ” or “every open set containing .”  Be sure you are convinced ofF B S B
this.

In a pseudometric space a sequence can converge to more than one point, but we proved that in a

metric space limits of convergent sequences must be unique.  A similar distinction holds in

topological spaces:  the important issue is whether we can “separate points by open sets.”
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Definition 9.2  Ð\ß Ñ X B Á C − \ Y Zg  is a -space if whenever  there exist open sets  and "

such that ,     (B − Y C Â Y C − Z ß B Â Zand that is, each point is in an open set that does not

contain the other point).

     is a -space (or  ) if whenever  there existÐ\ß Ñ X B Á C − \g # Hausdorff space

disjoint open sets  and  such that  and .Y Z B − Y C − Z

It is easy to check that   i)   is a -space iff for every ,  is closed,  that\ X B − \ ÖB×"

   ii)  every -space is a -spaceX X# "

   iii) every metric space  is a  -space (Hausdorff space)Ð\ß .Ñ X#

There is a hierarchy of ever stronger “separation axioms” called and X ß X ß X ß X ß X! " # $ %

that a topological space might satisfy. Eventually we will look at all of them.

Each condition is stronger than the preceding ones in the list for example, Ð X Ê X ÑÞ# "

The letter “ ” is used  here because in the early (German) literature, the wordX
for “separation axioms” was “Trennungsaxiome.”

Theorem 9.3  In a  space , a sequence can converge to at most one point.Hausdorff Ð\ß Ñg

Proof    Suppose .  Choose disjoint open sets  and  with and .  IfB Á C − \ Y Z B − Y C − Z
ÐB Ñ Ä B ÐB Ñ Y ÐB Ñ Z ÐB Ñ8 8 8 8, then  is eventually in , so  is not eventually in .  Therefore  does not

also converge to .  C ñ

When we try to generalize results from pseudometric spaces to topological spaces, we often get a

better insight about where the heart of a proof lies. For example, to prove that limits of sequences

are unique it is the Hausdorff property that is important, not the presence of a metric. Here is

another example: for a pseudometric space  we proved that cl  iff  is a limit of aÐ\ß .Ñ B − E B
sequence in .  That proof ( ) used the fact that there was a countableÐ+ Ñ E8 see Theorem II.5.18

neighborhood base  at each point . We can see now that the countableÖF ÐBÑ À 8 − × B"
8

	

neighborhood base was the crucial fact because we can prove the same result in any � first

countable topological space .Ð\ß Ñg

But first, two technical lemmas are helpful.

Lemma 9.4   Suppose is a countable neighborhood base at .  DefineÖR ßR ß ÞÞÞß R ß ÞÞÞ× + − \" # 5

Y œ ÐR ∩ ÞÞÞ ∩ R Ñ ÖY ß Y ß ÞÞÞß Y ß ÞÞÞ × +5 " 5 " # 5int .  Then  is also a neighborhood base at .

Proof R" 5 " 5 5 5∩ ÞÞÞ ∩ R + + − ÐR ∩ ÞÞÞ ∩ R Ñ œ Y Þ Y is a neighborhood of , so int  Therefore  is a

open neighborhood of .  If  is  neighborhood of , then  for some , so then+ R + + − R © R 5any 5

+ − Y © R © R Y +Þ ñ5 5 5.  Therefore the 's are a neighborhood  at base

The exact formula for the 's in Lemma 9.4 doesn't matter; the important thing is that we get aY5

“much improved” neighborhood base one in which the 's are open ÖY ß Y ß ÞÞÞß Y ß ÞÞÞ × � Y" # 5 5 and

Y ª Y ª ÞÞÞ ª Y ª ÞÞÞ +" # 5 . This new neighborhood base at  plays a role analogous to the

neighborhood base   in a pseudometric space.  We callF Ð+Ñ ª F Ð+Ñ ª ÞÞÞ ª F Ð+Ñ ª ÞÞÞ" " "
# 5

ÖY ß Y ß ÞÞÞß Y ß ÞÞÞ× +Þ" # 5  an open,  neighborhood base at shrinking
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Lemma 9.5   Suppose  is a shrinking neighborhood base at  and thatÖY ß Y ß ÞÞÞß Y ß ÞÞÞ× B" # 5

+ − Y 8 Ð+ Ñ Ä BÞ8 8 8 for each .  Then 

Proof If  is any neighborhood of , then there is a  such that .  Since the 's[ B 5 B − Y © [ Y5 5

are a  neighborhood base, we have that for any .  Soshrinking 8   5ß + − Y © Y © [8 8 5

Ð+ Ñ Ä BÞ ñ8

Theorem 9.6  Suppose  is first countable and Then cl  iff there is aÐ\ß Ñ E B Eg © \ −.  

sequence  in  such that .     (Ð+ Ñ E Ð+ Ñ Ä B8 8 More informally, “sequences are sufficient” to

describe the topology in a first countable topological space.)

Proof   ( )  Suppose  is a sequence in  and that . For each neighborhood  ofÉ Ð+ Ñ E Ð+ Ñ Ä B [8 8

B Ð+ Ñ [ [ ∩ E Á g B − EÞ,   is eventually in .  Therefore , so cl   (8 This half of the proof works

in any topological space: it does not depend on first countability.)

         ( ) Suppose cl   Using Lemma 9.4, choose a countable  neighborhoodÊ B − EÞ shrinking

base  at   Since cl , we can choose a point  for each .  ByÖY ß ÞÞÞß Y ß ÞÞÞ× BÞ B − E + − Y ∩ E 8" 8 8 8

Lemma 9.5,  .  Ð+ Ñ Ä B ñ8

We can use Theorem 9.6 to get an upper bound on the size of certain topological spaces,

analogous to what we did for pseudometric spaces. This result is not very important,  itbut

illustrates that in Theorem II.5.21 the properties that are really important are “first countability”

and “Hausdorff,”  not the actual presence of a metric ..

Corollary 9.7  If  is a dense subset in a first countable Hausdorff space , thenH Ð\ß Ñg
l\l Ÿ lHl \i! . In particular, If  is a separable, first countable Hausdorff space, then

l\l Ÿ i œ -Þ!
i!

Proof   is first countable  so for each  we can pick a sequence  in  such that\ ß B − \ Ð. Ñ H8

Ð. Ñ Ä B 0 À Ä H 0 − H Þ \8 B B; formally, this sequence is a function , so   Since  is Hausdorff,	 	

a sequence cannot converge to two different points: so if , then .  ThereforeB Á C − \ 0 Á 0B C

the function given by  is one-to-one, so F FÀ \ Ä H ÐBÑ œ 0 l\l Ÿ lH l œ lHl Þ ñ	 	 
B

i!

The conclusion in Theorem 9.6 may not be true if  is not first countable:  sequences are \ not

always “sufficient to describe the topology” of that is, convergent sequences cannot always\ �
determine the closure of a set.

 

Example 9.8 (the space )P

Let , and let  be “the  column of ,” that isP œ ÖÐ7ß 8Ñ À 7ß 8 − ß 7ß 8   !× G 4 P™ 4
th

G œ ÖÐ4ß 8Ñ − P À 8 œ !ß "ß ÞÞÞ×Þ P4   We put a topology on  by giving a neighborhood base at each

point : À

U:
4

œ
ÖÐ7ß 8Ñ× : œ Ð7ß 8Ñ Á Ð!ß !Ñ
F À Ð!ß !Ñ − F � F 4× : œ Ð!ß !Ñœ if 

{ and C  is finite for all but finitely many if 
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(Check that this definition satisfies the conditions in the Neighborhood Base Theorem 5.2 and

therefore does describe a topology for .P )

If  then  is isolated in . A basic neighborhood of  is a set which contains : Á Ð!ß !Ñ : P Ð!ß !Ñ Ð!ß !Ñ
and which, we could say, contains “most of the points from most of the columns.”   With this

topology, is a Hausdorff space.P

Certainly cl , but    Ð!ß !Ñ − ÐP � ÖÐ!ß !Ñ×Ñ P � ÖÐ!ß !Ñ× Ð!ß !ÑÞno sequence from converges to

To see this, consider any sequence ) in :Ð+ P � ÖÐ!ß !Ñ×8

 

 i) if there is a column that contains infinitely many of the terms thenG + ß4 8! 

   is a neighborhood of and is not eventuallyR œ ÐP � G Ñ ∪ ÖÐ!ß !Ñ× Ð!ß !Ñ Ð+ Ñ4 8!

 in .R

 ii) if every column  contains only finitely many 's,G +4 8

 then  is a neighborhood of  and ) isR œ P � Ö+ À 8 − × Ð!ß !Ñ Ð+8 8	
 not eventually in   (in fact, the sequence is  in ).R Rnever

In , sequences are not sufficient to describe the topology: convergent sequences can't show usP
that cl .  According to Theorem 9.6, this means that the  space Ð!ß !Ñ − ÐP � ÖÐ!ß !Ñ×Ñ Pcountable

cannot be first countable there  a countable  neighborhood base at each point  � : Á Ð!ß !Ñis but

not at Ð!ß !ÑÞ

The neighborhood system at  “measures nearness to”  but the ordering relationshipÐ!ß !Ñ Ð!ß !Ñ
Ð ª Ñ Ð!ß !Ñ �among the basic neighborhoods at is very complicated much more complicated

than the neat, simple nested chain of neighborhoods that could form aY ª Y ª ÞÞÞ ª Y ª ÞÞÞ" # 8

base at  in a first countable space. Roughly, the complexity of the neighborhood system is theB
reason why the terms of a sequence can't get “arbitrarily close” to Ð!ß !ÑÞ

Since sequences  suffice to describe the topology in a first countable space, it is not surprisingdo

that we  use sequences to determine the continuity of a function defined on a first countablecan

space .\

Theorem 9.9  Suppose  is first countable and .  Then  isÐ\ß Ñ 0 À Ð\ß Ñ Ä Ð] ß Ñ 0g g g w

continuous at   iff  whenever , then + − \ ÐB Ñ Ä + Ð0ÐB ÑÑ Ä 0Ð+ÑÞ8 8

Proof   ( )  If  is continuous at  and  is a neighborhood of , then  is aÊ 0 + [ 0Ð+Ñ 0 Ò[ Ó�"

neighborhood of .  Therefore  is eventually in , so  is eventually in + ÐB Ñ 0 Ò[ Ó 0ÐÐB ÑÑ [ Þ8 8
�"

(This half of the proof is valid for any topological space : continuous functions always\
“preserve convergent sequences.”)

               ( )   Let  be a shrinking neighborhood base at .  If  is notÉ ÖY ß ÞÞÞß Y ß ÞÞÞ× + 0" 8

continuous at , then there is a neighborhood  of  such that for every , .+ [ 0Ð+Ñ 8 0 ÒY Ó ©Î [8

For each , choose a point .  Then (since the 's are shrinking) we have8 B − Y � 0 Ò[ Ó Y8 8 8
�"

ÐB Ñ Ä + Ð0ÐB ÑÑ 0Ð+Ñ 0ÐB Ñ [ ñ8 8 8 but  fails to converge to  because is  in .    never

             ( )Compare this to the proof of Theorem II.5.22.
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10.  Subsequences

Definition 10.1  Suppose  is a sequence in  and that  is strictly0 À Ä \ \ À Ä	 9 	 	
increasing. The composition  is called a  of .0 ‰ À Ä \ 09 	 subsequence

                                                                 0

     	Ò \
9 ß 9Å 0 ‰

     	

If we write  and , then We write the sequence0Ð8Ñ œ B Ð5Ñ œ 8 Ð0 ‰ ÑÐ5Ñ œ 0Ð8 Ñ œ B 08 5 5 89 9
5.  

informally as and the subsequence  as ( .  Since  is increasing,  we have thatÐB Ñ 0 ‰ B Ñ8 89 9
5

8 Ä ∞ 5 Ä ∞Þ5  as 

For example, if , then  is the subsequence written informally as9 9Ð5Ñ œ 8 œ #5 0 ‰5

ÐB Ñ œ ÐB Ñ ÐB ß B ß B ß ÞÞÞß B ß ÞÞÞÑÞ Ð8Ñ œ 88 #5 # % ' #55
, that is, the subsequence   But if 1  for all , then9

0 ‰ ÐB ß B ß B ß ÞÞÞß B ß ÞÞÞ Ñ9 is  a subsequence: informally,  is not a subsequence ofnot " " " "

ÐB ß B ß B ß ÞÞÞß B ß ÞÞÞ ÑÞ 0 Ð8Ñ œ 8" # $ 8  Every sequence  is a subsequence of itself: just let .9

Theorem 10.2 Suppose . Then  iff every subsequence B − Ð\ß Ñ ÐB Ñ Ä B ÐB Ñ Ä BÞg 8 85

Proof  ( )  This is clear because is a subsequence of itself.É ÐB Ñ8
 ( ) Suppose  and that  is a subsequence.  If  is any neighborhood ofÊ ÐB Ñ Ä B ÐB Ñ [8 85

B B − [ 8 � 8 8 8 � 8, then for all some .  Since the 's are strictly increasing,  for all8 ! 5 5 !

5 � 5 Þ ÐB Ñ [ ÐB Ñ Ä BÞ ñsome   Therefore  is eventually in , so ! 8 85 5

Definition 10.3  Suppose  We say that  is a  of the sequence  ifB − Ð\ß Ñ Þ B ÐB Ñg cluster point 8

for each neighborhood  of  and , for which   More[ B − B − [for each there is an 5 	 8 � 5 8 .

informally, we say that  is a cluster point of  if the sequence is B ÐB Ñ8 frequently in every

neighborhood  of [ B .

Definition 10.4  Suppose  and  We say that  is a  of ifB − Ð\ß Ñ E © \Þ B Eg limit point

R ∩ ÐE � ÖB×Ñ Á g R B � Bfor every neighborhood  of  that is, every neighborhood of  contains

points of  to   from .arbitrarily close but differentB B

Example 10.5.

 1) Suppose  and Then for every neighborhood  \ œ Ò!ß "Ó ∪ Ö#× E œ Ö#×Þ [ ∩ E Á g
 of  ,  but  is not a limit point of because  is a neighborhood of  in [ # # E � [ œ Ö#× # \
 and    Each  is a limit point of  and also a limit point[ ∩ ÐE � Ö#×Ñ œ gÞ B − Ò!ß "Ó Ò!ß "Ó
 of .  Since  is open in ,  is also not a limit point of .\ Ö#× \ # \

 2) Every point  in  is a limit point of .  If , then  has no limit points (in  or< E © E‘ 
 	 	
 in ).‘

 3) If then  is a cluster point of   More generally, if  has aÐB Ñ Ä Bß B ÐB ÑÞ ÐB Ñ8 8 8

 subsequence  that converges to , then  is a cluster point of   ( )ÐB Ñ B B ÐB ÑÞ8 85
Why?
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 4) A sequence can have many cluster points.  For example, if the sequence  lists allÐ; Ñ8
 the elements of , then   is a cluster point of 
 ‘every < − Ð; ÑÞ8

 5) In , the sequence  has exactly two cluster points:  and .‘ ÐB Ñ œ ÐÐ � "Ñ Ñ � " "8
8

 But the   has no limit points in   set The set of clusterÖB À 8 − × œ Ö � "ß "× Þ8 	 ‘
 points of a sequence is not always the same as the set of limit points of the set of terms in

 !  ( )the sequence Is one of these sets always a subset of the other?

Theorem 10.6  Suppose  is a cluster point of  in a  space .  Then there+ ÐB Ñ Ð\ß Ñ8 first countable g
is a subsequence .ÐB Ñ Ä +85

Proof   Let  be a countable shrinking neighborhood base at    Since  isÖY ß Y ß ÞÞÞß Y ß ÞÞÞ× +Þ ÐB Ñ" # 8 8

frequently in , we can pick so that .   Since  is frequently in , we can pickY 8 B − Y ÐB Ñ Y" " 8 " 8 #"

an  so that  Continue inductively:  having chosen  so that8 � 8 B − Y © Y Þ 8 @ ÞÞÞ @ 8# " 8 # " " 5#

B − Y © © Y 8 � 8 B − Y © Y Þ ÐB Ñ8 5 " 51" 5 8 51" 5 85 51" 5
... , we can then choose so that   Then  is a

subsequence of  and    ÐB Ñ ÐB Ñ Ä +Þ ñ8 8

Example 10.7 (the space , revisited)P

Let  be the space in Example 9.8 and let be a sequence which lists all the elements ofP ÐB Ñ8
P � ÖÐ!ß !Ñ×Þ

Every basic neighborhood  of  is infinite, so must contain terms  for arbitrarilyF Ð!ß !Ñ F B8

large .  This means that is frequently in , so is a cluster point of 8 ÐB Ñ F Ð!ß !Ñ ÐB ÑÞ8 8

But    because we showed in Example 9.8 that nono subsequence of can converge toÐB Ñ Ð!ß !Ñ �8

sequence whatsoever from  can converge to Therefore P � ÖÐ!ß !Ñ× Ð!ß !ÑÞ Theorem 10.6 may

not be true if the space  is not first countable\ .

Consider any sequence  in .  If there were infinitely many , then weÐB Ñ Ä Ð!ß !Ñ P B Á Ð!ß !Ñ8 8

could form the subsequence that contains those terms, and that subsequence would be a sequence

in  that converges to which is impossible.  Therefore we conclude thatP � ÖÐ!ß !Ñ× Ð!ß !Ñ �
eventually .B œ Ð!ß !Ñ8

Suppose now that  is any bijection, and let  0 À P Ä 5 œ 0Ð!ß !ÑÞ	

   whenever a sequence  in , then  in  (ñ ÐB Ñ Ä Ð!ß !Ñ P Ð0ÐB ÑÑ Ä 0Ð!ß !Ñ œ 58 8 	 because,

 by the preceding paragraph,  eventually)0ÐB Ñ œ 0Ð!ß !Ñ œ 58

    the topology on  is discrete so  is a neighborhood of , butñ Ö5× 0Ð!ß !Ñ	
  is not a neighborhood of .  Therefore  is  continuous0 ÒÖ5×Ó œ ÖÐ!ß !Ñ× Ð!ß !Ñ 0�" not

 at Ð!ß !Ñ

Theorem 9.9 does not apply to :  if a space is not first countable, P sequences may be inadequate

to check whether a function  is continuous at a point0 .
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Exercises

E17. Suppose  are continuous functions, that  is dense in , and0 ß 1 À Ð\ß Ñ Ä Ð] ß Ñ H \g g" #

that    Prove that if  is Hausdorff, then   (0 lH œ 1lHÞ ] 0 œ 1Þ This generalizes the result in

Chapter 2, Theorem 5.12.)

E18.   A function  is called  if0 À Ð\ß Ñ Äg ‘ lower semicontinuous

  0�"Ò , ∞ Ó œ ÖB À 0ÐBÑ � ,× , −( , ) is open for every ,‘

and  is called  if0 upper semicontinuous

  0�"[ ( , ) ]  is open for each .� ∞ , œ ÖB À 0ÐBÑ @ ,× , − ‘

 a) Show that  is continuous iff is both upper and lower semicontinuous.0 0

 b) Give an example of a lower semicontinuous  which is not continuous.0 À ‘ ‘Ä
 Do the same for upper semicontinuous.

  c) Suppose Prove that the characteristic function  is lower semicontinuousE © \Þ ;E

 if  is open in  and upper semicontinuous if  is closed in .E \ E \

E19.   Suppose  is an infinite set with the cofinite topology, and that  has the property that\ ]
every singleton  is a closed set.  (ÖC× You might want to check: this is equivalent to saying that]
is a -space:  see Definition 9.2X" ).   Prove that if  is continuous and onto, then0 À\ Ä ]
either or  is constant   is homeomorphic to .0 \ ]

 1) Note: the problem does  say that if   is not constant, then  is a homeomorphism.not 0 0
 2) Hint: Prove first that if is not constant, then  Then examine the topology0 l\l œ l] lÞ
  of  .]

E20.   Suppose  is a countable set with the cofinite topology.  State and prove a theorem that\
completely answers the question:  “what sequences in  converge to what points?”Ð\ß Ñg

E21.     Suppose that  and  are topological spaces.  Recall  that the Ð\ß Ñ Ð] ß Ñg g w product

topology on  is the topology for which the collection of “open boxes”\ ‚ ]

     is a base.U g gœ ÖY ‚ Z À Y − ß Z − ×w

 a) The “projection maps” and  are defined by1 1" #À \ ‚ ] Ä \ À \ ‚ ] Ä ]

     and 1 1" #ÐBß CÑ œ B ÐBß CÑ œ CÞ

 We showed in Example 5.11 that  and are continuous.  Prove that and  are  1 1 1 1" # " #

 open maps.  Give examples to show that  and  might not be closed. 1 1" #



149

 b) Suppose that  is a topological space and that  Prove thatÐ^ß Ñ 0 À ^ Ä \ ‚ ] Þg ww

  is continuous iff both compositions   and  are0 ‰ 0 À ^ Ä \ ‰ 0 À ^ Ä ]1 1" #

 continuous.  (Informally: a mapping into a product is continuous iff its composition with

 each projection is continuous.)

 c) Prove that   iff in  and  in .ÐÐB ß C ÑÑ Ä ÐBß CÑ − \ ‚ ] ÐB Ñ Ä B \ ÐC Ñ Ä C ]8 8 8 8

 ÐFor this reason, the product topology is sometimes called the “topology of

  coordinatewise convergence.”Ñ

 d) Prove that  is homeomorphic to \ ‚ ] ] ‚ \Þ
 ( )Topological products are commutative.

 e) Prove that  is homeomorphic to Ð\ ‚ ] Ñ ‚ ^ \ ‚ Ð] ‚ ^Ñ
 ( )Topological products are associative.

E22.   Let  and (  be topological spaces. Suppose . LetÐ\ß Ñ ] ß Ñ 0 À \ Ä ]g f

    = “ the graph of . ”>Ð0Ñ œ ÖÐBß CÑ − \ ‚ ] À C œ 0ÐBÑ× 0

Prove that the map  defined by  is a homeomorphism if and only2À\ Ä Ð0Ñ 2ÐBÑ œ ÐBß 0ÐBÑÑ>
if  is continuous.0
 

Note: if we think of  as a set of ordered pairs, the “graph of ”  .  More informally,0 0 0is

however, the problem states a function is continuous iff its graph is homeomorphic to its domain.

E23.   In , a family of sets  is called  if each pointÐ\ß Ñ œ ÖF À − ×g Y α Aα locally finite

B − \ R R ∩ F Á g has a neighborhood  such that  for only finitely many 's.  (α α Part b) was

also in Exercise E2.)

 a) Suppose (  is a metric space and that  is a family of  sets.  Suppose there\ß .Ñ Y closed

 is an  such that ( , )  for all , .  Prove that  is locally finite.% % Y Y� ! . F F   F F −" " ##

  b) Prove that if  is a locally finite family of sets in , thenY gÐ\ß Ñ
 cl ( cl ( .  Explain why this implies that if all the s are closed,- -

α αα α−E −EF Ñ œ F Ñ Fα'

 then  is closed.  ( ).   This would apply, for example, to the sets in part a  See also-
α α−EF

 Exercise E2.)

  c) ( )   Let and  beThe Pasting Lemmas: compare Exercise II.E24 Ð\ß Ñ Ð] ß Ñg g w

 topological spaces.  For each ,  suppose , that  is aα − E F © \ 0 À F Ä ]α α α

 continuous function, and that for all  Then0 lÐF ∩ F Ñ œ 0 lÐF ∩ F Ñ ß − Eα α " " α " α "

  is a function and    (- -
α α α−E 0 œ 0 0 À F Ä ] Þ Informally: each pair of functions

  and  agree wherever their domains overlap; this allows use to define  by “pasting0 0 0α "

 together” all the “function pieces”)

  i) Show that if all the 's are open, then  is continuous.F 0α
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  ii) Show that if there are only finitely many 's and they are all closed, then F 0α

  is continuous. (Hint: use a characterization of continuity in terms of closed

  sets.)  

  iii) Give an example to show that  might not be continuous when there are0
  infinitely many 's all of which are closed.Fα

  iv) Show that if  is a  family of closed sets, then  is continuous.Y locally finite 0
  ( ).Of course, iv) ii) Ê

Note: the most common use of the Pasting Lemma is when the index set  is finiteE Þ
For example, suppose

   is continuous  andL À Ò!ß "Ó ‚ Ò!ß Ó Ä Ð\ß .Ñ ß"
"
#

   is continuous, andL À Ò!ß "Ó ‚ Ò ß "Ó Ä Ð\ß .Ñ#
"
#

   for all L Ð>ß Ñ œ L Ð>ß Ñ > − Ò!ß "Ó" #
" "
# #

 

L Ò!ß "Ó ß L" #
# is defined on the lower closed half of the box  is defined on the upper closed half,

and they agree on the “overlap” that is, on the horizontal line segment   Part b)� Ò!ß "Ó ‚ Ö ×Þ"
#

Ð Ñor part c  says that the two functions can be pieced together into a ) continuous function

L À Ò!ß "Ó Ä Ð\ß .Ñß L œ L ∪ L#
" # where , that is

  
if 

if  
LÐ>ß CÑ œ

L Ð>ß CÑ > Ÿ

L Ð>ß CÑ >   "
"
#

#
"
#



151

Chapter III Review

Explain why each statement is true, or provide a counterexample.  If nothing else is mentioned,

\ ] and  are topological spaces with no other properties assumed.

1. For every possible topology , the space   is pseudometrizable.g gÐÖ!ß "ß #×ß Ñ

2. A convergent sequence in a first countable topological space has at most one limit.

3. A one point set  in a pseudometric space  is closed.ÖB× Ð\ß .Ñ

4. Suppose  and are topologies on  and that for every subset  of , cl cl .g g w \ E \ ÐEÑ œ ÐEÑg g w

Then g gœ Þw

5. Suppose  and .  If  is continuous, then  is continuous at each0 À\ Ä ] E © \ 0lE À E Ä ] 0
point of .E

6. Suppose is a subbase for the topology on  and that .  If  for everyf \ H © \ Y ∩ H Á g
Y − H \f, then  is dense in .

7. If  is dense in  and  is another topology on  with , then  is denseH Ð\ß Ñ \ © Hg g g g‡ ‡

in .Ð\ß Ñg ‡

8. If  is both continuous and open, then  is also closed.0 À\ Ä ] 0

9. Every space is a continuous image of a first countable spaceÞ

10. Let  with topology 1 .  There are exactly 3 continuous\ œ Ö!ß "× œ Ögß\ß Ö ××g
functions 0 À Ð\ß Ñ Ä Ð\ß ÑÞg g

11. If  and  are subspaces of  and both  and  are discrete in the subspace topology,E F Ð\ß Ñ E Fg
then  is discrete in the subspace topology.E ∪ F

12. If  and  is separable, then  is separable.E © Ð\ß Ñ \ Eg
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13. If  is the cofinite topology on . Every bijection  is ag g g\ 0À Ð\ß Ñ Ä Ð\ß Ñ
homeomorphism.

14. If  has the cofinite topology, then the closure of any open set in  is open.X X

15. A continuous bijection from  to  must be a homeomorphism.‘ ‘

16. For every cardinal , there is a separable topological space ) with .7 Ð\ß ± \ ± œ 7g

17. If every family of disjoint open sets in  is countable, then  is separable.Ð\ß Ñ Ð\ß Ñg g

18. For  and , let  .  Let  be the topology on  for+ − � ! G Ð+Ñ œ ÖB − À .ÐBß +Ñ œ ×‘ % ‘ % g ‘# # #
%

which the collection   is a subbasis.  Let   be the usual topology on .ÖG Ð+ÑÀ � !ß + − ×% % ‘ h ‘# #

Then the function  given by (sin , sin )  is continuous.0 À Ð ß Ñ Ä Ð ß Ñ 0ÐBß CÑ œ B C‘ g ‘ h# #

19. If  and each point of  is isolated in , then cl  must be countable.H © H H H‘

20. Consider the separation property every minimal nonempty closed set is a singleton.W À J
ÐJ E E © J is a nonempty closed set means:  if  is a nonempty closed set and , thenminimal 

E œ JÑÞ \ X \ W  If  is a -space, then  has property ."

21. A one-to-one, continuous, onto map  must be a homeomorphism.0 À Ð\ß Ñ Ä Ð] ß Ñg g w

22. An uncountable closed set in  must contain an interval of positive length.‘

23. A countable metric space has a base consisting of clopen sets.

24. Suppose and that  is dense in .  If  is  topology on  with , thenD   © \ H Ð\ß Ñ \ ©g g g g‡ ‡

D is dense in .Ð\ß Ñg ‡

25. If  and  is discrete in the subspace topology, then  is countable.H © H H‘

26. The Sorgenfrey plane has a subspace homeomorphic to  (with its usual topology).‘
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27. In , let 	 U8 œ ÖF © À 8 − F F © "ß #ß ÞÞÞß 8××Þ 8	 Uand {  At each point , the 's satisfy the8

conditions in the Neighborhood Base Theorem and therefore describe a topology on .	

28. At each point , let   At each point , the 's8 − œ ÖF À F ª Ö8ß 8 1 "ß 8 1 #ß ÞÞÞ ××Þ 8	 U U8 8

satisfy the conditions in the Neighborhood Base Theorem and therefore describe a topology

on .	

29. Suppose has a base  with  Then has a dense set  with Ð\ß Ñ l l œ -Þ \ H lHl Ÿ -Þg U U

30.  Suppose has a base  with  Then at each point , there is aÐ\ß Ñ l l œ -Þ B − \g U U
neighborhood base with .l l Ÿ -UB

31. Suppose  is an infinite set. Let be the cofinite topology on  and let be the discrete\ \g g" #

topology on   If a function is continuous, then  is also\Þ 0 À Ä Ð\ß Ñ 0 À Ä Ð\ß Ñ‘ g ‘ g" #

continuous.

32. Let  be the “right-ray topology” on , that is, , .  The spaceg ‘ g ‘ ‘œ ÖÐ+ß∞Ñ À + − × ∪ Ög ×
Ð ß Ñ‘ g  is first countable.


