Chapter VII
Separation Properties

1. Introduction

“Separation” refers here to whether objects such as points or disjoint closed sets can be enclosed in
disjoint open sets. In spite of the similarity of terminology, “separation properties” have no direct
connection to the idea of “separated sets” that appeared in Chapter 5 in the context of connected
spaces.

We have already met some simple separation properties of spaces: the Ty, 77 and 7> (Hausdorff)
properties. In this chapter, we look at these and others in more depth. As hypotheses for “more
separation” are added, spaces generally become nicer and nicer — especially when ‘“separation” is
combined with other properties. For example, we will see that “enough separation” and “a nice base”
guarantees that a space is metrizable.

“Separation axioms” translates the German term Trennungsaxiome used in the original literature.
Therefore the standard separation axioms were historically named Ty, 71,75,73,and Ty, each one

stronger than its predecessor in the list. Once these had become common terminology, another
separation axiom was discovered to be useful and “interpolated” into the list: T3%. It turns out that the

T3% spaces (also called Tychonoff spaces) are an extremely well-behaved class of spaces with some

very nice properties.

2. The Basics

Definition 2.1 A topological space X is called a
1) Tj-space if, whenever 2 # y € X, there either exists an open set U withx € U,y ¢ U

or there exists an openset V withy € V,xz ¢ V

2) Ti-space if, whenever z # y € X, there exists an open set U withx € U,y ¢ V
and there exists an open set V withx ¢ U,y € V

3) T3-space (or, Hausdorff space) if, whenever x # y € X, there exist disjoint open sets U
and V in X suchthatx € U andy € V.
It is immediately clear from the definitions that 75 = 11 = Tj.

Example 2.2

1) X is a Ty-space if and only if: whenever x # y, then N, # N, — that is, different points
in X have different neighborhood systems.
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2) If X has the trivial topology and | X| > 1, then X is not a Tj-space.
3) A pseudometric space (X, d) is a metric space in and only if (X, d) is a Ty-space.

Clearly, a metric space is 7. On the other hand, suppose (X, d) is Tj and that x # y.
Then for some € > 0 either z ¢ B.(y) or y ¢ B.(z). Either way, d(z,y) > €, s0d is
a metric.

4) In any topological space X we candefine an equivalence relation = ~ y iff NV, = N,,.
Letg: X — X/~ =Y by g(x) = [z]. Give Y the quotient topology. Then ¢ is continuous, onto,
open (not automatic for a quotient map!) and the quotient is a I space:

If O is open in X, we want to show that ¢g[O] is open in Y, and because Y has the
quotient topology this is true iff g~![g[O]] is open in X. But g~![g[O]]
={reX:g(x)€glOl} ={xeX: forsomey € O, g(x) =g(y)}

= {z € X : xis equivalent to some point y in O} = O.

If [x] # [y] € Y, then z is not equivalent to y, so there is an open set O C X with
(say) z € O and y ¢ O. Since g is open, g[O] is open in Y and [z] € g[O]. Moreover,
[y] ¢ g[O] or else y would be equivalent to some point of O — implying y € O.

Y is called the Tj-identificationof X. This identification turns any space into a 7Ty-space by
identifying points that have identical neighborhoods. If X is a Tj-space to begin with, then g is one-
to-one and g is a homeomorphism. Applied to a Ty space, the Tj-identification accomplishes nothing.
If (X,d)is a pseudometric space, the Tp-identification is the same as the metric identification
discussed in Example V1.5.6 because, in that case, N, = N, if and only if d(z,y) = 0.

5)Fori=0,1,2: if (X,7)isaT; space and 7' O 7 is a new topology on X, then (X,7 )
is also a T; space.
Example 2.3

1) (Exercise) It is easy to check that a space X is a T} space

iff for each z € X, {z}is closed
iff foreachz € X, {x} =({O: Oisopenand z € O}

2) A finite T space is discrete.

3) Sierpinski space X = {0, 1} with topology 7 = {0, {1},{0,1}}) is T but not Ty: {1} is
an open set that contains 1 and not 0; but there is no open set containing 0 and not 1.

4) R, with the right-ray topology, is Ty but not 71: if z < y € R, then O = (x, 00) is an open
set that contains y and not x; but there is no open set that contains = and not y.

5) With the cofinite topology, N is 7} but not 75 because, in an infinite cofinite space, any
two nonempty open sets have nonempty intersection.
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These separation properties are very well-behaved with respect to subspaces and products.
Theorem 2.4 For: = 0,1, 2:

a) A subspace of a Tj-space is a T;-space
b) If X =[], c4Xa # 0, then X is a Tj-space iff each X, is a T}-space.

Proof All of the proofs are easy. We consider here only the case ¢ = 1, leaving the other cases as an
exercise.

a) Suppose a # b € A C X, where X is a T space. If U’ is an open set in X containing z but not y,
then U = U’ N A is an open set in A containing = but not y. Similarly we can find an open set V' in A
containing y but not x. Therefore Ais a T-space.

b) Suppose X = [],.4X. is a nonempty 7;-space. Each X, is homeomorphic to a subspace of X,
s0, by part a), each X, is T7. Conversely, suppose each X, is 77 and that x # y € X. Then z, # y,
for some a.. Pick an open set U, in X, containing z, but not y,. Then U = < U, > is an open set
in X containing « but not y. Similarly, we find an open set V in X containing y but not . Therefore
X isaTi-space. e

Exercise 2.5 Is a continuous image of a T;-space necessarily a T;-space? How about a quotient?
A continuous open image?

We now consider a slightly different kind of separation axiom for a space X : formally, the definition
is “just like” the definition of 75, but with a closed set replacing one of the points.

Definition 2.6 A topological space X is called regular if whenever F is a closed set and = ¢ F,
there exist disjoint open sets U and V such thatz € U and ' C V.
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There are some easy equivalents of the definition of “regular” that are useful to recognize.
Theorem 2.7 The following are equivalent for any space X:
1) X is regular

ii) if O is an open set containing z, then there exists an open set U C X such that
xeUCclUCO

iii) at each point € X there exists a neighborhood base consisting of closed
neighborhoods.

Proof i) = ii) Suppose X is regular and O is an open set with = € O. Letting ' = X — O, we use
regularity to get disjoint open sets U,V withx € U and ' C V as illustrated below:

vz i

Thenz € U CclU C O (sinceclU C X — V).

ii) = iii) If N € N, then x € O = int N. By ii), we can find an open set U so that
x€eU CclU C O C N. Since clU is aneighborhood of x, the closed neighborhoods of x form a
neighborhood base at x.

iii) = i) Suppose F'is closed and = ¢ F. By ii), there is a closed neighborhood K of x such
thatz € K C X — F. Wecan choose U = int K and V = X — K to complete the proof that X is
regular. e

Example 2.8 Every pseudometric space (X, d) is regular. Suppose a ¢ F and F'is closed. We have
a continuous function f(z) = d(z, F') for which f(a) = ¢ > 0 and f|F = 0. This gives us disjoint
opensets witha € U = f~'[(§,00)]and F C V = f~[( — 00, 5)]. Therefore X is regular.

At first glance, one might think that regularity is a stronger condition than 7T5,. But this is false: if
(X, d) is a pseudometric space but not a metric space, then X is regular but not even 7.
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To bring things into line, we make the following definition.
Definition A topological space X is called a T;3-space if X is regular and 7.

It is easy to show that T3 = T5 (= Ty = Ty): suppose X is 73 and x # y € X. Then F' = {y} is
closed so, by regularity, there are disjoint open sets U,V withx € U andy € {y} C V.

Caution Terminology varies from book to book. For some authors, the definition of “regular”
includes 11 :  for them, “regular” means what we have called “I5.” Check the definitions when
reading other books.

Exercise 2.10 Show that a regular T; space must be T3 (so it would have been equivalent to use
“Ty” instead of “I1” in the definition of “I3”).

Example 2.11 T, = T3. We will put a new topology on the set X = R?. At each point p € X, leta
neighborhood base B, consist of all sets NV of the form

N = B.(p) — (a finite number of straight lines through p) U {p} for some ¢ > 0.

(Check that the conditions in the Neighborhood Base Theorem II1.5.2 are satisfied.) With the
resulting topology, X is called the slotted plane. Note that B.(p) € B, (because “0” is a finite
number), so each B,(p) is among the basic neighborhoods in B, — so the slotted plane topology on R?
contains the usual Euclidean topology. It follows that X is 75.

The set F' = {(z,0) : © # 0} = “the x-axis with the origin deleted” is a closed set in X (why?).

If U is any open set containing the origin (0, 0), then there is a basic neighborhood N with

(0,0) € N C U. Using the €in the definition of N, we can choose a point p = (z,0) € F with

0 < x < e. Every basic neighborhood set of p must intersect N (why?) and therefore must intersect
U. Tt follows that (0,0) and F' cannot be separated by disjoint open sets, so the slotted plane is not
regular (and therefore not 73).
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Note: The usual topology in R? is regular. This example shows that an “enlargement” of a regular
(or 13 ) topology may not be regular (or I ). Although the enlarged topology has more open sets to
work with, there are also more “point/closed set pairs x, F'” that need to be separated. By contrast,
it is easy to see that an “enlargement” of a T; topology (i = 0,1, 2) is still T;.

Example 2.12 The Moore plane I' (Example II1.5.6) is clearly T5. In fact, at each point, there is a
neighborhood base of closed neighborhoods. The figure illustrates this for a point P on the x-axis and
a point () above the z-axis. Therefore I is 7.

N

P

Theorem 2.13 a) A subspace of a regular (7%) space is regular (73).
b) Suppose X = [[,c4Xa # 0. X is regular (T3) iff each X, is regular (73).

Proof a) Let A C X where X is regular. Suppose a € A and that F'is a closed set in A that does
not contain a. There exists a closed set F'' in X such that 7' N A = F. Choose disjoint open sets
U'and V'in X witha e U'and F/ CV'. ThenU =U’'NAandV = V' N Aare open in A,
disjoint, @ € U, and F' C V. Therefore A is regular.

b) If X = [],c4Xa # 0 is regular, then part a) implies that each X, is regular, because each
X, is homeomorphic to a subspace of X. Conversely, suppose each X, is regular and that
U= <U,,...,U,, > is abasic open set containing x. For each o;, we can pick an open set V,,, in
Xy, suchthatz,, € V,,, CclV,, CU,. Thenz €V = <V,,..,V, > CclV
C <clVy,..,clV,, > CU. (Whyis the last inclusion true?) Therefore X is regular.

Since the T} property is hereditary and productive, a) and b) also hold for 75-spaces e

The obvious “next step up” in separation is the following:

Definition 2.14 A topological space X is called normal if, whenever A, B are disjoint closed sets in
X, there exist disjoint open sets U,V in X with A C U and B C V. Xis called a Ty-space if X is
normal and 7T7.
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Example 2.15 a) Every pseudometric space (X, d) is normal (so every metric space is T}).

In fact, if A and B are disjoint closed sets, we can define f(z) = % . Since the

denominator cannot be 0, f is continuous and f|A = 0, f|B = 1. The opensets U = {z : f(z) < 3}
andV ={z: f(x) > %} are disjoint that contain A and B respectively. Therefore X is normal.

Note: the argument given is slick and clean. Can you show (X, d) is normal by directly constructing
a pair of disjoint open sets that contain A and B ?

b) Let R have the right ray topology 7 = {(z,00);x € R} U{0,R}. (R, T)is
normal because the only possible pair of disjoint closed sets is () and X and we can separate these
using the disjoint open sets U = ) and V' = X. Also, (R, 7) is not regular: for example 1 is not in
the closed set F' = ( — 00, 0], butevery open set that contains F' also contains 1. So normal

= regular. But (R, 7) is not T and therefore not 7.

When we combine “normal 4 7} into T}, we have a property that fits perfectly into the separation
hierarchy.

Theorem 2.16 T, = T3 (= Ty = T = Tp)

Proof Suppose X is Ty. If F'is a closed set not containing z, then {x} and F are disjoint closed

sets. By normality, we can find disjoint open sets separating {z}and F'. It follows that X is regular
and therefore T5. e
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Exercises

El. X is called a door space if every subset is either open or closed. Prove that if a T5-space X
contains two points that are not isolated, then X is not a door space, and that otherwise X is a door
space.

E2. A base for the closed sets in a space X is a collection of F of closed subsets such that every
closed set F'is an intersection of sets from F. Clearly, JF is a base for the closed sets in X iff
B={0:0=X—F, F e F}isabase for the open sets in X.

For a polynomial P in n real variables, define the zero set of P as
Z(P) ={(z1,29,...,x,) ER": P (x1,29,...,x,) =0}

a) Prove that {Z(P) : P a polynomial in n real variables} is the base for the closed sets of a
topology (called the Zariski topology) on R".

b) Prove that the Zariski topology on R" is 77 but not 75.

c) Prove that the Zariski topology on R is the cofinite topology, but that if n > 1, the Zariski
topology on R" is not the cofinite topology.

Note: The Zariski topology arises in studying algebraic geometry. After all, the sets Z (P)are rather

special geometric objects—those “surfaces” in R" which can be described by polynomial equations
P([L‘l, Ly eeny l'n) = 0.

E3. A space X is a Ty, space if, whenever x # y € X, there exist open sets U and V'such that
reU,yeVandclUNclV = 0. (Clearly, T3 = Ty = T .)

a) Prove that a subspace of a T, space is a T5; space.

b) Suppose X = [[X, # (). Prove that X is 75, iff each X, is T3, .

c) Let S = {(z,y) e R?*:y >0} and L = {(z,y) € S : y = 0}. Define a topology on S with
the following neighborhood bases:

it peS—L: B, =
if pe L: B, =

You may assume that these B,'s satisfy the axioms for a neighborhood base.

Prove that § is T’ 5 but not T3.
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E4. Suppose A C X. Define a topology on X by
T={0CX:02A U0}

Decide whether or not (X, 7) is normal.

E5. A function f: X — Y is called perfect if f is continuous, closed, onto, and, for each y € Y,
f~Y(y) is compact. Prove that if X is regular and f is perfect, then Y is regular; and that if X is 7%,
the Y is also T5.

E6. a) Suppose X is finite. Prove that (X,7) is regular iff there is a partition Bof X that is a base
for the topology.

b) Give an example to show that a compact subset K of a regular space X need not be closed.
However, show that if X is regular then cl K is compact.

¢) Suppose F'is closed in a T3-space X. Prove that
i) Prove that ' = ({O : Ois open and F' C O}.
ii) Define x ~ y iff x = yor z,y € F. Prove that the quotient space X/ ~ is Hausdorff.

d) Suppose B is an infinite subset of a T3-space X. Prove that there exists a sequence of open sets
U, such that each U,, N B # () and that c1U,, N clU,,, = 0 whenever n # m.

e) Suppose each point ¥ in a space Y has a neighborhood V' such that cl V' is regular. Prove
that Y is regular.
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3. Completely Regular Spaces and Tychonoff Spaces

The 75 property is well-behaved. For example, we saw in Theorem 2.13 that the 73 property is
hereditary and productive. However, the T3 property is not sufficiently strong to give us really nice
theorems.

For example, it's very useful if a space has many (nonconstant) continuous real-valued functions
available to use. Remember how many times we have used the fact that continuous real-valued
functions f can be defined on a metric space (X, d) using formulas like f(x) = d(x,a) or

f(x) =d(z, F); when | X| > 1, we get many nonconstant real functions defined on (X, d). Buta
T3-space can sometimes be very deficient in continuous real-valued functions — in 1946, Hewett gave
an example of a infinite T3-space H on which the only continuous real-valued functions are the
constant functions.

In contrast, we will see that the 7T}, property is strong enough to guarantee the existence of lots of
continuous real-valued functions and, therefore, to prove some really nice theorems (for example, see
Theorems 5.2 and 5.6 later in this chapter). The downside is that Tj-spaces turn out also to exhibit
some very bad behavior: the T} property is not hereditary (explain why a proof analogous to the one
given for Theorem 2.13b) doesn't work) and it is not even finitely productive. Examples of such bad
behavior are a little hard to find right now, but later they will appear rather naturally.

These observations lead us to look first at a class of spaces with separation somewhere “between T3
and 7,.” We want a group of spaces that is well-behaved, but also with enough separation to give us
some very nice theorems. We begin with some notation and a lemma.

Recall that C(X)={f € RY: fiscontinuous} = the collection of continuous real-valued
functions on X

C*(X) ={f € C(X) : fis bounded} = the collection of continuous bounded
real-valued functions on X

Lemma 3.1 Suppose f, g € C(X). Define real-valued functions f V gand f A g by

(f Vg)(x) = max{f(z), g(x)}
(f A g)(x) = min{f(z),g(x)}

Then f V gand f A gare in C'(X).

Proof We want to prove that the max or min of two continuous real-valued functions is continuous.
But this follows immediately from the formulas

(fVvgl(x)= f(x);g(r) n |f(-’1f)§g(:z;)|

fl@)+g(@ | f(z) —g(=)|
(f A g)(x) = L1 Folo) 7
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Definition 3.2 A space X is called completely regular if whenever F'is a closed set and a ¢ F', there
exists a function f € C'(X) such that f(a) = 0 and f|F = 1.

Informally, “completely regular” means that “a and F' can be separated by a continuous real-valued
function.”

Note i) The definition requires that f|F = 1, in other words, that F* C f~![{1}]. However, these
two sets might not be equal.

ii) If there is such a function f, there is also a continuous g : X — [0, 1] such that g(a) =0
and g|F' = 1. For example, we could use g = (f V 0) A 1 which, by Lemma 3.1, is continuous.

iii) Suppose ¢ : X — [0, 1]is continuous and g(a) = 0, g|F' = 1. The particular values 0, 1 in
the definition are not important.: they could be any real numbers r < s. (If we choose a
homeomorphism ¢ : [0,1] — [r, s], then it must be true that either $(0) = r, (1) = s or p(0) = s,
¢(1) =r —why?. Thenh = ¢og: X — [r,s]| and, depending on how you chose ¢, h(a) = rand
h|F = b or vice-versa.)

Putting these observations together, we see Definition 3.2 is equivalent to:
Definition 3.2" A space X is called completely regular if whenever F'is a closed set, a ¢ F', and

r, s are real numbers with r < s, then there exists a continuous function f : X — [r, s] for which
f(a) =rand f|F = s.

In one way, the definition of “completely regular space” is very different the definitions for the other
separation properties: the definition isn't “internal”’because an “external” space, R is an integral part of
the definition. While it is possible to contrive a purely internal definition for “completely regular,”

the definition is complicated and seems completely unnatural: it simply imposes some very
unintuitive conditions to force the existence of enough functions in C'(X).

Example 3.3 Suppose (X, d) is a pseudometric space with a closed subset F' and a ¢ F'. Then

flz) = jgz’g is continuous, f(a) = land f|F' = 0. So (X,d) is completely regular, but if d is not a

metric, then this space is not even 7j.

Definition 3.4 A completely regular 7’ -space X is called a Tychonoff space (or 73 ! -space).

Theorem 3.5 T3% =T (=T=T =1,

Proof Suppose I is a closed set in X not containing a. If X is T51, we can choose f € C(X)with
f(a) =0and f[F =1. ThenU = f~'[( — 00, 3)] and V = f~![(3, 00)] are disjoint open sets with
a €U, FFCV. Therefore X is regular. Since X is T}, X isT3. ®

Hewitt's example of a 75 space on which every continuous real-valued function is constant is more
than enough to show that a T3 space may not be 75 1 (the example, in Ann. Math., 47(1946) 503-509, is

rather complicated.). For that purpose, it is a little easier — but still nontrivial — to find a 75 space X
containing two points p, ¢ such that for all f € C(X), f(p) = f(g). Then p and {¢q} cannot be
separated by a function from C'(X) so X is not Ty 1. (See D.J. Thomas, A regular space, not

completely regular, American Mathematical Monthly, 76(1969), 181-182). The space X can then be
used to construct an infinite 75 space H (simpler than Hewitt's example) on which every continuous
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real-valued function is constant (see Gantner, A regular space on which every continuous real-valued
function is constant, American Mathematical Monthly, 78(1971), 52.) Although we will not present
these constructions here, we will occasionally refer to H in comments later in this section.

Note: We have not yet shown that Ty = T3 L this is true (as the notation suggests), but it is not at all
easy to prove: try it! This result is in Corollary 5.3.

Tychonoff spaces continue the pattern of good behavior that we saw in preceding separation axioms,
and they will also turn out to be a rich class of spaces to study.

Theorem 3.7 a) A subspace of a completely regular (T3%) space is completely regular (T3%).
b) Suppose X = [[,c4Xo # 0. X is completely regular (TS%) iff each X, is
completely regular (T3%) .

Proof Supposea ¢ FF C A C X, where X is completely regular and F is a closed set in A. Pick a
closed set K in X such that K N A = F and an f € C'(X) such that f(a) = Oand f|K = 1. Then
g= fl|A € C(A), g(a) = 0and g|F = 1. Therefore A is completely regular.

If O # X = [[,c4Xa is completely regular, then each X, is homeomorphic to a subspace of
X so each X, is completely regular. Conversely, suppose each X, is completely regular and that F' is
a closed set in X not containing a. There is a basic open set U such that

aclU= <U,,.U,>CX-F

For each i = 1, ...,n we can pick a continuous function f,, : X,, — [0, 1] with f,,(a,,) = 0 and
fal(Xa, — U,,) = 1. Define f : X — [0,1] by

i

flz) =max {(fo, oma,)(z) i =1,....,n} =max {fo,(zs) i =1,....,n}

Then f is continuous and f(a) = max { f,,(as,) : i = 1,...,n} = 0. If z € F, then for some ¢,
Za, & Uy, and f,.(z4,) = 1,50 f(z) = 1. Therefore f|F' = 1 and X is completely regular.

Since the T} property is both hereditary and productive, the statements in a) and b) also hold
forTs:. e
2

Corollary 3.8 For any cardinal m, the “cube” [0, 1] and all its subspaces are Tg%.

Since a Tychonoff space X is defined using functions in C'(X), we expect thatthese functions will
have a close relationship to the topology on X. We want to explore that connection.

Definition 3.9 Suppose f € C(X). Then Z(f) = f}[{0}] = {z € X : f(z) = 0} is called the
zerosetof f. If A= Z(f) for some f € C(X), we call A a zero set in X. The complement of a zero
set in X is called a cozero set: coz(f) = X — Z(f) ={x € X : f(z) #0}.

A zero set Z(f)in X is closed because f is continuous. In addition, Z(f)=(),—,0,, where
O,={zeX:|f(x) < %} Each O, is open. Therefore a zero set is always a closed Gs-set.
Taking complements shows that coz ( f) is always an open F,-set in X.
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For f e C(X), letg=(—1V f)Al € C*(X). Then Z(f) = Z(g). Therefore C(X)and C*(X)
produce the same zero sets in X (and therefore also the same cozero sets).

Example 3.10
1) A closed set F' in a pseudometric space (X, d) is a zero set: F' = Z(f), where f(z) = d(z, F).

2) In general, a closed set in X might not be a zero set — in fact, a closed set in X might not even be
a G set.

Suppose X is uncountable and p € X. Define a topology on X by letting B, = {{z}} be a
neighborhood at each point z # p and letting B, = {B : p € B and X — B is countable} be
the neighborhood base at p. (Check that the conditions of the Neighborhood Base Theorem
111.5.2 are satisfied.)

All points in X — {p} are isolated and X is clearly 7}. In fact, X is 7.

If A and B are disjoint closed sets in X, then one of them (say A)satisfies
A C X — {p}, so Ais clopen. We then have opensets U = AandV = X — A D B,
so X is normal.

We do not know yet that Ty = T 1 in general, but it's easy to see that this space X is also Tg%.

If F'is a closed set not containing z, then either FF C X — {p}or {z} C X — {p}.
So one of the sets F or {z} is clopen and he characteristic function of that clopen set
is continuous and works to show that X is completely regular.

The set {p} is closed but {p} is not a Gs set in X, so {p} is not a zero set in X.

Suppose p € (,—,0,, where O,, is open. For each n, there is a basic neighborhood B,,
of psuchthatp € B, C O,,, so X — 0, C X — B,, is countable. Therefore
X =20, =U,~;(X — O,) is countable. Since X is uncountable, we conclude

n=1

that {p} # (2,0

Even when F' is both closed and a G set, F might not be a zero set. We will see examples
later.

For purely technical purposes, it is convenient to notice that zero sets and cozero sets can be described
in a many different forms. For example, if f € C'(X), then we can see that each set in the left column
is a zero set by choosing a suitable g € C'(X) :

Z={x: f(x)=r} =Z(g), where g(x) = f(z)—r

Z =A{x: f(x) >0} = Z(g), where g(z) = f(z) — |f(z)]

Z={x: f(x) <0} = Z(g), where g(z) = f(z) + |f(2)|

Z=Az: f(x) > r} =Z(g), where g(z) = (f(x) —r) — |f(z) — 7]
Z={z: flx) < r} =Z(g), where g(z) = (f(z) =)+ |f(z) — 7]
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On the other hand, if g € C'(X), we can write Z(g) in any of the forms listed above by choosing an
appropriate function f € C'(X) :

Z(g) ={x: f(z) =r} where f(z) = g(z) +r
Z(g) ={x: f(z) = 0} where f(z) = —[g(z)|
Z(g) ={z: f(z) < 0} where f(z) = g(z)|
Z(g) ={x: f(z) = r} where f(z) =1 — [g(x)]
Z(g) ={z: f(z) <r} where f(z) =7+ [g(x)]

Taking complements, we get the corresponding results for cozero sets: if f € C'(X)
i) thesets {z: f(x) #r}, {z: f(z) <0} {z: f(z) >0} {x: f(x) <r}, {z: f(zx)>r}
are cozero sets, and
ii) any given cozero set can be written in any one of these forms.

Using the terminology of cozero sets, we can see a nice comparison/contrast between regularity and
complete regularity. Suppose x ¢ F, where F is closed in X. If X is regular, we can find disjoint
open sets U and V with x € U and F' C V. Butif X is completely regular, we can separate x and F’
with “special” open sets U and V' — cozero sets! Just choose f € C(X) with f(z) = 0 and f|F =1,
then

zeU={z: f(z) <3} and FCV={z:f(z)>3}
In fact this observation characterizes completely regular spaces — that is, if a regular space fails to be
completely regular, it is because there is a “shortage” of cozero sets — because there is a “shortage” of
functions in C(X) (see Theorem 3.12, below). For the extreme case of a T3 space H on which the
only continuous real valued functions are constant, the only cozero sets are () and H !

The next theorem reveals the connections between cozero sets, C'(X) and the weak topology on X.

Theorem 3.11 For any space (X,7), C(X)and C*(X) induce the same weak topology 7,,on X,
and a base for 7, is the collection of all cozero sets in X.

Proof A subbase for 7,, consists of all sets of the form f~![U], where U is openin R and f € C(X).
Without loss of generality, we can assume the sets U are subbasic open sets of the form (a,c0) and
(— 00,b), so that the sets f~'[U] have form {z € X : f(z) > a}or {z € X : f(z) < b}. But these
are cozero sets of X, and every cozero set in X has this form. So the cozero sets are a subbase for 7,
In fact, the cozero sets are actually a base because coz (f) N coz(g) = coz(fg): the intersection of
two cozero sets is a cozero set.

The same argument, with C*(X) replacing C'(X), shows that the cozero sets of C*(.X) are a base for
the weak topology on X generated by C*(X). But C(X) and C*(X) produce the same cozero sets in
X, and therefore generate the same weak topology 7,,on X. e

Now we can now see the close connection between X and C'(X) in completely regular spaces. For
any space (X, 7) the functions in C'(X) certainly are continuous with respect to 7 (by definition of
C(X)). But is 7 the smallest topology making this collection of functions continuous? In other
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words, is 7 the weak topology on X generated by C'(X)? The next theorem says that is true precisely
when X is completely regular.

Theorem 3.12 For any space (X, 7 ), the following are equivalent:

a) X is completely regular

b) The cozero sets of X are a base for the topology on X (equivalently, the zero sets of X
are a base for the closed sets—meaning that every closed set is an intersection of zero sets)
¢) X has the weak topology from C'(X) (equivalently, from C*(X) )

d) C(X) (equivalently, C*(X) ) separates points from closed sets.

Proof The preceding theorem shows that b) and c) are equivalent.

a) = b) Suppose a € O where O is open. Let F'= X — O. Then we can choose f € C'(X)
with f(a) =0 and f|[F =1. Then U = {a: f(z) < 3} is a cozero set for which a € U C O.

Therefore the cozero sets are a base for X.

b) = d) Suppose F'is a closed set not containing a. By b), we can choose f € C'(X) so that
accoz(f)CX—F. Then f(a)=r#0, so f(a) ¢ cl f[F] = {0}. Therefore C'(X) separates
points and closed sets.

d) = a) Suppose F'is a closed set not containing a. There is some f € C'(X) for which
f(a) ¢ cl f[F]. Without loss of generality (why?), we can assume f(a) = 0. Then, for some € > 0,
(—€,€)N f[F] =0, so that for z € F, |f(x)] > e. Define g € C*(X) by g(x) = min{|f(z)], €}.
Then g(a) = 0 and g|F' = ¢, so X is completely regular.

At each step of the proof, C'(X) can be replaced by C*(X) (check!) e

The following corollary is curious and the proof is a good test of whether one understands the idea of
“weak topology.”

Corollary 3.13 Suppose X is a set and let 7r be the weak topology on X generated by any family of
functions F C R¥. Then (X, 7r) is completely regular. (X, 7r)is Tychonoff is F separates points.

Proof Give X the topology the weak topology 7r generated by 7. Now X has a topology, so the
collection C'(X') makes sense. Let T}, be the weak topology on X generated by C'(X).

The topology 7 does make all the functions in C'(X) continuous, so 7,, C 7.

On the other hand: F C C(X) by definition of 7, and the larger collection of functions C'(X)
generates a (potentially) larger weak topology. Therefore 7 C 7,,,.

Therefore 7 = 7,, . By Theorem 3.12, (X, 7f) is completely regular. e
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Example 3.14

D If F = {f € RR : f is nowhere differentiable}, then the weak topology 7+ on R generated
by F is completely regular.

2) If H is an infinite T3 space on which every continuous real-valued function is constant (see
the comments at the beginning of this Section 3), then the weak topology generated by C'(X) has for a
base the collection of cozero sets {(), H}. So the weak topology generated by C'(X) is the trivial
topology, not the original topology on X.

Theorem 3.12 leads to a lovely characterization of Tychonoff spaces.

Corollary 3.15  Suppose X is a Tychonoff space. For each f & C*(X), we have
ran(f) C [ay,by] = Iy for some ay < by € R. The evaluation map e : X — [[{I;: f € C*(X)}is
an embedding.

Proof X is T3, the f's are continuous and the collection of f's (= C*(X) ) separates points and
closed sets. By Corollary VL.4.11, e is an embedding. e

Since each Iy is homeomorphic to [0,1], [[{I: f € C*(X)} is homeomorphic to [0,1]", where
m = |C*(X)|. Therefore any Tychonoff space can be embedded in a “cube.” On the other hand
(Corollary 3.8) [0, 1]™ and all its subspaces are Tychonoff. So we have:

Corollary 3.16 A space X is Tychonoff iff X is homeomorphic to a subspace of a “cube” [0, 1]™ for
some cardinal number .

The exponent m = |C*(X)| in the corollary may not be the smallest exponent possible. As an extreme
case, for example, we have ¢ = |C*(R)|, even though we can embed R in [0,1] = [0,1]'. The
following theorem improves the value for m in certain cases (and we proved a similar result for metric
spaces (X, d): see Example VI.4.5.)

Theorem 3.17 Suppose X is Tychonoff with a base B3 of cardinality m. Then X can be embedded in
[0,1]™. In particular, X can be embedded in [0, 1]*(X)

Proof Suppose m is finite. Since X is T, {x} = (|{B : B is a basic open set containing z}. Only
finitely many such intersections are possible, so X 1is finite and therefore discrete. —Hence
x E0,1€ [0, 1],

Suppose B is a base of cardinal m where m is infinite. Call a pair (U,V) € Bx B
distinguished if there exists a continuous fyy : X — [0,1] with fyy(z) < § for all z € U and
foy(z)=1 for all x € X —-V. Clearly, U CV for a distinguished pair (U,V). For each
distinguished pair, pick such a function fyy andlet F = {fy v : (U,V) € B x Bis distinguished}.
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We note that if a € V' € B, then there must exist U € B such thata € U and (U, V') is distinguished.
To see this, pick an f : X — [0,1] so that f(a) = 0and f|X —V = 1. Then choose U € B so that
acUCf o, cv.

We claim that F separates points and closed sets:

Suppose F' is a closed set not containing a. Choose a basic set V € Bwithae V C X — F.
There is a distinguished pair (U, V) witha € U CV C X — F. Then fyy(a) =7 < 1 and

nyv‘F = 1, SO ny(CL) ¢ cl ny[F] = {1}

By Corollary VL4.11, e:X — [0,1]¥] is an embedding. Since m is infinite,
|FI<|BxBl=m?>=m. e

A theorem that states that certain topological properties of a space X imply that X is metrizable is
called a “metrization theorem.” Typically the hypotheses of a metrization theorem involve that

1) X has “enough separation” and 2) X has a “sufficiently nice base.” The following theorem is a
simple example.

Corollary 3.18 (“Baby Metrization Theorem’) A second countable Tychonoff space X is
metrizable.

top
Proof By Theorem 3.17, X C [0, 1]™. Since [0, 1]* is metrizable, sois X. e

In Corollary 3.18, X turns out to be metrizable and separable (since X is second countable). On the
other hand [0, 1]™ and all its subspaces are separable metrizable spaces. Thus, the corollary tells us
that the separable metrizable spaces (topologically) are precisely the second countable Tychonoff

spaces.

299



Exercises

E7. Prove that if X is a countable Tychonoff space, then there is a neighborhood base of clopen sets
at each point. (Such a space X is sometimes called zero-dimensional.)

ES. Prove that in any space X, a countable union of cozero sets is a cozero set — or, equivalently, that
a countable intersection of zero sets is a zero set.

E9. Prove that the following are equivalent in any Tychonoff space X:

a) every zero set is open

b) every G set is open

¢) for each f € C(X) : if f(p) = 0 then there is a neighborhood N of p
suchthat f | N =0

E10. Let? : R — R be the identity map and let
(i) ={f € C(R) : f = giforsome g € C(R)}.
(2) is called the ideal in C(R) generated by the element 1.

For those who know a bit of algebra: if we definite addition and multiplication of functions pointwise,
then C(R) (or, more generally, C(X)) is a commutative ring. The constant function 0 is the zero
element in the ring; there is also a unit element, namely the constant function “1.”

a) Prove that (i) = {f € C(R) : f(0) = 0andthe derivative f'(0) exists}.
b) Exhibit two functions f, g in C(R) for which fg € (i) yet f ¢ (i) and g & (7).

c) Let X be a Tychonoff space with more than one point. Prove that there are two functions
f,9 € C(X) such that fg = 0 on X yet neither f nor g is identically 0 on X.

Thus, there are functions f,g € C(X) for which fg = 0 although f # 0 and g # 0. In an
algebra course, such elements f and g in the ring C(X) are called “zero divisors.”

d) Prove that there are exactly two functions f € C(R) for which f? = f. (InC(X), the
notation f 2(x) means f(x) - f(z), not f(f(x)).)

e) Prove that there are exactly ¢ functions f in C(Q) for which f2? = f.
An element in C(X) that equals its own square is called an idempotent. Part d) shows that C(R) and
C(Q) are not isomorphic rings since they have different numbers of idempotents. Is either C(R) or
C(Q) isomorphic to C(N)?
One classic part of general topology is to explore the relationship between the space X and the rings

C(X) and C*(X). For example, if X is homeomorphic to Y, then C(X) is isomorphic toC(Y').
This necessarily implies (why?) that C*(X) is isomorphic to C*(Y). The question “when does
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isomorphism imply homeomorphism?” is more difficult. Another important area of study is how the
maximal ideals of the ring C(X) are related to the topology of X. The best introduction to this
material is the classic book Rings of Continuous Functions (Gillman-Jerison).

f) Let D(R) be the set of differentiable functions f : R — R. Are the rings C'(R) and D(R)
isomorphic? Hint: An isomorphism between C'(R) and D(R) preserves cube roots.

El11. Suppose X is a connected Tychonoff space with more than one point. Prove | X| > c..
E12. Let X be a topological space. Suppose f,g € C(X) and that Z(f) is a neighborhood of Z(g)

(thatis, Z(g) Cint Z(f).)

a) Prove that f is a multiple of g in C'(X), that is, prove there is a function h € C'(X) such
that f(z) = g(z)h(z) forall z € X.

b) Give an example where Z(f) 2 Z(g) but f is not a multiple of g in C'(X).

E13. Let X be a Tychonoff space with subspaces F' and A, where F' is closed and A is countable.
Prove that if F' N A = (), then A is disjoint from some zero set that contains F'.

El4. A space X is called pseudocompact if every continuous f : X — R is bounded, that is, if
C(X) = C*(X) (see Definition IV.8.7). Consider the following condition (*) on a space X:
(*) Whenever V; 2 V5, D ... DV, D ... is a decreasing sequence of nonempty open sets,
then (2 ,clV,, # 0.
a) Prove that if X satisfies (*), then X is pseudocompact.
b) Prove that if X is Tychonoff and pseudocompact, then X satisfies (*).

Note: For Tychonoff spaces, part b) gives an “internal” characterization of pseudocompactness — that
is, a characterization that makes no explicit reference to R.
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4. Normal and 7-Spaces

We now return to a topic in progress: normal spaces (and Ty-spaces). Even though normal spaces are
badly behaved in some ways, there are still some very important (and nontrivial) theorems that we can
prove. One of these will give “Ty = T, ! ” as an immediate corollary.

To begin, the following technical variation on the definition of normality is very useful.

Lemma 4.1 A space X is normal iff whenever A is closed, O is open and A C O,
there exists an open set U
withACU CeclU CO.

Proof Suppose X is normal and that Ois an open set containing the closed set A. Then A and
B = X — Oare disjoint closed sets. By normality, there are disjoint open sets U and V' with A C U
and BCV. ThenACU CclUC X -V CO.

Conversely, suppose X satisfies the stated condition and that A, B are disjoint closed sets.

Then A C O = X — B, sothereisanopenset U with A CU CclU C X —B. LetV =X —clU.
U and V are disjoint closed sets containing A and B respectively, so X is normal. e
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Theorem 4.2 a) A closed subspace of a normal (7)) space is normal (7}).
b) A continuous closed image of a normal (7}) space normal (7}).

Proof a) Suppose F'is a closed subspace of a normal space X and let A and B be disjoint closed
sets in F. Then A, B are also closed in X so we can find disjoint open sets U’ and V' in X
containing A and B respectively. Then U = U’ N F and V = V' N F are disjoint open sets in F’ that
contain A and B, so F'is normal.

b) Suppose X is normal and that f : X — Y is continuous, closed and onto. If A and B are
disjoint closed sets in Y, then f~'[A]and f~![B] are disjoint closed sets in X. Pick U’ and V'
disjoint open sets in X with f~}[A] CU’and f}[B]C V' ThenU =Y — f[X —U’] and
V=Y — f[X —V']are open sets in Y.

If ye U, then y ¢ f[X —U’]. Since f is onto, y = f(z)for some x € U’ C X — V', Therefore
ye fIX=V']soy¢ V. Hence U NV = .

Ify € A then f[{y}] C fA] C U, so f{y}]N(X —U') =0. Therefore y ¢ f[X —U’] so
yeY — f[X —=U’'] = U. Therefore A C U and, similarly, B C V so Y is normal.

Since the 77 property is hereditary and is preserved by closed onto maps, the statements in a) and b)
hold for T} as well as normality. e

The next theorem gives us more examples of normal (and 7}) spaces.

Theorem 4.3 Every regular Lindel6f space X is normal (and therefore every Lindel6f T5-space
is T4)

Proof Suppose A and B are disjoint closed sets in X. For each z € A, use regularity to pick an open
set U, such that x € U, CclU, C X — B. Since the Lindeldf property is hereditary on closed
subsets, a countable number of the U,'s cover A: relabel these as Uy, Us, ...,U,, ... . For each n, we
have clU,, N B = (). Similarly, choose a sequence of open sets V1, Vs, ..., V,,, ... covering B such that
clV, N A = (for each n.

We have that | )7 ,U, 2 Aand |J.”,V, 2 B, but these unions may not be disjoint. So we define

n=1 n=1

U = U —clV Vi =V —cllj
Uy =U; — (clV3 Ucl V3) Vot = Vo — (clUy UclUs)
Us =U, — (cIV; Ucl VU ... UclT}) V=V, — (clU; UclUs U...UclU,)

LetU =)0, Urand V =2, V.

If z € A, then x ¢ cl V, for all n. But x € Uy, for some k, so x € U C U. Therefore A C U and,
similarly, B C V.

To complete the proof, we show that U NV = (). Suppose z € U.
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Then x € U}; for some £, so x ¢clVyUclVhU...UclV,
so z ¢ ViUTLU...UV,
so z ¢ VUV U..UVY
so x ¢ V*foranyn < k.

Since z € U}, then x € Uy. So, ifn >k, thenx ¢ V) =V, — (clU U...UclUp U...UclU,)

Sox ¢ V' foralln,sox ¢ V and therefore U NV = (. o

Example 4.4 The Sorgenfrey line S is regular because the sets [a,b) form a base of closed
neighborhoods at each point a. We proved in Example VI.3.2 that S is Lindelof, so S is normal.
Since S is T3, we have that S is 7.

S. Urysohn's Lemma and Tietze's Extension Theorem

We now turn our attention to the issue of “T; = T} %”. This is hard to prove because to show that a
space X is T3%, we need to prove that certain continuous functions exist; but the hypothesis “T” gives
us no continuous functions to work with. As far as we know at this point, there could even be T}
spaces on which every continuous real-valued function is constant! If T)-spaces are going to have a
rich supply of continuous real-valued functions, we will have to show that these functions can be
“built from scratch” in a Ty-space. This will lead us to two of the most well-known classical theorems
of general topology.

We begin with the following technical lemma. It gives a way to use a certain collection of open sets
{U, : r € Q} to construct a function f € C'(X). The idea in the proof is quite straightforward, but I
attribute its elegant presentation (and that of Urysohn's Lemma which follows) primarily to Leonard
Gillman and Meyer Jerison.

Lemma 5.1 Suppose X is any topological space and let () be any dense subset of R. Suppose open
sets U, C X have been defined, one for each r € (), in such a way that:

) X =U,qUr and ,oU- =10
ii) if r,s € Qand r < s, then clU, C Us,.

For z € X, define f(x) = inf{r € Q : € U,}. Then f : X — R is continuous.

We will use this Lemma only once, with Q = Q. So if you like, there is no harm in assuming that
Q = Q in the proof.

Proof Suppose z € X. By i) we know that x € U, for some r,so {r € Q : z € U,} # (). And by ii),
we know that x ¢ U, for some s. For that s : if z € U,, then (by ii) s < r, so s is a lower bound for
{re@:z €U} Therefore {r e @:x €U} has a greatest lower bound, so the definition of f
makes sense: f(z) =inf{re Q:xz e U,} e R.
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From the definition of f, we get that for r, s € @,

a) ifx € clU,, thenxz € Uy forall s > r so f(z) <r
b) if f(x) < s, thenz € Us.

We want to prove f is continuous at each point ¢ € X. Since () is dense in R,
{[r,s] :r,s €@ and r < f(a) < s}

is a neighborhood base at f(a) in R. Therefore it is sufficient to show that whenever r < f(a) < s,
then there is a neighborhood U of @ such that f[U] C [r, s].

Since f(a) < s, we have a € Uy, and f(a) > r gives us that a ¢ clU,. Therefore U = Uy — clU, is
an open neighborhood of a. If z € U, then z € Uy C cl Uy, so f(z) <s; and z ¢ clU,,so z ¢ U,
and f(z) > r. Therefore f[U] C [r,s].

Our first major theorem about normal spaces is still traditionally referred to as a “lemma” because it
was a lemma in the paper where it originally appeared. Its author, Paul Urysohn, died at age 26, on the
morning of 17 August 1924, while swimming off the coast of Brittany.

Theorem 5.2 (Urysohn's Lemma) A space X is normal iff whenever A, B are disjoint closed sets
in X, there exists a function f € C(X) with f|A =0 and f|B = 1. (When such an f exists, we say
that A and B are completely separated.)

Note: Notice that if A and B happen to be disjoint zero sets, say A = Z(g) and B = Z(h), then the
conclusion of the theorem is true in any space, without assuming normality: just let

2
__g@ : : _ B
flx) = e e Then f is continuous, f|A = 0 and f|B = 1.
The conclusion of Urysohn's Lemma only says that A C f~1(0) and B C f~!(1): equality

might not be true. In fact, if A = f~1(0) and B = f~1(1), then A and B were zero sets in
the beginning, and the hypothesis of normality would have been unnecessary.

This shows again that zero sets are very special closed sets: in any space, disjoint zero sets are
completely separated. Put another way: given Urysohn's Lemma, we can conclude that every
nonnormal space must contain a closed set that is not a zero set.

Proof The proof of Urysohn's Lemma in one direction is almost trivial. If such a function f exists,
thenU = {z: f(z) < 3} and V = {z : f(x) > 3} are disjoint open sets (in fact, cozero sets)
containing A and B respectively. It is the other half of Urysohn's Lemma for which Urysohn deserves
credit.

Let A and B be disjoint closed sets in a normal space X. We will define sets open sets U, (r € Q) in
X in such a way that Lemma 5.1 applies. To start, let U, = () for r < 0 and U, = X forr > 1.
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Enumerate the remaining rationals in Q N [0, 1] as ry, 72, ..., 7y, ..., beginning the list with 7 = 1and
ro = 0. We begin by defining U,, = U; = X — B. Then use normality to define U,.,( = Up) : since
A C U, =X — B, we can pick U,, so that

ACU,CclU,CU,, =X—-B
Then 0 = ry < 73 < r; = 1, and we use normality to pick an open set U, so that
ACcU,CclU,CU,CcllU, CU, =X-B

We continue by induction. Suppose n > 3 and that we have already defined open sets U,., U,,, ..., U,
in such a way that whenever r; < r; < i, (7,7, k < n), then

U, CU, CeclU, C U, (x)

We need to define U,

Tnt1

so that () holds for i, j, k < n+ 1.
Since ry = 1and o = 0, and 7,1 € (0, 1), it makes sense to define

ri = the largest among 7y, ro, ..., 7, that is smaller than r,,, and
r; = the smallest among r1, 79, ..., 7, that is larger than 7, .

By the induction hypothesis, we already have clU,, C U,,. Then use normality to pick an open set
U, . sothat

Tn+1

cU, €U, Cecll,

Tn+1

n+1 g Url'

The U,'s defined in this way satisfy the conditions of Lemma 5.1, so the function f : X — R defined
by f(z) =inf{r € Q: x € U, }is continuous. If z € A, thenz € U,, = Upand = ¢ U, if r < 0, so
f(z)=0. Ifz € Bthenx ¢ Uj,butz € U, = X forr > 1,50 f(z) =1. e

Once we have the function f we can replace it, if we like, by g = (0V f) A 1 so that A and B are
completely separated by a function g € C*(X). It is also clear that we can modify g further to get an
h € C*(X) for which h|A = a and h|B = b where a and b are any two real numbers.

With Urysohn's Lemma, the proof of the following corollary is obvious.

Corollary 5.3 T, = T;;.

There is another famous characterization of normal spaces in terms of C'(X). It is a result about
“extending” continuous real-valued functions defined on closed subspaces.

We begin with the following two lemmas. Lemma 5.4, called the “Weierstrass M-Test” is a slight
generalization of a theorem with the same name in advanced calculus. It can be useful in “piecing
together” infinitely many real-valued continuous functions to get a new one. Lemma 5.5 will be used
in the proof of Tietze's Extension Theorem (Theorem 5.6).
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Lemma 5.4 (Weierstrass M -Test) Let X be a topological space.  Suppose f,: X — Ris
continuous for each m € N and that |f,(z)| <M, for all z€ X. If Y M, < oo, then

n=1

f(x) =>_ fu(zx) converges (absolutely) for all x and f : X — Ris continuous.
n=1

o oo o
Proof Foreachz, Y |f.(z)] <> M, < oo, s0 ) fn(z) converges (absolutely) by the Comparison
n=1 n=1 n=1
Test.
00
Suppose a € X and € > 0. Choose N so that > M, < i. Each f,, is continuous, so for

n=N+1
n =1,..., N we can pick a neighborhood U,, of a such that for x € U,, |f,(x) — fa(a)| < 55%. Then

U = N_,U, is a neighborhood of a, and for z € U we get | f(z) — f(a)]
= 15 (ful®) = fula)) +§H<fn<x> — L@ S a@) = @) + X [fule) = fula)

n=1 n=1 n=N+1
N oo 0o

< S fal@) = fal@) + 2 |fa@)] + [ fal@) <N 55 +3 2M, < 5+5 =e
n=1 n=N-+1 n=N+1

Therefore f is continuous at a. e

Lemma 5.5 Let A be a closed set in a normal space X and let a be a positive real number. Suppose
h: A — [—r,r]is continuous. Then there exists a continuous ¢ : X — [ — &, £] such that

|h(x) — ¢(x)] < % foreach z € A.

rr
373

Proof Let Ay ={zx € A:h(z) < —t}and By = {v € A: h(z) > 5}. Aisclosed, and A; and B,
are disjoint closed sets in A, so A; and B are closed in X. By Urysohn's Lemma, there exists a

continuous function ¢ : X — [ — £, £] such that |4, = — £ and ¢|B; = 3.
Ifz € Ay, then —7 <h(r) < —fandd(z) = — £,50 |h(z) — o) < | —7r—(—3)]

= 2; and similarly if z € By, |h(z) — ¢(z)| < %. Ifz € A— (A; U By), then h(z) and ¢(z) are
bothin [ — %, ] so |h(z) — ¢(z)| < 5.

Theorem 5.6 (Tietze's Extension Theorem) A space X is normal iff whenever A is a closed set in
X and f € C(A), then there exists a function g € C(X) such that g|A = f.

Note: if A is a closed subset of X = R, then it is quite easy to prove the theorem. In that case,
R — A is open and can be written as a countable union of disjoint open intervals I, where
each I = (a,b) or ( — 00, b) or (a,0) (see Theorem I1.3.4). For each of these intervals I, the
endpoints are in A, where f is already defined. If I = (a,b) then extend the definition of f
over I by using a straight line segment to join (a, f(a)) and (b, f(b)) on the graph of f. If

I = (a, 00). then extend the graph of f over I using a horizontal right ray at height f(a); if

I = (— o0,b), then extend the graph of f over I using a horizontal left ray at height f(b).

As with Urysohn's Lemma, half of the proof is easy. The significant part of theorem is proving the
existence of the extension g when X is normal.
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Proof (<) Suppose A and B are disjoint closed sets in X. A and B are clopen in the subspace
AU B so the function f : AU B — [0, 1] defined by f|A = 0 and f|B = 1 is continuous. Since
AU B is closed in X, there is a function g € C'(X) such that g|(AU B) = f. Then

U={z:9(x) <3} andV = {z: g(x) > 3} are disjoint open sets (cozero sets, in fact) that contain
A and B respectively. Therefore X is normal.

(=) The idea is to find a sequence of functions g; € C(X) such that

|f(x) — Zgl(x)\ — 0 asn — oo foreach x € A (where f is defined ). The sums Zgl(x) are
i=1
defined on all of X and as n — oo we can think of them as g1V1ng better and better approximations to

the extension g that we want. Then we can let g(z) = hm Z gi(x) = Z gi(x). The details follow.

We proceed in three steps, but the heart of the argument is in Case L.

Case I Suppose f is continuous and that f : A — [ — 1, 1]. We claim there is a continuous
function g : X — [— 1, 1] with g|A = f.

Using Lemma 5.5 (with b = f, r = 1) we get a function g; = ¢ : X — [ — 3, #] such that
forz € A, |f(z) — g1(z)| < 3. Therefore f — g1 : A — [— 2, 3].

Using Lemma 5.5 again (with h = f — g1, r
thatforz € A, |f(z) — g1(z) — ga2(2)| < § =

we get a function gs : X — [— 2, 3] such

o 3
(3)% Sof—(g1+g2): A—[~75,3]

Using Lemma 5.5 again (with h = f — g1 — go, 7 = %) we get a function

g3 X — [— 247,27] such that for z € A, |f(x) — ¢1(z) — ga(z) — g3(x)| < %z(%)?’.

Sof—(g1+g2+g3): A— [~ 2877287]'

We continue, using induction, to find for each ¢ a continuous function

gi: X — [— L 2 such that | f(2) — Y gi(z)] < (2/3)" for z € A.
i=1

8

Since 3" [gi(x)| < 32

i=1 i=1

o
(x) = >_ fi(x) converges (absolutely) for every
=1
x € X, and g is continuous by the Weierstrass M-Test. Since |g(x)| = |>_gi(z)]
i=1

2 =1, wehave g: X — [—1,1].

Nglk:
M8

<,

‘gz( )‘ <

Finally, forz € A, |f(x) —g(z)| =lim |f(z) — Zgl(x)] < lim (3)" = 0,50 g|A = fand
n—0o0 i=1 n—00

1l
—

i=1

the proof for Step I is complete.

Case II Suppose f : A — (— 1,1) is continuous. We claim there is a continuous function
g: X — (—1,1) with g|A = f.

Since f: A — (—1,1) C [ — 1, 1], we can apply Case I to find a continuous function

F:X —[-1,1] with F|[A = f. To get g, we merely make a slight modification to
F to get a g that still extends f but where g has all its values in ( — 1, 1).
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Let B={z € X : F(z) = £1}. Aand B are disjoint closed sets in X, so by
Urysohn's Lemma there is a continuous h : X — [ — 1, 1] such that 2| B = 0 and
h|A=1. If welet g(z) = F(x)h(x), theng: X — (—1,1) and g|A = f,
completing the proof of Case II.

Case III (the full theorem) Suppose f : A — R is continuous. We claim there is a
continuous function g : X — R with g|A = f.

Leth:R — (—1,1) be ahomeomorphism. Thenho f: A — (—1,1) and, by Step
I, there is a continuous F' : X — (—1,1)with F|[A = ho f.

h
A =] —.1,1)

Letg=h"1oF: X — R. Then for x € A we have g(z) = h™'(F(x))
=h7H((ho f))(@) = f(x). o

It is easy to see that C*(X) can replace C(X) in the statement of Tietze's Extension Theorem.

Example 5.7 We now know enough about normality to see some of its bad behavior. The Sorgenfrey
line S is normal (Example 4.4) but the Sorgenfrey plane S x S is not normal.

To see this, let D = QQ x Q, a countable dense setin S x S. Every continuous real-valued function
on S x S is completely determined by its values on D. (See Theorem I1.5.12. The theorem is stated
for the case of functions defined on a pseudometric space, but the proof is written in a way that
applies just as well to functions with any space X as domain.) Therefore the mapping

C(S x 8) — C(D) given by f — f|D is one-to-one, so |C(S x S)| < |C(D) < [RP| = M = .

A={(z,y) € S xS :x+y=1}isclosed and discrete in the subspace topology, so every function
defined on A is continuous, that is, R4 = C'(A4) and so |C(A)| = ¢¢ = 2°. If S x S were normal,
then each f € C'(A) could be extended (by Tietze's Theorem) to a continuous function in C'(S x S).
This would mean that |C'(S x S)| > |RA| = ¢¢ = 2° > c. which is false. Therefore normality is not
even finitely productive.
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The comments following the statement of Urysohn's Lemma imply that S x S must contain closed
sets that are not zero sets.
A completely similar argument “counting continuous real-valued functions” shows that the
Moore plane T (Example 111.5.6) is not normal: use that I is separable and the x-axis in T is
an uncountable closed discrete subspace.

Questions about the normality of products are difficult. For example, it was an open question for a
long time whether the product of a normal space X with such a nice, well-behaved space as [0, 1] must
be normal. In the 1950's, Dowker proved that X x [0, 1]is normal iff X is normal and “countably
paracompact.”

However, this result was unsatisfying — because no one knew whether a normal space was
automatically “countably paracompact.” In the 1960's, Mary Ellen Rudin constructed a normal space
X which was not countably paracompact. But this example was still unsatisfying because the
construction assumed the existence of a space called a “Souslin line” — and whether a Souslin line
exists cannot be decided in the ZFC set theory! In other words, the space X she constructed required
adding a new axiom to ZFC.

Things were finally settled in 1971 when Mary Ellen Rudin constructed a “real” example of a normal
space X whose product with [0, 1] is not normal. By “real,” we mean that X was constructed in ZFC,
with no additional set theoretic assumptions. Among other things, this complicated example made use
of the box topology on a product.

Example 5.8 The Sorgenfrey line S is T}, so S is Tg% and therefore the Sorgenfrey plane S' x S is
also T3% . So S x S is an example showing that T} ! does not imply 7.

Extension theorems such as Tietze's are an important topic in mathematics. In general, an “extension
theorem” has the following form:

AC Xand f: A— B, then there is a function g : X — B such that g|A = f.

For example, in algebra one might ask: if A is a subgroup of X and f : A — B is an
isomorphism, can f be extended to a homomorphism g : X — B ?

b
S

i sl
g

B

Ifweleti: A — X be the injection i(a) = a, then the condition “g|A = f” can be rewritten
as goi = f. Inthe language of algebra, we are asking whether there is a suitable function g
which “makes the diagram commute.”
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Specific extension theorems impose conditions on A and X, and usually we want g to share some
property of f such as continuity. Here are some illustrations, without further details.

1) Extension theorems that generalize of Tietze's Theorem: by putting stronger hypotheses
on X, we can relax the hypotheses on B.

Suppose A is closed in X and f : A — B is continuous.

X is normal and B = R (Tietze's Theorem)

It X is normal and B = R"
X is collectionwise normal** and B is a separable Banach space*
X is paracompact** and B is a Banach space*

then f has a continuous extension g : X — B.
The statement that R” can replace R in Tietze's Theorem is easy to prove:

If X is normal and f : A — R" is continuous, write f(z) = (fi(z), fo(x), ..., fu(z))
where each f; : A — R. By Tietze's Theorem, there exists for each i a continuous
extension g; : X — R with g;|A = f;. Iff welet g(z) = (¢1(x), ..., gn(z)), then

g: X — R"and g|A = f. In other words, we separately extend the coordinate
functions in order to extend f. And in this example, n could even be an infinite
cardinal.

* A normed linear space is a vector space V with a norm |v| ( = “absolute value”) that
defines the “length” of each vector. Of course, a norm must satisfy certain axioms — for
example, |vi + vao| < |v1| + |va|. These properties guarantee that a norm can be used to
define a metric: d(vy,v9) = |v1 — va|. A Banach space is a normed linear space which is
complete in this metric d.

For example, R" : the usual norm |(x1, T2, ..., ¥,)| = \/2? + 22 + ... + 22 produces
the usual metric, which is complete. So R" is a separable Banach space.

** Roughly, a “collectionwise normal” space is one in which certain infinite collections of
disjoint closed sets can be enclosed in disjoint open sets. We will not give definitions for
“collectionwise normal” (or the stronger condition, “paracompactness”) here, but is true
that

metric
or = paracompact = collectionwise normal = normal
compact Ty

Therefore, in the theorems cited above, a continuous map f defined on a closed subset of a

metric space (or, compact Ty space) and valued in a Banach space B can be continuously
extended a function g : X — B.
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2) The Hahn-Banach Theorem is another example, taken from functional analysis, of an
extension theorem. A special case states:

Suppose M is a linear subspace of a real normed linear space X and that f : M — R
is linear and satisfies f(x) < ||x|| forall z € M. There there is a linear F' : X — R
such that F'|M = f and F(z) < ||z||forall z € X.

3) Homotopy is usually not discussed in terms of extension theorems, but extensions are really
at the heart of the idea.

Let f,g:[0,1] — X be continuous and suppose that f(0) = ¢g(0) = z, and

f(1) = g¢g(1) = z1. Then f and g are paths in X that start at o and end at ;. Let B
be the boundary of the square [0, 1]> C R? and define F': B — X by

F(x,0) = f(z) Fa,1) = g(x)
F(O,t):l’o F(l,t)zilil

Thus F agrees with f on the bottom edge of B and with g on the top edge. F'is constant
( = xg) on the left edge of B and constant ( = x7)on the right edge of B. We ask whether F’

can be extended to a continuous map defined on the whole square, H : [0,1]> — X.

If such an extension H does exist, then we have

H(.1) = gl %

Hix )= f i)

Hix, 00 = %) w1

For each t € [0, 1], restrict H to the line segment at height ¢ to define f;(z) = H(z,t). Then
foreach ¢t € [0, 1], f; is also a path in X from x(to ;. As ¢ varies from 0 to 1, we can think
of the f;'s as a family of paths in X that continuously deform fy = f into f; = g.

The continuous extension H (if it exists) is called a homotopy between f and g with fixed
endpoints, and we say that the paths f and g are homotopic with fixed endpoints.
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In the space X on the left, below, it seems intuitively clear that f can be continuously
deformed (with endpoints held fixed) into g — in other words, that H exists.

However in the space Y pictured on the right, f and g together form a loop that surrounds a
“hole” in Y, and it seems intuitively clear that the path f cannot be continuously deformed
into the path g inside the space Y — that is, the extension H does not exist.

In some sense, homotopy can be used to detect the presence of certain “holes” in a space, and
is one important part of algebraic topology.

The next theorem shows us where compact Hausdorff spaces stand in the discussion of separation
properties.

Theorem 5.9 A compact T space X is T}.

Proof X is Lindelof, and a regular Lindelof space is normal (Theorem 4.3). Therefore it is sufficient
to show that X is regular. Suppose F' is a closed set in X and x ¢ F. For each y € F' we can pick
disjoint open sets U, and V,, with z € U, and y € V,,. ' is compact so a finite number of the V}'s
cover F —say V,,, V,,,...,V,. Thenz e (U, =U, FCJ',V, =V, and U,V are disjoint
open sets.

Therefore, our results line up as:

compact 75

(*) compact metric = =T, = Tg% =>T5=T, =T =T

metric

In particular, Urysohn's Lemma and Tietze's Extension Theorem hold in metric spaces and in compact
T spaces.
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Notice that
i) the space (0, 1) is 7 but not compact T

ii) the Sorgenfrey line S is T} (see example 5.4) but not metrizable. (If S were metrizable,
then S x S would be metrizable and therefore Ty — which is false : see Example 5.7).

iii) [0, 1]° is compact Ty (assuming, for now, the Tychonoff Product Theorem VI.3.10) but
not metrizable (why?)

iv) (0, 1) is metrizable but not compact.

Combining these observations with earlier examples, we see that none of the implications in
(%) is reversible.

Example 5.10 (See Example 5.7) The Sorgenfrey plane S x S is T} 1,50 S x S can be embedded

in a cube [0, 1]™ and [0, 1]™ is compact T (assuming the Tychonoff Product Theorem). Since S x S
is not normal, we see now that a normal space can have nonnormal subspaces. This example,
admittedly, is not terribly satisfying since we can't visualize how S x S “sits” inside [0,1]™. In
Chapter VIII (Example 8.10), we will look at an example of a 7}, space in which it's easy to “see” why
a certain subspace isn't normal.

6. Some Metrization Results

Now we have enough information to completely characterize separable metric spaces topologically.

Theorem 6.1 (Urysohn's Metrization Theorem) A second countable T3-space is metrizable.
Note: We proved a similar metrization theorem in Corollary 3.18, but there the separation hypothesis
was T31 rather than Tj.

Proof X is second countable so X is Lindelof, and Theorem 4.3 tells us that a Lindelof
T3s-space is T;. Therefore X is T} - So by Corollary 3.18, X is metrizable. e

Because a separable metrizable space is second countable and 73, we have a complete
characterization: X is a separable metrizable spaceiff X is a second countable 73-space. So, with
hindsight, we now see that the hypothesis “Tg%” in Corollary 3.18 was unnecessarily strong. In fact,

we see that T3 and T} 1 are equivalent in a space that is second countable.

Further developments in metrization theory hinged on work of Arthur H. Stone in the late 1940's — in
particular, his result that metric spaces have a property called “paracompactness.” This led quickly to a
complete characterization of metrizable spaces that came roughly a quarter century after Urysohn's
work. We state this characterization here without a proof.
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A family of sets B in (X, 7 ) is called locally finite if each point z € X has a neighborhood N that has
nonempty intersection witth only finitely many sets in B. The family B is called g-locally finite if we
can write B = |, . B, where each subfamily B, is locally finite.

neN
Theorem 6.2 (The Bing-Smirnov-Nagata Metrization Theorem) (X, 7) is metrizable iff X is T}
and has a o-locally finite base B.

Note: If X is second countable, a countable base B = {01,01,...,0,,...} is o-locally
finite — because we can write B = |JB,,, where B,, = {O,}. Therefore this Metrization Theorem

includes Urysohn's Metrization Theorem as a special case.

The Bing-Smirnov-Nagata Theorem has the typical form of most metrization theorems: X is
metrizable iff “X has enough separation” and “X has a nice enough base.”
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Exercises

E15. Let (X, d) be a metric space and S C X. Prove that if each continuous f: S — R extends to a
continuous ¢g: X — R, then S is closed. (The converse, of course, follows from Tietze's Extension
Theorem.)

E16. Urysohn's Lemma says that in a T};-space disjoint closed sets are completely separated. Part a)
shows that this is also true in a Tychonoff space if one of the closed sets is compact.

a) Suppose X is Tychonoff and F', K C X where F' is closed, K is compact. X and
FNK =0. Prove that there is an f € C(X) such that f | K =0and f | F = 1. (This is another
example of the rule of thumb that “compact spaces act like finite spaces.” If necessary, try proving
the result first for a finite set K.)

b) Suppose X is Tychonoff and that p € U, where U is open in X. Prove {p} is a G setin X
iff there exists a continuous function f : X — [0, 1] such that f~(1) = {p}and f|X — U = 0.

E17. Suppose Y is a Hausdorff space. Define x ~ y in Y iff there does not exist a continuous
function f : X — [0, 1] such that f(z) # f(y). Prove or disprove: Y/ ~ is a Tychonoff space.

E18. Prove that a Hausdorff space X is normal iff for each finite open cover Y = {Uj, ..., U, } of X,
there exist continuous functions f;: X — [0,1] (¢ =1,...,n) such that 3" | f;(z)=1 for each x € X
and such that, for each i, f; | X — U; = 0. (Such a set of functions is called a partition of unity
subordinate to the finite cover U.)

Hint ( =) First build a new open coverV = {Vy,...,V,,} that “shrinks” U in the sense that,
Vi C clV; C U; foreachi. To begin the construction, let Fy = X — Ui>1UZ~. Pick an open
Vi sothat Fy C'Vy C clVy C Uy. Then {Vi,Us, ...,U,} still covers X. Continue by
looking at F» = X — (V1 UJ,-,U;) and defining Vs so that {V1, Vs, Us, ..., U, } is still a
cover and Vo C clVy C Uy. Continue in this way to replace the U;'s one by one. Then use
Urysohn's lemma to get functions g; which can then be used to define the f;'s. .

E19. Suppose X is a compact, countable Hausdorff space. Prove that X is completely metrizable.

Hint: 1) For each pair of points x, # x,, in X pick disjoint open sets U, and V,,,
containing these points. Consider the collection of all finite intersections of such sets.

2) Or: Since X is, countable, every singleton {p} is a Gg set. Use regularity to find
a descending sequence of open sets V,, containing p such that (\,,clV, = {p}. Prove that
the V,,'s are a neighborhood base at p.
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E20. A space X is called completely normal if every subspace of X is normal. (For example, every
metric space is completely normal).

a) Prove that X is completely normal if and only if the following condition holds:

whenever A, B C X and (clAN B)U (AnNclB) = { (that is, each of A, B is
disjoint from the closure of the other), then there exist disjoint open sets U and V'
withACUand BCV.

b) Recall that the “scattered line” (Exercise IIIE.10) consist of the set X = R with the
topology 7 = {U UV : U is open in the usual topology on R and V' C P}. Prove that the
scattered line is completely normal and therefore 7}.

E21. A Ti-space X is called perfectly normal if whenever A and B are disjoint nonempty closed sets
in X, there isan f € C'(X) with f~1(0) = Aand f~!(1) = B.

a) Prove that every metric space (X, d) is perfectly normal.

b) Prove that X is perfectly normal iff X is 7); and every closed set in X is a Gs-set.
Note: Example 3.10 shows a Ty. space X that is not perfectly normal.

c) Show that the scattered line (see Exercise E20) is not perfectly normal, even though every
singleton set {p } is a Gs-set.

d) Show that the scattered line is T}.

Hint: Use the fact that R, with the usual topology, is normal. Nothing deeper than Urysohn's
Lemma is required but the problem is a bit tricky.

E22. Prove that a T3 space (X, 7") has a locally finite base B iff 7 is the discrete topology.
(Compare to Theorem 6.2.)
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Chapter VII Review

Explain why each statement is true, or provide a counterexample.

1. Suppose (X, 7) is a topological space and let 7,, be the weak topology on X generated by C'(X).
Then T C 7,,.

2. If X isregular and z € cl{y}, then y € cl {z}.
3. Every separable Tychonoff space can be embedded in [0, 1]*.

4. If f € C(Q), we say g is a square root of f if g € C(Q) and g*> = f. If a function fin C(Q) has
more than one square root, then it has ¢ square roots.

5. In a Tychonoff space, every closed set is an intersection of zero sets.

6. A subspace of a separable space need not be separable, but every subspace of the Sorgenfrey line is
separable.

7. Suppose N has the cofinite topology. If A is closed in N, then every f € C'(A) can be extended to
a function g € C'(N).

8.Forn=1,2,...,let f,, : R — R be given by f,(x) = x + n and let 7 be the weak topology on R
generated by the f,'s. Then the evaluation map e : R — R™ given by e(z)(n) = f,(x) is an
embedding.

9. Let C'be the set of points in the Cantor set with the subspace topology from the Sorgenfrey line .S.
Every continuous function f : C' — R can be extended to a continuous function g : S — R.

10. If (X,d) is a metric space, then X is homeomorphic to a dense subspace of some compact
Hausdorff space.

11. Suppose F' C R%. F'is closed iff F is a zero set.
12. Suppose K is a compact subset of the Hausdorff space X x Y. Let A = mx[K]. Then A is T}.
13. Every space is the continuous image of a metrizable space.

14.Let F = {f € RR : f is not continuous}. The weak topology on R generated by F is the
discrete topology.

55. A compact T5 space is metrizable if and only if it is second countable.

16. Suppose F' and K are disjoint subsets of a Tychonoff space X, where F'is closed and K is
compact. There are disjoint cozero sets U and V with F C U and K C V.

17. Every T} space is homeomorphic to a subspace of some cube [0, 1]™.

18.. Suppose X is a Ty-space with nonempty pairwise disjoint closed subspaces Fi, ..., F},. There is an
fe€C(X)suchthat f|F; =iforalli=1,...,n.
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