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Chapter VII

Separation Properties

1. Introduction

“Separation” refers here to whether objects such as points or disjoint closed sets can be enclosed in

disjoint open sets. In spite of the similarity of terminology, “separation properties” have no direct

connection to the idea of “separated sets” that appeared in Chapter 5 in the context of connected

spaces.

We have already met some simple separation properties of spaces: the and  (Hausdorff)X ß X X! " #

properties.  In this chapter, we look at these and others in more depth.  As hypotheses for “more

separation” are added, spaces generally become nicer and nicer especially when “separation” is�
combined with other properties.  For example, we will see that “enough separation” and “a nice base”

guarantees that a space is metrizable.

“Separation axioms” translates the German term  used in the original literature.Trennungsaxiome

Therefore the standard separation axioms were historically named , , , , and , each oneX X X X X! " # $ %

stronger than its predecessor in the list. Once these had become common terminology, another

separation axiom was discovered to be useful and “interpolated” into the list:   It turns out that theX Þ$ "#

X$ "#  spaces (also called Tychonoff spaces) are an extremely well-behaved class of spaces with some

very nice properties.

2. The Basics

Definition 2.1  A topological space  is called a\

 1)   -space if, whenever , there  exists an open set  with , X B Á C − \ Y B − Y C Â Y! either

   there exists an open set with , or Z C − Z B Â Z

 2)   -space if, whenever , there exists an open set with X B Á C − \ Y B − Y ß C Â Z"

   there exists an open set with and Z B Â Y ß C − Z

 3)   -space (or,  space) if, whenever , there exist  open sets X B Á C − \ Y# Hausdorff disjoint

  and  in  such that  and .Z \ B − Y C − Z

It is immediately clear from the definitions that X Ê X Ê X Þ# " !

Example 2.2

 

 1)  is a -space if and only if:  whenever , then  that is, different points\ X B Á C Á �! B Ca a

in  have different neighborhood systems.\
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 2) If  has the trivial topology and , then  is not a -space.\ l\l � " \ X!

 3) A pseudometric space  is a  space in and only if  is a -space.Ð\ß .Ñ Ð\ß .Ñ Xmetric !

Clearly, a metric space is .  On the other hand, suppose  is  and that X Ð\ß .Ñ X B Á CÞ! !

Then for some     .  Either way, , so  is% %� ! B Â F ÐCÑ C Â F ÐBÑ .ÐBß CÑ   .either or% %

a metric.

 

 4) In any topological space we can define an equivalence relation iff .\ B µ C œa aB C

Let  by Give  the quotient topology.  Then  is continuous, onto,1 À \ Ä \Î µ œ ] 1ÐBÑ œ ÒBÓÞ ] 1
open (not automatic for a quotient map!) and the quotient is a  space:X!

If  is open in , we want to show that  is open in , and because  has theS \ 1ÒSÓ ] ]
quotient topology this is true iff  is open in .  But 1 Ò1ÒSÓÓ \ 1 Ò1ÒSÓÓ�" �"

œ ÖB − \ À 1ÐBÑ − 1ÒSÓ× œ ÖB − \ À C − S 1ÐBÑ œ 1ÐCÑ×for some , 

œ ÖB − \ À B C S× œ S is equivalent to some point  in .

If , then  is not equivalent to , so there is an open set  withÒBÓ Á ÒCÓ − ] B C S © \
(say)  and .  Since  is open,  is open in  and .  Moreover,B − S C Â S 1 1ÒSÓ ] ÒBÓ − 1ÒSÓ
ÒCÓ Â 1ÒSÓ C S � C − SÞ or else  would be  to some point of implying equivalent

] X is called the - . This identification turns any space into a -space byX \! !identification of

identifying points that have identical neighborhoods.  If  is a -space to begin with, then  is one-\ X 1!

to-one and  is a homeomorphism.  Applied to a  space, the -identification accomplishes nothing.1 X X! !

If is a pseudometric space, the -identification is the same as the metric identificationÐ\ß .Ñ X!
discussed in Example VI.5.6 because, in that case,  if and only if a aB Cœ .ÐBß CÑ œ !Þ

 5) For if  is a  space and  is a new topology on , then 3 œ !ß "ß # À Ð\ß Ñ X ª \ Ð\ß Ñg g g g3
w w

is also a  space.X3

Example 2.3

 1) (Exercise) It is easy to check that a space is a  space\ X"

  iff for each , is closedB − \ ÖB×
  iff for each , is open and B − \ ÖB× œ ÖS À S B − S×+

 2) A finite  space is discrete.X"

 3) Sierpinski space  with topology  is  but not :   is\ œ Ö!ß "× œ Ögß Ö"×ß Ö!ß "××Ñ X X Ö"×g ! "

an open set that contains  and not ; but there is no open set containing  and not 1." ! !

 4) , with the right-ray topology, is  but not :  if , then is an open‘ ‘X X B + C − S œ ÐBß∞Ñ! "

set that contains  and not ; but there is no open set that contains  and not .C B B C

 5) With the cofinite topology,  is  but not  because, in an infinite cofinite space, any� X X" #

two nonempty open sets have nonempty intersection.
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These separation properties are very well-behaved with respect to subspaces and products.

Theorem 2.4  For :3 œ !ß "ß #

    a)  A subspace of a -space is a -spaceX X3 3

    b)  If , then  is a  -space iff each  is a -space.\ œ \ Á g \ X \ X#
α α α−E 3 3

Proof   All of the proofs are easy. We consider here only the case , leaving the other cases as an3 œ "
exercise.

a) Suppose , where  is a space.  If  is an open set  containing  but not ,+ Á , − E © \ \ X Y B C"
w in \

then  is an open set  containing  but not .  Similarly we can find an open set  in Y œ Y ∩ E B C Z Ew in E
containing  but not   Therefore is a -space.C BÞ E X"

b) Suppose  is a nonempty -space.  Each  is homeomorphic to a subspace of ,\ œ \ X \ \#
α α α−E "

so, by part a), each  is  Conversely, suppose each  is  and that .  Then  \ X Þ \ X B Á C − \ B Á Cα α α α" "

for some .  Pick an open set  in  containing  but not .  Then  is an open setα Y \ B C Y œ + Y �α α α α α

in containing  but not .  Similarly, we find an open set in  containing  but not .  Therefore\ B C Z \ C B
\ X ñ is a -space.   "

Exercise 2.5  Is a continuous image of a -space necessarily a -space?   How about a quotient?X X3 3

A continuous open image?

We now consider a slightly different kind of separation axiom for a space  formally, the definition\ À
is “just like” the definition of , but with a closed set replacing one of the points.X#

Definition 2.6  A topological space  is called  if whenever  is a closed set and \ J B Â Jßregular

there exist disjoint open sets  and  such that  and .Y Z B − Y J © Z
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There are some easy equivalents of the definition of “regular” that are useful to recognize.

Theorem 2.7  The following are  for any space :equivalent \

     i)  is regular\

     ii) if  is an open set containing , then there exists an open set  such thatS B Y © \
     clB − Y © Y © S

     iii) at each point  there exists a neighborhood base consisting of closedB − \
     neighborhoods.

Proof   i) ii) Suppose  is regular and  is an open set with Letting , we useÊ \ S B − SÞ J œ \ �S
regularity to get disjoint open sets  with  and  as illustrated below:Y ß Z B − Y J © Z

    

Then cl (since cl ).B − Y © Y © S Y © \ � Z

 ii) iii)  If , then int .  By ii), we can find an open set  so thatÊ R − B − S œ R YaB

B − Y © Y © S © RÞ Y B Bcl   Since cl  is a neighborhood of , the closed neighborhoods of  form a

neighborhood base at .B

 iii) i)  Suppose  is closed and .  By ii), there is a  neighborhood  of  suchÊ J B Â J O Bclosed

that .  We can choose int  and  to complete the proof that  isB − O © \ � J Y œ O Z œ \ �O \
regular.   ñ

Example 2.8  Every pseudometric space  is regular.  Suppose and  is closed.  We haveÐ\ß .Ñ + Â J J
a continuous function  for which  and This gives us disjoint0ÐBÑ œ .ÐBß JÑ 0Ð+Ñ œ - � ! 0lJ œ !Þ
open sets with and .  Therefore  is regular.+ − Y œ 0 ÒÐ ß∞ÑÓ J © Z œ 0 ÒÐ �∞ß ÑÓ \�" �"- -

# #

At first glance, one might think that regularity is a stronger condition than .  But this is false:  ifX#
Ð\ß .Ñ \ X is a pseudometric space but not a metric space, then  is regular but .not even !
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To bring things into line, we make the following definition.

Definition   A topological space  is called a -space if  is regular  .\ X \ X$ "and

It is easy to show that  ( ): suppose  is  and .  Then  isX Ê X Ê X Ê X \ X B Á C − \ J œ ÖC×$ # " ! $

closed so, by regularity, there are disjoint open sets ,  with  and .Y Z B − Y C − ÖC× © Z

Caution  Terminology varies from book to book.  For some authors, the definition of “regular”

includes   for them, “regular” means what we have called “ .”  Check the definitions whenX À X" $

reading other books.

Exercise 2.10   Show that a regular  space must be   (X X! $ so it would have been equivalent to use

“ ” instead of “ ” in the definition of “ ”X X X! " $ ).

Example 2.11   .   We will put a new topology on the set . At each point , let aX Ê X \ œ : − \Î# $
#‘

neighborhood base  consist of all sets  of the formU: R

 a finite number of straight lines through   for some R œ F Ð:Ñ � Ð :Ñ ∪ Ö:× � !Þ% %

( ) With theCheck that the conditions in the Neighborhood Base Theorem III.5.2 are satisfied.

resulting topology,  is called the .  Note that  (\ F Ð:Ñ −slotted plane % U: because “ ” is a finite!
number), so each  is among the basic neighborhoods in so the slotted plane topology on F Ð:Ñ �% U ‘:

#

contains the usual Euclidean topology.  It follows that  is .\ X#

The set “the -axis with the origin deleted” is a closed set in  ( ).J œ ÖÐBß !Ñ À B Á !× œ B \ why?

If  is any open set containing the origin , then there is a basic neighborhood  withY Ð!ß !Ñ R
Ð!ß !Ñ − R © YÞ R : œ ÐBß !Ñ − JUsing the in the definition of ,  we can choose a point with%
! + B + Þ : R% Every basic neighborhood set of  must intersect   (why?) and therefore must intersect

Y .  It follows that and  cannot be separated by disjoint open sets, so the slotted plane is notÐ!ß !Ñ J
regular (and therefore not ).X$
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Note:  The usual topology in  his example shows that an “enlargement” of a regular‘# is regular.  T

(or ) topology may not be regular (or ).   Although the enlarged topology has more open sets toX X$ $

work with, there are also more “point/closed set pairs ” that need to be separated.  By contrast,Bß J
it is easy to see that an “enlargement” of a  topology  is still X Ð3 œ !ß "ß #Ñ X Þ3 3

Example 2.12  The Moore plane  (Example III.5.6) is clearly   In fact, at each point, there is a> X Þ#
neighborhood base of closed neighborhoods. The figure illustrates this for a point on the -axis andT B
a point above the -axis.  Therefore  is .U B X> $

Theorem 2.13   a) A subspace of a regular ( space is regular ( ).X Ñ X$ $

     b) Suppose .   is regular ( ) iff each is regular  ( ).\ œ \ Á g \ X \ X#
α α α−E $ $

Proof   a) Let  where  is regular.  Suppose  and that  is a closed set  that doesE © \ \ + − E J in E
not contain .  There exists a closed set   such that Choose disjoint open sets+ J J ∩ E œ JÞw win \
Y Z \ + − Y J © Z Þ Y œ Y ∩ E Z œ Z ∩ E Ew w w w w w w and  in  with  and Then and are open in ,

disjoint, , and .  Therefore  is regular.+ − Y J © Z E

  b) If  is regular, then part a) implies that each  is regular because each\ œ \ Á g \ ß#
α α α−E

\ \ \α α is homeomorphic to a subspace of .   Conversely, suppose each is regular and that

Y œ + Y ß ÞÞÞß Y � B Zα α α" 8 3
is a basic open set containing .  For each , we can pick an open set inα3

\ B − Z © Z © Y Þ B − Z œ + Z ß ÞÞÞß Z � © Zα α α α α α α3 3 3 3 3 " 8
such that cl  Then cl

© + Z ß ÞÞÞß Z � © YÞ \cl cl   ( )  Therefore  is regular.α α" 8
Why is the last inclusion true?

Since the  property is hereditary and productive, a) and b) also hold for -spaces   X X ñ" $

The obvious “next step up” in separation is the following:

Definition 2.14  A topological space  is called  if, whenever  are disjoint closed sets in\ EßFnormal

\ Y Z \ E © Y F © Z Þ \ X \, there exist disjoint open sets ,  in  with  and   is called a -space if  is%

normal and X Þ1
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Example 2.15  a)  Every pseudometric space is normal (so every metric space is .Ð\ß .Ñ X Ñ%

In fact, if  and  are disjoint closed sets, we can define .  Since theE F 0ÐBÑ œ
.ÐBßEÑ

.ÐBßEÑ<.ÐBßFÑ

denominator cannot be ,  is continuous and ,   The open sets ! 0 0 lE œ ! 0lF œ "Þ Y œ ÖB À 0ÐBÑ + ×"#
and  are disjoint that contain  and  respectively.  Therefore  is normal.Z œ ÖB À 0ÐBÑ � × E F \"

#

Note: the argument given is slick and clean.  Can you show  is normal by directly constructingÐ\ß .Ñ
a pair of disjoint open sets that contain  and  ?E F

      b)  Let  have the right ray topology .  is‘ g ‘ ‘ ‘ gœ ÖÐBß∞Ñà B − × ∪ Ögß × Ð ß Ñ
normal because the only possible pair of disjoint closed sets is  and  and we can separate theseg \
using the disjoint open sets  and   Also,  is : for example  is not inY œ g Z œ \Þ Ð ß Ñ "‘ g not regular

the closed set ,  but every open set that contains  also contains .  So J œ Ð �∞ß !Ó J " normal

Ê Ð ß Ñ X X ÞÎ regular not.   But  is not  and therefore  ‘ g " %

   

When we combine “normal ” into , we have a property that fits perfectly into the  separation< X X" %

hierarchy.

Theorem 2.16   X Ê X Ð Ê X Ê X Ê X Ñ% $ # " !

Proof   Suppose  is .  If  is a closed set not containing , then  and  are disjoint closed\ X J B ÖB× J%

sets.  By normality, we can find disjoint open sets separating  and .  It follows that  is regularÖB× J \
and therefore .   X ñ$

.
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Exercises

E1.  is called a  if every subset is either open or closed.  Prove that if a -space \ X \door space #

contains two points that are not isolated, then  is not a door space, and that otherwise  is a door\ \
space.

E2.  A base for the closed sets closed  in a space  is a collection of  of  subsets such that every\ Y
closed set  is an intersection of sets from .  Clearly,  is a base for the closed sets in  iffJ \Y Y
U Yœ ÖS À S œ \ � Jß J − × \ is a base for the open sets in .

       For a polynomial  in  real variables, define the  of  asT 8 Tzero set

    ^ÐTÑ œ ÖÐB ß B ß ÞÞÞß B Ñ − À T ÐB ß B ß ÞÞÞß B Ñ œ !×" # 8 " # 8
8‘

 a) Prove that  a polynomial in  real variables  is the base for the closed sets of aÖ^ÐTÑ À T 8 ×
topology (called the  topology) on Zariski ‘8Þ

 b) Prove that the Zariski topology on is  but not .‘8
" #X X

 c) Prove that the Zariski topology on  is the cofinite topology, but that if , the Zariski‘ 8 � "
topology on is  the cofinite topology‘8 not Þ

Note: The Zariski topology arises in studying algebraic geometry.  After all, the sets are ^ÐTÑ  rather

special geometric objects—those “surfaces” in  which can be described by polynomial equations‘8

TÐB ß B ß ÞÞÞß B Ñ œ !" # 8  .

E3.  A space  is a  space if, whenever , there exist open sets  and such that\ X B Á C − \ Y Z&Î#

B Y Z œ g X Ê Þ− Y C − Z ∩ Ê, . Clearly, T T and cl cl   ( )$ &Î# #

 a)  Prove that a subspace of a  space is a space.X X&Î# &Î#

 b)  Suppose .  Prove that  is  iff each  is  .\ œ \ Á g \ X \ X#
α α&Î# &Î#

 c) Let and Define a topology on  withW œ ÖÐBß CÑ − À C   !× P œ ÖÐBß CÑ − W À C œ !×Þ W‘#

the following neighborhood bases:

   if    : œ ÖF Ð:Ñ ∩ W À � !×− W � P À U %: %

   if :    : − P œ ÖF Ð:Ñ ∩ ÐW � PÑ ∪ Ö:× À � !×U %: %

You may assume that these 's satisfy the axioms for a neighborhood base.U:

Prove that  is  but not .S T T&Î# $
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E4.  Suppose .  Define a topology on  byE © \ \

  g œ ÖS © \ À S ª E× ∪ Ög×

Decide whether or not  is normal.Ð\ß Ñg

E5. A function  is called  if  is continuous, closed, onto, and, for each 0 À \ Ä ] 0 C − ]perfect ß
0 ]�"

$ÐCÑ \ 0 à \ X is compact.  Prove that if  is regular and  is perfect, then is regular and that if  is , 

the  is also ] X Þ$

E6. a)  Suppose  is .  Prove that  is regular iff there is a  of  that is a base\ Ð\ß Ñ \finite partitiong U
for the topology.

b)  Give an example to show that a compact subset  of a regular space  need not be closed.O \
However, show that if  is regular then cl  is compact.\ O

       c)  Suppose  is closed in a -space Prove thatJ X \Þ$

   i) Prove that  is open and J œ ÖS À S J © S×Þ+

   ii) Define  iff  or Prove that the quotient space  is Hausdorff.B µ C B œ C Bß C − JÞ \Î µ

      d) Suppose  is an infinite subset of a -space .  Prove that there exists a sequence of open setsF X \$

Y Y ∩ F Á g Y ∩ Y œ g 8 Á 78 8 8 7 such that each  and that cl cl  whenever .

      e) Suppose each point  in a space  has a neighborhood  such that cl  is regular.  ProveC ] Z Z
that  is regular.]
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3. Completely Regular Spaces and Tychonoff Spaces

The property is well-behaved.  For example, we saw in Theorem 2.13 that the  property isX X$ $

hereditary and productive.  However, the  property is not sufficiently strong to give us really niceX$
theorems.

For example, it's very useful if a space has many (nonconstant) continuous real-valued functions

available to use.  Remember how many times we have used the fact that continuous real-valued

functions  can be defined on a  space using formulas like  or0 Ð\ß .Ñ 0ÐBÑ œ .ÐBß +Ñmetric

0ÐBÑ œ .ÐBß JÑ l\l � " Ð\ß .ÑÞ; when , we get many nonconstant real functions defined on But a

X �$-space can sometimes be very deficient in continuous real-valued functions in 1946, Hewett gave

an example of a infinite -space  on which the  continuous real-valued functions are theX L$ only

constant functions.

In contrast, we will see that the  property is strong enough to guarantee the existence of lots ofX%
continuous real-valued functions and, therefore, to prove some really nice theorems (for example, see

Theorems 5.2 and 5.6 later in this chapter).  The downside is that -spaces turn out also to exhibitX%
some very bad behavior:  the  property is not hereditary (X% explain why a proof analogous to the one

given for Theorem 2.13b) doesn't work) and it is not even finitely productive.  Examples of such bad

behavior are a little hard to find right now, but later they will appear rather naturally.

These observations lead us to look first at a class of spaces with separation somewhere “between X$
and .”  We want a group of spaces that is well-behaved, but also with enough separation to give usX%
some very nice theorems.  We begin with some notation and a lemma.

Recall that    is continuous   the collection of  real-valuedGÐ\Ñ œ Ö0 − À 0 × œ‘\ continuous

        functions on \

   is bounded the collection of G Ð\Ñ œ Ö0 − GÐ\Ñ À 0 × œ‡ continuous bounded

           real-valued functions on \

Lemma 3.1  Suppose .  Define real-valued functions  and  by0 ß 1 − GÐ\Ñ 0 ” 1 0 • 1
   

   ( max0 ” 1ÑÐBÑ œ Ö0ÐBÑß 1ÐBÑ×
   minÐ0 • 1ÑÐBÑ œ Ö0ÐBÑß 1ÐBÑ×

Then  and  are in 0 ” 1 0 • 1 GÐ\ÑÞ

Proof  We want to prove that the max or min of two continuous real-valued functions is continuous.

But this follows immediately from the formulas

   (0 ” 1ÑÐBÑ œ
0ÐBÑ< 1ÐBÑ

# #
l 0ÐBÑ� 1ÐBÑ l<

   Ð0 • 1ÑÐBÑ œ ñ
0ÐBÑ< 1ÐBÑ

# #
l 0ÐBÑ� 1ÐBÑ l�    
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Definition 3.2   A space  is called  if whenever is a closed set and there\ J + Â Jßcompletely regular

exists a function  such that  and 0 − GÐ\Ñ 0Ð+Ñ œ ! 0 lJ œ "Þ

Informally, “completely regular” means that “  and  can be separated by a continuous real-valued+ J
function.”

Note i) The definition requires that , in other words, that  However, these0 lJ œ " J © 0 ÒÖ"×ÓÞ�"

two sets  be equal.might not

 ii) If there is such a function , there is also a continuous such that 0 1 À \ Ä Ò!ß "Ó 1Ð+Ñ œ !
and .  For example, we could use  which, by Lemma 3.1, is continuous.1lJ œ " 1 œ Ð0 ” !Ñ • "

 iii) Suppose  is continuous and , The particular values  in1 À \ Ä Ò!ß "Ó 1Ð+Ñ œ ! 1lJ œ "Þ !ß "
the definition are not important.: they could be any real numbers   < + =Þ ÐIf we choose a

homeomorphism , then it must be true that either ,  or ,9 9 9 9À Ò!ß "Ó Ä Ò<ß =Ó Ð!Ñ œ < Ð"Ñ œ = Ð!Ñ œ =
9 9 9Ð"Ñ œ < � 2 œ ‰ 1 À \ Ä Ò<ß =Ó ß ß 2Ð+Ñ œ <why?.  Then  and depending on how you chose  and

2lJ œ , or vice-versa. )

Putting these observations together, we see Definition 3.2 is equivalent to:

Definition 3.2    w A space  is called  if whenever is a closed set,  and\ J + Â Jßcompletely regular

<ß = < + =ß 0 À \ Ä Ò<ß =Ó are real numbers with then there exists a continuous function  for which

0Ð+Ñ œ < 0 lJ œ =Þ and

In one way, the definition of “completely regular space” is very different the definitions for the other

separation properties: the definition isn't “internal”because an “external” space,  is an integral part of‘
the definition.  While it  possible to contrive a purely internal definition for “completely regular,”is

the definition is complicated and seems completely unnatural:  it simply imposes some very

unintuitive conditions to force the existence of enough functions in .GÐ\Ñ

Example 3.3  Suppose  is a pseudometric space with a closed subset  and ThenÐ\ß .Ñ J + Â JÞ

0ÐBÑ œ 0Ð+Ñ œ " 0 lJ œ ! Ð\ß .Ñ .
.ÐBßJÑ
.Ð+ßJÑ is continuous, and .  So  is completely regular, but if  is not a

metric, then this space is not even .X!

Definition 3.4  A completely regular -space  is called a   (or -space).X \ X" $Tychonoff space "
#

Theorem 3.5   X Ê X Ð Ê X Ê X Ê X Ñ$ $ # " !"
#

 

Proof     Suppose is a closed set in  not containing .  If  is , we can choose withJ \ + \ X 0 − GÐ\Ñ$ "#

0Ð+Ñ œ ! 0 lJ œ "Þ Y œ 0 ÒÐ �∞ß ÑÓ Z œ 0 ÒÐ ß∞ÑÓand Then  and  are disjoint open sets with�" �"" "
# #

+ − Y ß J © Z Þ \ \ X \ X Þ ñ  Therefore  is regular.  Since  is ,  is " $

Hewitt's example of a  space on which every continuous real-valued function is constant is moreX$
than enough to show that a  space may not be  (the example, in 9, isX X$ $ "#

Ann. Math., 47(1946) 503-50

rather complicated ).  For that purpose, it is a little easier but still nontrivial to find a  space . � � X \$

containing two points  such that for all   Then  and  cannot be:ß ; 0 − GÐ\Ñß 0Ð:Ñ œ 0Ð;ÑÞ : Ö;×
separated by a function from  so  is not T   (See D.J. Thomas, GÐ\Ñ \ Þ$ "#

A regular space, not

completely regular, American Mathematical Monthly, 76(1969), 181-182).  The space  can then be\
used to construct an infinite  space  (simpler than Hewitt's example) on which every continuousX L$
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real-valued function is constant (see Gantner, A regular space on which every continuous real-valued

function is constant, American Mathematical Monthly, 78(1971), 52.)  Although we will not present

these constructions here, we will occasionally refer to  in comments later in this section.L

Note: We have  yet shown that   this is true (as the notation suggests), but it is not at allnot X Ê X% $ "#
:

easy to prove: try it!   This result is in Corollary 5.3.

Tychonoff spaces continue the pattern of  good behavior that we saw in preceding separation axioms,

and they will also turn out to be a rich class of spaces to study.

Theorem 3.7   a) A subspace of a completely regular ( space is completely regular ( .X Ñ X Ñ$ $" "
# #

        b) Suppose .   is completely regular ( iff each is\ œ \ Á g \ X Ñ \#
α α α−E $ "#

completely regular ( .X Ñ$ "#

Proof  Suppose , where is completely regular and  is a closed set . Pick a+ Â J © E © \ \ J in E
closed set   such that  and an  such that and .  ThenO O ∩E œ J 0 − GÐ\Ñ 0Ð+Ñ œ ! 0 lO œ "in \
1 œ 0lE − GÐEÑß 1Ð+Ñ œ ! 1lJ œ "Þ E and   Therefore  is completely regular.

 If  is completely regular, then each  is homeomorphic to a subspace ofg Á \ œ \ \#
α α α−E

\ \ \ Jso each  is completely regular.  Conversely, suppose each  is completely regular and that  isα α

a closed set in  not containing .  There is a basic open set  such that\ + Y

  + − Y œ + Y ß ÞÞÞY � © \ � Jα α" 8

For each  we can pick a continuous function  with  and3 œ "ß ÞÞÞß 8 0 À \ Ä Ò!ß "Ó 0 Ð+ Ñ œ !α α α α3 3 3 3

0 Ð\ � Y Ñ œ "Þ 0 À \ Ä Ò!ß "Óα α α3 3 3
| Define  by

  max max0ÐBÑ œ ÖÐ0 ‰ ÑÐBÑ À 3 œ "ß ÞÞÞß 8× œ Ö0 ÐB Ñ À 3 œ "ß ÞÞÞß 8×α α α α3 3 3 3
1

Then  is continuous and max   If , then for some 0 0Ð+Ñ œ Ö0 Ð+ Ñ À 3 œ "ß ÞÞÞß 8× œ !Þ B − J 3ßα α3 3

B Â Y 0 ÐB Ñ œ " 0ÐBÑ œ " 0 lJ œ " \α α α α3 3 3 3
 and , so .  Therefore  and is completely regular.

 .

 Since the  property is both hereditary and productive, the statements in a) and b) also holdX"
for    X Þ ñ$ "#

Corollary 3.8  For any cardinal , the “cube”  and all its subspaces are .7 Ò!ß "Ó X7
$ "#

Since a Tychonoff space  is defined using functions in , we expect that these functions will\ GÐ\Ñ
have a close relationship to the topology on .  We want to explore that connection.\

Definition 3.9  Suppose . Then  is called the0 − GÐ\Ñ ^Ð0Ñ œ 0 ÒÖ!×Ó œ ÖB − \ À 0ÐBÑ œ !×�"

zero set of .  If  for some , we call  a zero set in .  The complement of a zero0 E œ ^Ð0Ñ 0 − GÐ\Ñ E \
set in  is called a  set:  coz\ Ð0Ñ œ \ � ^Ð0Ñ œ ÖB − \ À 0ÐBÑ Á !×Þcozero

A zero set in  is closed because  is continuous.  In addition, , where^Ð0Ñ \ 0 ^Ð0Ñ œ S+
8œ"
∞

8

S œ ÖB − \ À l0ÐBÑl + × S K8 8
"
8 .  Each  is open.  Therefore a zero set is always a closed -set.$

Taking complements shows that coz  is always an open -set in .Ð0Ñ J \5
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For , let  Then .  Therefore and 0 − GÐ\Ñ 1 œ Ð � " ” 0Ñ • " − G Ð\ÑÞ ^Ð0Ñ œ ^Ð1Ñ GÐ\Ñ G Ð\Ñ‡ ‡

produce the same zero sets in  (and therefore also the same cozero sets).\
 

Example 3.10

    1) A closed set  in a pseudometric space  is a zero set: , where J Ð\ß .Ñ J œ ^Ð0Ñ 0ÐBÑ œ .ÐBß JÑÞ

   2) In general, a closed set in  might not be a zero set in fact, a closed set in  might not even be\ � \
a  set.K$

Suppose  is uncountable and .  Define a topology on  by letting  be a\ : − \ \ œ ÖÖB××UB

neighborhood at each point  and letting  and  is countable  beB Á : œ ÖF À : − F \ �F ×U:

the neighborhood base at .  (: Check that the conditions of the Neighborhood Base Theorem

III.5.2 are satisfiedÞ )

All points in are isolated and is clearly   In fact,  is .\ � Ö:× \ X Þ \ X" %

If  and  are disjoint closed sets in , then one of them (say satisfiesE F \ EÑ
E © \ � Ö:× E Y œ E Z œ \ �E ª F, so is clopen.  We then have open sets  and ,

so  is normal.\

We do not know yet that in general, but it's easy to see that this space  is also X Ê X X% $ $" "
# #
 .\

If  is a closed set not containing , then either or .J B J © \ � Ö:× ÖB× © \ � Ö:×
So one of the sets  or  is clopen and he characteristic function of that clopen setJ ÖB×
is continuous and works to show that  is completely regular.\

The set  is closed but  is not a set in , so  in .Ö:× Ö:× K \ Ö:× \$ is not a zero set

 Suppose  where  is open. For each , there is a basic neighborhood : − S S 8 F+
8œ"
∞

8 8 8

 of  such that so is countable.  Therefore: : − F © S ß \ � S © \ �F8 8 8 8 

  is countable.  Since  is uncountable, we conclude\ � S œ Ð\ �S Ñ \+ -
8œ" 8œ"
∞ ∞

8 8

 that Ö:× Á S Þ+
8œ"
∞

8

Even when  is both closed  a  set,   might not be a zero set.  We will see examplesJ K Jand $

later.

For purely technical purposes, it is convenient to notice that zero sets and cozero sets can be described

in a many different forms.  For example, if , then we can see that 0 − GÐ\Ñ each set in the left column

is a zero set by choosing a suitable 1 − GÐ\Ñ À

       where ^ œ ÖB À 0ÐBÑ œ < œ ^Ð1Ñß× 1ÐBÑ œ 0ÐBÑ � < 

  0 ,  where     ^ œ ÖB À 0ÐBÑ   œ ^Ð1Ñ 1ÐBÑ œ 0ÐBÑ � l0ÐBÑl×
  0 ,  where     ^ œ ÖB À 0ÐBÑ Ÿ œ ^Ð1Ñ 1ÐBÑ œ 0ÐBÑ < l0ÐBÑl×
     ,  where  ^ œ ÖB À 0ÐBÑ   œ ^Ð1Ñ 1ÐBÑ œ Ð0ÐBÑ � <Ñ � l0ÐBÑ � <lr×
     ,  where         ^ œ ÖB À 0ÐBÑ Ÿ œ ^Ð1Ñ 1ÐBÑ œ Ð0ÐBÑ � <Ñ < l0ÐBÑ � <lr×
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On the other hand, if , we can write  in any of the forms listed above by choosing an1 − GÐ\Ñ ^Ð1Ñ
appropriate function 0 − GÐ\Ñ À

      where  ^Ð1Ñ œ ÖB À 0ÐBÑ œ < 0ÐBÑ œ 1ÐBÑ < <×
  0   where  ^Ð1Ñ œ ÖB À 0ÐBÑ   0ÐBÑ œ � l1ÐBÑl×
  0  where    ^Ð1Ñ œ ÖB À 0ÐBÑ Ÿ × 0ÐBÑ œ l1ÐBÑl
    where ^Ð1Ñ œ ÖB À 0ÐBÑ   0ÐBÑ œ < � l1ÐBÑlr×
    where ^Ð1Ñ œ ÖB À 0ÐBÑ Ÿ 0ÐBÑ œ < < l1ÐBÑlr×

Taking complements, we get the corresponding results for cozero sets: if 0 − GÐ\Ñ
 i)  the sets , , , { }ÖB À 0ÐBÑ Á <× ÖB À 0ÐBÑ + !× ÖB À 0ÐBÑ � !×ß ÖB À 0ÐBÑ + <× B À 0ÐBÑ � <
     are cozero sets, and

 ii) any given cozero set can be written in any one of these forms.

Using the terminology of cozero sets, we can see a nice comparison/contrast between regularity and

complete regularity.  Suppose , where  is closed in If  is regular, we can find disjointB Â J J \Þ \
open sets  and with  and   But if  is completely regular, we can separate  and Y Z B − Y J © Z Þ \ B J
with “special” open sets  and cozero sets!  Just choose  with  and ,Y Z � 0 − GÐ\Ñ 0ÐBÑ œ ! 0 lJ œ "
then

   and  B − Y œ ÖB À 0ÐBÑ + × J © Z œ ÖB À 0ÐBÑ � ×" "
# #

In fact this observation  completely regular spaces that is, if a regular space fails to becharacterizes �
completely regular, it is because there is a “shortage” of cozero sets because there is a “shortage” of�
functions in  ( .  For the extreme case of a  space  on which theGÐ\Ñ X Lsee Theorem 3.12, below) $

only continuous real valued functions are constant, the  cozero sets are  and !only g L

The next theorem reveals the connections between cozero sets,  and the weak topology on GÐ\Ñ \Þ

Theorem 3.11  For  space ,  and  induce the same weak topology on ,any Ð\ß Ñ GÐ\Ñ G Ð\Ñ \g g‡
A

and a base for is the collection of all cozero sets in .gA \

Proof  A subbase for consists of all sets of the form , where  is open in  and g ‘A
�"0 ÒY Ó Y 0 − GÐ\ÑÞ

Without loss of generality, we can assume the sets are subbasic open sets of the form  andY Ð+ß∞Ñ
Ð �∞ß ,Ñ 0 ÒY Ó ÖB − \ À 0ÐBÑ � +× ÖB − \ À 0ÐBÑ + ,×, so that the sets  have form or .  But these�"

are every subbase cozero sets of , and  cozero set in  has this form.  So the cozero sets are a  for\ \ gA
In fact, the cozero sets are actually a  because coz coz coz : the intersection ofbase Ð0Ñ ∩ Ð1Ñ œ Ð01Ñ
two cozero sets is a cozero set.

The same argument, with  replacing  shows that the cozero sets of  are a base forG Ð\Ñ GÐ\Ñß G Ð\Ñ‡ ‡

the weak topology on generated by  But  and  produce the  cozero sets in\ G Ð\ÑÞ GÐ\Ñ G Ð\Ñ‡ ‡ same

\ \ ñ, and therefore generate the same weak topology on .    gA

Now we can now see the close connection between  and  in completely regular spaces.  For\ GÐ\Ñ
any definition space  the functions in  certainly are continuous with respect to (by  ofÐ\ß Ñ GÐ\Ñg g
GÐ\Ñ ). But is  the  topology making this collection of functions continuous?  In otherg smallest
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words, is the weak topology on  generated by ?   The next theorem says that is true preciselyg \ GÐ\Ñ
when  is completely regular.\

Theorem 3.12  For any space , the following are equivalent:Ð\ß Ñg

 a)   is completely regular\
 b)  The cozero sets of  are a base for the topology on   (equivalently, the zero sets of \ \ \
 are a base for the closed sets—meaning that every closed set is an intersection of zero sets)

 c)   has the weak topology from    (equivalently, from  )\ GÐ\Ñ G Ð\Ñ‡

 d)   (equivalently,  ) separates points from closed sets.GÐ\Ñ G Ð\Ñ‡

Proof The preceding theorem shows that b) and c) are equivalent.

 a) b)  Suppose  where  is open   Let   Then we can choose Ê + − S S Þ J œ \ �SÞ 0 − GÐ\Ñ
with  and .  Then  is a cozero set for which 0Ð+Ñ œ ! 0 lJ œ " Y œ ÖB À 0ÐBÑ + × + − Y © SÞ"

#

Therefore the cozero sets are a base for .\

 b) d)  Suppose  is a closed set not containing .  By b), we can choose  so thatÊ J + 0 − GÐ\Ñ
+ − Ð0Ñ © \ � JÞ 0Ð+Ñ œ < Á ! 0Ð+Ñ Â 0 ÒJ Ó œ Ö!×Þ GÐ\Ñcoz   Then , so cl   Therefore  separates

points and closed sets.

 d) a)  Suppose  is a closed set not containing .  There is some for whichÊ J + 0 − GÐ\Ñ
0Ð+Ñ Â 0 ÒJ ÓÞ 0 Ð+Ñ œ !Þ � !cl   Without loss of generality ( ),  we can assume   Then, for some ,why? %
Ð � ß Ñ ∩ 0 ÒJ Ó œ g B − J l0ÐBÑl   Þ 1 − G Ð\Ñ 1ÐBÑ œ Öl0ÐBÑlß ×Þ% % % %, so that for ,    Define  by min‡

Then  and , so is completely regular.1Ð+Ñ œ ! 1lJ œ \%

 At each step of the proof,  can be replaced by  ( )  GÐ\Ñ G Ð\Ñ ñ‡ check!

The following corollary is curious and the proof is a good test of whether one understands the idea of

“weak topology.”

Corollary 3.13  Suppose is a set and let  be the weak topology on  generated by  family of\ \gY any

functions .  Then  is completely regular ) is Tychonoff is separates points.Y ‘ g g Y© Ð\ß Ñ Þ Ð\ß\
Y Y

Proof Give  the topology the weak topology  generated by .  Now  has a topology, so the\ \g YY

collection  makes sense.  Let  be the weak topology on generated by GÐ\Ñ X \ GÐ\ÑÞA

   The topology   make all the functions in  continuous, so g g gY Ydoes GÐ\Ñ © ÞA

 On the other hand: by definition of , and the larger collection of functions Y g© GÐ\Ñ GÐ\ÑY

generates a (potentially) larger weak topology. Therefore g gY © ÞA
 Therefore  .  By Theorem 3.12,   is completely regular.   g g gY Yœ Ð\ß Ñ ñA
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Example 3.14

 1) If  is nowhere differentiable ,  then the weak topology  on  generatedY ‘ g ‘œ Ö0 − À 0 ×‘
Y

by  is completely regular.Y

 2) If  is an infinite  space on which every continuous real-valued function is constant (L X$ see

the comments at the beginning of this Section 3), then the weak topology generated by  has for aGÐ\Ñ
base the collection of cozero sets { .  So the weak topology generated by  is the trivialgßL× GÐ\Ñ
topology, not the original topology on . \

Theorem 3.12 leads to a lovely characterization of Tychonoff spaces.

Corollary 3.15  Suppose  is a Tychonoff space.  For each , we have\ 0 − G Ð\Ñ‡

ran ]  for some  The evaluation map   isÐ0Ñ © Ò+ ß , œ M + + , − Þ / À \ Ä ÖM À 0 − G Ð\Ñ×0 0 0 0 0 0
‡‘ #

an embedding.

Proof    is , the 's are continuous and the collection of 's  separates points and\ X 0 0 Ð œ G Ð\Ñ Ñ"
‡

closed sets.  By Corollary VI.4.11,   is an embedding.   / ñ

Since each  is homeomorphic to ,   is homeomorphic to whereM Ò!ß "Ó ÖM À 0 − G Ð\Ñ× Ò!ß "Ó ß0 0
‡ 7#

7 œ lG Ð\Ñl‡ .  Therefore any Tychonoff space can be embedded in a “cube.”  On the other hand

(Corollary 3.8)   and all its subspaces are Tychonoff.  So we have:Ò!ß "Ó7

Corollary 3.16  A space  is Tychonoff iff  is homeomorphic to a subspace of a “cube”  for\ \ Ò!ß "Ó7

some cardinal number .7

The exponent  in the corollary may not be the smallest exponent possible. As an 7 œ lG Ð\Ñl* extreme

case, for example, we have , even though we can embed  in The- œ lG Ð Ñl Ò!ß "Ó œ Ò!ß "Ó Þ‡ "‘ ‘
following theorem improves the value for in certain cases (7 and we proved a similar result for metric

spaces : see Example VI.4.5.Ð\ß .Ñ )

Theorem 3.17  Suppose  is Tychonoff with a base  of cardinality .  Then  can be embedded in\ 7 \U

Ò!ß "Ó \ Ò!ß "Ó7 AÐ\Ñ.  In particular,  can be embedded in  .

Proof   Suppose  is finite.  Since  is ,  is a basic open set containing   Only7 \ X ÖB× œ ÖF À F B×Þ" +
finitely many such intersections are possible, so  is finite and therefore discrete.  Hence\

\ © Ò!ß "Ó © Ò!ß "Ó Þ
top top

7

 Suppose  is a base of cardinal  where  is infinite.  Call a pair U U U7 7 ÐY ß Z Ñ − ‚
distinguished if there exists a continuous  with  for all  and0 À \ Ä Ò!ß "Ó 0 ÐBÑ + B − YYßZ YßZ

"
#

0 ÐBÑ œ " B − \ � Z Þ Y © Z ÐY ß Z ÑÞYßZ  for all   Clearly,  for a distinguished pair   For each

distinguished pair,  pick such a function  and let is distinguished .0 œ Ö0 À ÐY ß Z Ñ − ‚ ×YßZ YßZ Y U U
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We note that if , then there must exist  such that  and  is distinguished+ − Z − Y − + − Y ÐY ß Z Ñ ÞU U
To see this, pick an  so that and   Then choose  so that0 À \ Ä Ò!ß "Ó 0Ð+Ñ œ ! 0 l\ � Z œ "Þ Y − U

+ − Y © 0 ÒÒ!ß ÑÓ © Z Þ�" "
#

We claim that  separates points and closed sets:Y

Suppose  is a closed set not containing . Choose a basic set with J + Z − + − Z © \ � JÞU

There is a distinguished pair  with   Then  andÐY ß Z Ñ + − Y © Z © \ � JÞ 0 Ð+Ñ œ < +YßZ
"
#

0 lJ œ " 0 Ð+Ñ Â 0 ÒJ Ó œ Ö"×ÞYßZ YßZ YßZ, so cl

By Corollary VI.4.11,  is an embedding.  Since  is infinite,/ À \ Ä Ò!ß "Ó 7l lY

l l Ÿ l ‚ l œ 7 œ 7 ñY U U # .   

A theorem that states that certain  properties of a space  imply that  is metrizable istopological \ \
called a “metrization theorem.” Typically the hypotheses of a metrization theorem involve that

1)  has “enough separation” and 2)  has a “sufficiently nice base.” The following theorem is a\ \
simple example.

Corollary 3.18 (“Baby Metrization Theorem”)  A second countable Tychonoff space  is\
metrizable.

Proof   By Theorem 3.17,  .  Since  is metrizable, so is .   \ © Ò!ß "Ó Ò!ß "Ó \ ñ
top

i i! !

In Corollary 3.18,  turns out to be metrizable and separable (since  is second countable). On the\ \
other hand  and all its subspaces are separable metrizable spaces.  Thus, the corollary tells usÒ!ß "Ói!

that the separable metrizable spaces (topologically) are precisely the second countable Tychonoff

spaces.
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     Exercises

E7.  Prove that if  is a countable Tychonoff space, then there is a neighborhood base of clopen sets\
at each point.  (Such a space  is sometimes called zero-dimensional.)\

E8. Prove that in any space , a countable union of cozero sets is a cozero set or, equivalently, that\ �
a countable intersection of zero sets is a zero set.

E9. Prove that the following are equivalent in any Tychonoff space :\

   a) every zero set is open

   b) every  set is openK$

   c) for each if  then there is a neighborhood  of 0 − GÐ\Ñ À 0Ð:Ñ œ ! R :
  such that 0 ± R ´ !

E10.  Let  be the identity map and let3 À Ä‘ ‘
  

   for some }.Ð3Ñ œ Ö0 − GÐ Ñ À 0 œ 13 1 − GÐ Ñ‘ ‘

Ð3Ñ GÐ Ñ 3 is called the  in  generated by the element ideal ‘ .

For those who know a bit of algebra: if we definite addition and multiplication of functions pointwise,

then  or, more generally,   is a commutative ring The constant function  is the zeroGÐ Ñ Ð GÐ\Ñ Þ‘ Ñ !
element in the ring; there is also a unit element, namely the constant function “ .”"

 a) Prove that and the derivative exists .Ð3Ñ œ Ö0 − GÐ Ñ À 0Ð!Ñ œ ! 0 Ð!Ñ ×‘ w

 b) Exhibit two functions  in  for which  yet  and . 0 ß 1 GÐ Ñ 01 − Ð3Ñ 0 Â Ð3Ñ 1 Â Ð3Ñ‘

 c) Let  be a Tychonoff space with more than one point. Prove that there are two functions\
0ß 1 − GÐ\Ñ such that  on  yet neither  nor  is identically 0 on .01 œ \ 0 1 \!
           Thus, there are functions  for which although  and   In an0 ß 1 − GÐ\Ñ 01 œ 0 Á 1 Á Þ! ! ! 
algebra course, such elements  and  in the ring  are called “zero divisors.”0 1 GÐ\Ñ

 d) Prove that there are exactly two functions  for which .  ( the 0 − GÐ Ñ 0 œ 0 M8GÐ\Ñß‘ #

notation )0 ÐBÑ 0ÐBÑ † 0ÐBÑ 0Ð0ÐBÑÑ#  means ,  not .

 e) Prove that there are exactly  functions in ( ) for which .c 0 G 0 œ 0� #

An element in that equals its own square is called an .   Part d) shows that  andGÐ\Ñ GÐ Ñidempotent ‘
GÐ Ñ GÐ Ñ� ‘ are not isomorphic rings since they have different numbers of idempotents.  Is either  or

GÐ Ñ GÐ Ñ� � isomorphic to ?

One classic part of general topology is to explore the relationship between the space  and the rings\
GÐ\Ñ G Ð\Ñ \ ] GÐ\Ñ GÐ] Ñ and .  For example, if  is homeomorphic to , then   is isomorphic to .‡

This necessarily implies (why?) that  is isomorphic to . The question “when doesG Ð\Ñ G Ð] Ñ‡ ‡
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isomorphism imply homeomorphism?” is more difficult.  Another important area of study is how the

maximal ideals of the ring  are related to the topology of .  The best introduction to thisGÐ\Ñ \
material is the classic book  (Gillman-Jerison).Rings of Continuous Functions

 f) Let  be the set of differentiable functions .  Are the rings  and HÐ Ñ 0 À Ä GÐ Ñ HÐ Ñ‘ ‘ ‘ ‘ ‘
isomorphic?  Hint: An isomorphism between  and  preserves cube roots.GÐ Ñ HÐ Ñ‘ ‘

E11.  Suppose  is a connected Tychonoff space with more than one point.  Prove .\ l\l   -Þ

E12. Let  be a topological space.  Suppose  and that  is a neighborhood of \ 0ß 1 − GÐ\Ñ ^Ð0Ñ ^Ð1Ñ
(that is, int  )^Ð1Ñ © ^Ð0ÑÞ

    a) Prove that  is a multiple of  in that is, prove there is a function  such0 1 GÐ\Ñß 2 − GÐ\Ñ
that  for all .0ÐBÑ œ 1ÐBÑ2ÐBÑ B − \

 b) Give an example where  but  is not a multiple of  in .^Ð0Ñ ª ^Ð1Ñ 0 1 GÐ\Ñ

E13. Let  be a Tychonoff space with subspaces  and where  is closed and  is countable.\ J Eß J E
Prove that if , then  is disjoint from some zero set that contains .J ∩ E œ g E J

E14. A space  is called pseudocompact if every continuous is bounded, that is, if\ 0 À \ Ä ‘
GÐ\Ñ œ G Ð\Ñ \‡   (s ).   Consider the following condition (*) on a space :ee Definition IV.8.7

     (*)  Whenever ...  is a decreasing sequence of nonempty open sets,Z ª Z ª ª Z ª ÞÞÞ" # 8

  then cl .+
8œ"
∞

8Z Á g

    a) Prove that if  satisfies (*), then  is pseudocompact.\ \

    b) Prove that if  is Tychonoff and pseudocompact, then  satisfies (*).\ \

Note: For Tychonoff spaces, part b) gives an “internal" characterization of pseudocompactness that�
is, a characterization that makes no explicit reference to .‘

.
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4. Normal and -SpacesX%

We now return to a topic in progress: normal spaces and -spaces .   Even though normal spaces areÐ X Ñ%

badly behaved in some ways, there are still some very important (and nontrivial) theorems that we can

prove.  One of these will give “ ” as an immediate corollary.X Ê X% $ "#

To begin, the following technical variation on the definition of normality is very useful.

Lemma 4.1  A space  is normal  iff  whenever  is closed  is open and ,\ E ßS E © S
      there exists an open set U

      with cl E © Y © Y © SÞ

Proof  Suppose  is normal and that is an open set containing the closed set . Then  and\ S E E
F œ \ �S Y Z E © Yare disjoint closed sets.  By normality, there are disjoint open sets  and  with 

and    Then clF © Z Þ E © Y © Y © \ � Z © SÞ

   

   

Conversely, suppose  satisfies the stated condition and that  are disjoint closed sets.\ EßF

   

Then  so there is an open set  with cl   Let cl .E © S œ \ �Fß Y E © Y © Y © \ �FÞ Z œ \ � Y
Y Z E F \ ñ and  are disjoint closed sets containing  and  respectively, so  is normal.   
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Theorem 4.2   a) A  subspace of a normal ( ) space is normal ( ).closed X X% %

  b) A continuous closed image of a normal ( ) space normal ( ).X X% %

Proof    a) Suppose  is a closed subspace of a normal space  and let  and  be disjoint closedJ \ E F
sets in . Then  are also closed in  so we can find disjoint open sets  and  in J EßF \ Y Z \w w

containing  and  respectively.  Then and  are disjoint open sets in  thatE F Y œ Y ∩ J Z œ Z ∩ J Jw w

contain  and , so  is normal.E F J

 b) Suppose  is normal and that is continuous, closed and onto.  If  and are\ 0 À \ Ä ] E F
disjoint closed sets in , then and  are disjoint closed sets in .  Pick  and ] 0 ÒEÓ 0 ÒFÓ \ Y Z�" �" w w

disjoint open sets in  with   and    Then  and\ 0 ÒEÓ © Y 0 ÒFÓ © Z Þ Y œ ] � 0Ò\ � Y Ó�" w �" w w

Z œ ] � 0Ò\ � Z Ó ]w are open sets in .

If , then .  Since  is onto, for some   ThereforeC − Y C Â 0Ò\ � Y Ó 0 C œ 0ÐBÑ B − Y © \ � Z Þw w w

C − 0Ò\ � Z Ó C Â Z Y ∩ Z œ gÞw  so .  Hence 

If , then , so .  Therefore  soC − E 0 ÒÖC×Ó © 0 ÒEÓ © Y 0 ÒÖC×Ó ∩ Ð\ � Y Ñ œ g C Â 0Ò\ � Y Ó�" �" w �" w w

C − ] � 0Ò\ � Y Ó œ Y E © Y F © Z ]w .  Therefore and, similarly, so  is normal.

Since the  property is hereditary and is preserved by closed onto maps, the statements in a) and b)X"
hold for  as well as normality.   X ñ%

The next theorem gives us more examples of normal (and ) spaces.X%

Theorem 4.3  Every regular Lindelöf space  is normal (and therefore every Lindelöf -space\ X$
is ).X%

Proof   Suppose  and are disjoint closed sets in .  For each , use regularity to pick an openE F \ B − E
set  such that cl   Since the Lindelöf property is hereditary on Y B − Y © Y © \ �FÞB B B closed

subsets, a countable number of the 's cover : relabel these as  .  For each , weY E Y ßY ß ÞÞÞß Y ß ÞÞÞ 8B " # 8

have cl   Similarly, choose a sequence of open sets  covering  such thatY ∩ F œ gÞ Z ß Z ß ÞÞÞß Z ß ÞÞÞ F8 " # 8

cl for each .Z ∩ E œ g 88

We have that  and , but these unions may not be disjoint.  So we define- -
8œ" 8œ"
∞ ∞

8 8Y ª E Z ª F

 cl     clY œ Y � Z Z œ Z � Y" "
‡ ‡

" " " "

 cl cl    cl clY œ Y � Ð Z ∪ Z Ñ Z œ Z � Ð Y ∪ Y Ñ# #
‡ ‡

# " # # " #

        ã ã
 cl cl cl   cl cl clY œ Y � Ð Z ∪ Z ∪ ÞÞÞ ∪ Z Ñ Z œ Z � Ð Y ∪ Y ∪ ÞÞÞ ∪ Y Ñ8 8

‡ ‡
8 " # 8 8 " # 8

             ã ã

Let and .Y œ Y Z œ Z- -
8œ" 8œ"
∞ ∞

8 8
‡ ‡

If , then cl  for all .  But  for some , so   Therefore and,B − E B Â Z 8 B − Y 5 B − Y © YÞ E © Y8 5 5
‡

similarly,  F © Z Þ

To complete the proof, we show that . Suppose .Y ∩ Z œ g B − Y
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Then  for some   so  cl cl clB − Y 5ß B Â Z ∪ Z ∪ ÞÞÞ ∪ Z ß5
‡

" # 5

    so  B Â Z ∪ Z ∪ ÞÞÞ ∪ Z" # 5

    so  B Â Z ∪ Z ∪ ÞÞÞ ∪ Z" #
‡ ‡ ‡

5

    so   for any B Â Z 8 Ÿ 5 Þ8
‡

Since , then So, if , then cl cl clB − Y B − Y Þ 8 � 5 B Â Z œ Z � Ð Y ∪ ÞÞÞ ∪ Y ∪ ÞÞÞ ∪ Y Ñ5
‡ ‡

5 8 " 5 88

So for all , so  and therefore    B Â Z 8 B Â Z Y ∩ Z œ gÞ ñ8
‡

Example 4.4  The Sorgenfrey line  is regular because the sets  form a base of closedW Ò+ß ,Ñ
neighborhoods at each point .  We proved in Example VI.3.2 that  is Lindelöf, so  is normal.+ W W
Since  is , we have that  is .W X W X" %

  

5. Urysohn's Lemma and Tietze's Extension Theorem

We now turn our attention to the issue of “ ”.  This is hard to prove because to show that aX Ê X% $ "#

space is , we need to prove that certain continuous functions exist; but the hypothesis “ ” gives\ X X$ %"
#

us  continuous functions to work with. As far as we know at this point, there could even be no X%
spaces on which every continuous real-valued function is constant!  If -spaces are going to have aX%
rich supply of continuous real-valued functions, we will have to show that these functions can be

“built from scratch” in a -space.  This will lead us to two of the most well-known classical theoremsX%
of general topology.

We begin with the following technical lemma.  It gives a way to use a certain collection of open sets

ÖY À < − U× 0 − GÐ\Ñ< to construct a function .  The idea in the proof is quite straightforward, but I

attribute its elegant presentation (and that of Urysohn's Lemma which follows) primarily to Leonard

Gillman and Meyer Jerison.

Lemma 5.1  Suppose  is any topological space and let  be any dense subset of   Suppose open\ U Þ‘
sets  have been defined, one for each ,  in such a way that:Y © \ < − U<

   i)   and  \ œ Y Y œ g- +
<−U <−U< <

   ii) if and , then cl .<ß = − U < + = Y © Y< =

For , define inf .  Then is continuous.B − \ 0ÐBÑ œ Ö< − U À B − Y × 0 À \ Ä< ‘

We will use this Lemma only once, with  So if you like, there is no harm in assuming thatU œ Þ�
U œ � in the proof.

Proof  Suppose By i) we know that  for some , so .  And by ii),B − \Þ B − Y < Ö< − U À B − Y × Á g< <

we know that  for some .  if , then (by ii) , so  is a lower bound forB Â Y = À B − Y = Ÿ < == <For that =
Ö< − U À B − Y × Ö< − U À B − Y × 0< <.  Therefore  has a greatest lower bound, so the definition of 

makes sense:  inf .0ÐBÑ œ Ö< − U À B − Y × −< ‘
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From the definition of , we get that for 0 <ß = − Uß

 a) if cl , then  for all  so B − Y B − Y = � < 0ÐBÑ Ÿ << =

 b) if , then .0ÐBÑ + = B − Y=

We want to prove  is continuous at each point .  Since  is dense in ,0 + − \ U ‘

  and ÖÒ<ß =Ó À <ß = − U < + 0Ð+Ñ + =×

is a neighborhood base at  in .  Therefore it is sufficient to show that whenever ,0Ð+Ñ < + 0Ð+Ñ + =‘
then there is a neighborhood  of  such that Y + 0ÒY Ó © Ò<ß =ÓÞ

Since , we have , and gives us that cl .  Therefore cl  is0Ð+Ñ + = + − Y 0Ð+Ñ � < + Â Y Y œ Y � Y= < = <

an open neighborhood of .   If , then cl  so ;  and  cl , so + D − Y D − Y © Y ß 0ÐDÑ Ÿ = D Â Y D Â Y= = < <

and Therefore 0ÐDÑ   <Þ 0 ÒY Ó © Ò<ß =ÓÞ ñ
 

Our first major theorem about normal spaces is still traditionally referred to as a “lemma” because it

was a lemma in the paper where it originally appeared.  Its author, Paul Urysohn, died at age 26, on the

morning of 17 August 1924, while swimming off the coast of Brittany.

Theorem 5.2 Urysohn's Lemma  Ð Ñ  A space  is normal iff whenever  are disjoint closed sets\ EßF
in , there exists a function  with  and   (\ 0 − GÐ\Ñ 0 lE œ ! 0lF œ "Þ When such an  exists, we say0
that  and  are .E F completely separated )

Note: Notice that if  and  happen to be disjoint , say E F zero sets E œ ^Ð1Ñ F œ ^Ð2Ñ and , then the

 conclusion of the theorem is true : just letin any space, without assuming normality

 Then  is continuous,  and .0ÐBÑ œ 0 0 lE œ ! 0lF œ "
1 ÐBÑ

1 ÐBÑ<2 ÐBÑ

#

# # .  

 The conclusion of Urysohn's Lemma only says that  and : equalityE © 0 Ð!Ñ F © 0 Ð"Ñ�" �"

 might not be true.  In fact,  if  and ,  then  and  were zero sets inE œ 0 Ð!Ñ F œ 0 Ð"Ñ E F�" �"

 the beginning, and the hypothesis of normality would have been unnecessary.

 

This shows again that zero sets are very special closed sets: in  space, disjoint zero sets areany

completely separated.  Put another way: given Urysohn's Lemma, we can conclude that every

nonnormal space must contain a closed set that is not a zero set.

Proof  The proof of Urysohn's Lemma in one direction is almost trivial.  If such a function  exists,0
then  and  are disjoint open sets (in fact, cozero sets)Y œ ÖB À 0ÐBÑ + × Z œ ÖB À 0ÐBÑ � ×" "

# #

containing  and  respectively.  It is the other half of Urysohn's Lemma for which Urysohn deservesE F
credit.

Let  and  be disjoint closed sets in a normal space .  We will define sets open sets  ( inE F \ Y < − Ñ< �
\ Y œ g < + ! Y œ \ < � " in such a way that Lemma 5.1 applies.  To start, let for  and  for .< <
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Enumerate the remaining rationals in  as ,  beginning the list with and� ∩ Ò!ß "Ó < ß < ß ÞÞÞß < ß ÞÞÞ < œ "" # 8 "

< œ !Þ Y œ Y œ \ �FÞ Y Ð œ Y Ñ À# < " < !   We begin by defining  Then use normality to define since
" #

E © Y œ \ �F Y< <" #
, we can pick so that

  cl  E © Y © Y © Y œ \ �F< < <# # "

Then , and we use normality to pick an open set  so that! œ < + < + < œ " Y# $ " <$

  cl clE © Y © Y © Y © Y © Y œ \ �F< < < < <# # $ $ "

We continue by induction.  Suppose  and that we have already defined open sets 8   $ Y ßY ß ÞÞÞß Y< < <" # 8

in such a way that whenever then< + < + < Ð3ß 4ß 5 Ÿ 8Ñß3 4 5

  cl clY © Y © Y © Y Ð‡Ñ< < < <3 4 4 5

We need to define  so that    holds for Y Ð‡Ñ 3ß 4ß 5 Ÿ 8 < "Þ<8<"

Since  and , and it makes sense to define< œ " < œ ! < − Ð!ß "Ñß" # 8<"

  the largest among that is smaller than and< œ < ß < ß ÞÞÞß < < ß5 " # 8 8<"

  the smallest among  that is larger than < œ < ß < ß ÞÞÞß < < Þ6 " # 8 8<"

By the induction hypothesis, we already have cl    Then use normality to pick an open setY © Y Þ< <5 6

Y<8<"  so that

   cl cl .Y © Y © Y © Y< < < <5 8<" 8<" 6

The 's defined in this way satisfy the conditions of Lemma 5.1, so the function  definedY 0 À \ Ä< ‘
by inf is continuous.  If , then  and  if , so0ÐBÑ œ Ö< − À B − Y × B − E B − Y œ Y B Â Y < + !� < < ! <#

0ÐBÑ œ !Þ B − F B Â Y B − Y œ \ < � " 0ÐBÑ œ "Þ ñ   If  then , but  for , so    " <

Once we have the function  we can replace it, if we like, by   so that  and  are0 1 œ Ð! ” 0Ñ • " E F
completely separated by a function   It is also clear that we can modify  further to get an1 − G Ð\ÑÞ 1‡

2 − G Ð\Ñ 2lE œ + 2lF œ , + ,‡  for which  and  where  and  are any two real numbers.

With Urysohn's Lemma, the proof of the following corollary is obvious.

Corollary 5.3   X X% $Ê "
#
.

There is another famous characterization of normal spaces in terms of .  It is a result aboutGÐ\Ñ
“extending” continuous real-valued functions defined on closed subspaces.

We begin with the following two lemmas.  Lemma 5.4, called the “Weierstrass -Test” is a slightQ
generalization of a theorem with the same name in advanced calculus.  It can be useful in “piecing

together” infinitely many real-valued continuous functions to get a new one.  Lemma 5.5 will be used

in the proof of Tietze's Extension Theorem (Theorem 5.6).
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Lemma 5.4 (Weierstrass -Test)Q   Let be a topological space.   Suppose is\ 0 À \ Ä8 ‘

continuous for each  and that  for all .  If , then8 − l0 ÐBÑl Ÿ Q B − \ Q + ∞� 8 8 8
8œ"

∞�

0ÐBÑ œ 0 ÐBÑ B 0 À \ Ä�
8œ"

∞

8  converges (absolutely) for all  and is continuous.‘

Proof   For each ,  , so  converges (absolutely) by the ComparisonB l0 ÐBÑl Ÿ Q + ∞ 0 ÐBÑ� � �
8œ" 8œ" 8œ"

∞ ∞ ∞

8 8 8

Test.

 Suppose  and .  Choose  so that  Each  is continuous, so for+ − \ � ! R Q + 0% �
8œR<"

∞

8 8
%
% .   

8 œ "ß ÞÞÞß R Y + B − Y ß l0 ÐBÑ � 0 Ð+Ñl + we can pick a neighborhood  of  such that for   Then8 8 8 8
%
#R .

Y œ Y + B − Y l0ÐBÑ � 0Ð+Ñl+
8œ"
R

8 is a neighborhood of , and for  we get 

œ l Ð0 ÐBÑ � 0 Ð+ÑÑ < Ð0 ÐBÑ � 0 Ð+ÑÑl Ÿ l0 ÐBÑ � 0 Ð+Ñl < l0 ÐBÑ � 0 Ð+Ñl� � � �
8œ" 8œ"

R ∞ R ∞

8 8 8 8 8 8 8 8
8œR<" 8œR<"

Ÿ l0 ÐBÑ � 0 Ð+Ñl < l0 ÐBÑl < l0 Ð+Ñl + R † < #Q + < œ Þ� � �
8œ"

R ∞ ∞

8 8 8 8 8
8œR<" 8œR<"

% % %
#R # # %

Therefore  is continuous at .    0 + ñ

Lemma 5.5   Let  be a closed set in a normal space  and let  be a positive real number.  SupposeE \ +
2 À E Ä Ò � <ß <Ó À \ Ä � ß Ó is continuous.  Then there exists a continuous [  such that9 < <

$ $

l2ÐBÑ � ÐBÑl Ÿ B − E9 #<
$

 for each .

Proof  Let  and .   is closed, and  and E œ ÖB − E À 2ÐBÑ Ÿ � × F œ ÖB − E À 2ÐBÑ   × E E F" " " "
< <
$ $

are disjoint closed sets in , so and  are closed in .  By Urysohn's Lemma, there exists aE E F \" "

continuous function  such that  and .9 9 9À \ Ä Ò � ß Ó lE œ � lF œ< < < <
$ $ $ $" "

           If , then  and , so B − E � < Ÿ 2ÐBÑ Ÿ � ÐBÑ œ � l2ÐBÑ � ÐBÑl Ÿ l � < � Ð � Ñl"
< < <
$ $ $

9 9

œ à B − F ß l2ÐBÑ � ÐBÑl Ÿ Þ B − E � ÐE ∪ F Ñ 2ÐBÑ ÐBÑ#< #<
$ $" " " and similarly if If , then  and  are9 9

both in  so .   Ò � ß Ó l2ÐBÑ � ÐBÑl Ÿ ñ< < #<
$ $ $9

Theorem 5.6  (Tietze's Extension Theorem)   A space   is normal iff whenever  is a closed set in\ E
\ 0 − GÐEÑ 1 − GÐ\Ñ 1lE œ 0Þ and , then there exists a function such that 

Note:  if  is a closed subset of , then it is quite easy to prove the theorem. In that case,E \ œ ‘
‘�E Mß is open and can be written as a countable union of disjoint open intervals  where

each  or  or  ( ).  For each of these intervals , theM œ Ð+ß ,Ñ Ð �∞ß ,Ñ Ð+ß∞Ñ Msee Theorem II.3.4

endpoints are in , where  is already defined.  If  then extend the definition of E 0 M œ Ð+ß ,Ñ 0
over by using a straight line segment to join and  on the graph of .  IfM Ð+ß 0Ð+ÑÑ Ð,ß 0 Ð,ÑÑ 0
M œ Ð+ß∞ÑÞ 0 M 0Ð+Ñà then extend the graph of  over using a horizontal right ray at height  if

M œ Ð �∞ß ,Ñß 0 M 0Ð,ÑÞthen extend the graph of  over using a horizontal left ray at height 

As with Urysohn's Lemma, half of the proof is easy.  The significant part of theorem is proving the

existence of the extension  when  is normal.1 \
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Proof ( )  Suppose  and  are disjoint closed sets in .   and  are clopen É E F \ E F in the subspace

E ∪F 0 À E ∪ F Ä Ò!ß "Ó 0 lE œ ! 0lF œ " so the function defined by  and  is continuous.  Since

E ∪F \ 1 − GÐ\Ñ 1lÐE ∪ FÑ œ 0Þ is closed in , there is a function such that   Then

Y œ ÖB À 1ÐBÑ + × Z œ ÖB À 1ÐBÑ � ×" "
# #and  are disjoint open sets (cozero sets, in fact) that contain

E F \ and  respectively.  Therefore  is normal.

 ( )  The idea is to find a sequence of  functions such thatÊ 1 − GÐ\Ñ3

l0 ÐBÑ � 1 ÐBÑl Ä ! 8 Ä ∞ Ð 1 ÐBÑ� �
3œ" 3œ"

8 8

3 3as ). The sums arefor each where  is defined B − E 0

defined on   and as  we can think of them as giving better and better  toall of approximations\ 8 Ä ∞

the extension  that we want.  Then we can let   The details follow.1 1ÐBÑ œ 1 ÐBÑ œ 1 ÐBÑÞlim
8Ä∞ 3œ" 3œ"

8 ∞

3 3� �
We proceed in three steps, but the heart of the argument is in Case I.

Case I  Suppose  is continuous and that .  We claim there is a continuous0 0 À E Ä Ò � "ß "Ó
function  with 1 À \ Ä Ò � "ß "Ó 1lE œ 0Þ

Using Lemma 5.5 (with  we get a function  such that2 œ 0ß < œ "Ñ 1 œ À \ Ä Ò � ß Ó"
" "
$ $9

for , .  Therefore B − E l0ÐBÑ � 1 ÐBÑl Ÿ 0 � 1 À E Ä Ò � ß ÓÞ" "
# # #
$ $ $

Using Lemma 5.5 again (with , we get a function  such2 œ 0 � 1 ß < œ Ñ 1 À \ Ä Ò � ß Ó" #
# # #
$ * *

that for .  SoB − Eß l0ÐBÑ � 1 ÐBÑ � 1 ÐBÑl Ÿ œ Ð Ñ 0 � Ð1 < 1 Ñ À E Ä Ò � ß Ó" # " #
% # % %
* $ * *

#

Using Lemma 5.5 again (with , we get a function2 œ 0 � 1 � 1 ß < œ Ñ" #
%
*

1 À \ Ä Ò � ß Ó B − Eß l0ÐBÑ � 1 ÐBÑ � 1 ÐBÑ � 1 ÐBÑl Ÿ œ Ð Ñ$ " # $
% % ) #
#( #( #( $

$ such that for .

So 0 � Ð1 < 1 < 1 Ñ À E Ä Ò � ß ÓÞ" # $
) )
#( #(

We continue, using induction, to find for each  a continuous function3

1 À \ Ä Ò � ß Ó l0 ÐBÑ � 1 ÐBÑl Ÿ Ð#Î$Ñ B − E3 3
# #
$ $

3œ"

8
83�" 3�"

3 3  such that  for .�

Since  the series  converges (absolutely) for every� � �
3œ" 3œ" 3œ"

∞ ∞ ∞

3 3
#
$l1 ÐBÑl Ÿ + ∞ß 1ÐBÑ œ 0 ÐBÑ
3�"

3

B − \ 1 Q l1ÐBÑl œ l 1 ÐBÑl,  and  is continuous by the Weierstrass -Test.  Since �
3œ"

∞

3

Ÿ l1 ÐBÑl Ÿ œ "ß 1 À \ Ä Ò � "ß "ÓÞ� �
3œ" 3œ"

∞ ∞

3
#
$

3�"

3 we have 

Finally, for , so andB − Eß l0ÐBÑ � 1ÐBÑl œ l0ÐBÑ � 1 ÐBÑl Ÿ Ð Ñ œ ! 1lE œ 0lim lim
8Ä∞ 8Ä∞3œ"

8

3
#
$

8�
the proof for Step I is complete.

Case II  Suppose  is continuous.  We claim there is a continuous function0 À E Ä Ð � "ß "Ñ
1 À \ Ä Ð � "ß "Ñ 1lE œ 0Þ with  

Since , we can apply Case I to find a continuous function0 À E Ä Ð � "ß "Ñ © Ò � "ß "Ó
J À \ Ä Ò � "ß "Ó J lE œ 0Þ 1with   To get , we merely make a slight modification to

J 1 0 1 Ð � "ß "ÑÞ to get a  that still extends  but where  has all its values in 
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Let .   and  are disjoint closed sets in , so byF œ ÖB − \ À JÐBÑ œ „ "× E F \
Urysohn's Lemma there is a continuous  such that  and2 À \ Ä Ò � "ß "Ó 2lF œ !
2lE œ "Þ 1ÐBÑ œ JÐBÑ2ÐBÑ 1 À \ Ä Ð � "ß "Ñ 1lE œ 0  If we let , then  and ,

completing the proof of Case II.

Case III  (the full theorem)  Suppose  is continuous.  We claim there is a0 À E Ä ‘
continuous function  with 1 À \ Ä 1lE œ 0Þ‘

Let  be a homeomorphism.  Then  and, by Step2 À Ä Ð � "ß "Ñ 2 ‰ 0 À E Ä Ð � "ß "Ñ‘
II, there is a continuous with J À \ Ä Ð � "ß "Ñ J lE œ 2 ‰ 0 Þ

       

Let .  Then for we have 1 œ 2 ‰ J À \ Ä B − E 1ÐBÑ œ 2 ÐJÐBÑÑ�" �"‘
œ 2 ÐÐ2 ‰ 0ÑÑÐBÑ œ 0ÐBÑÞ ñ�"   

It is easy to see that  can replace  in the statement of Tietze's Extension Theorem.G Ð\Ñ GÐ\Ñ‡

Example 5.7  We now know enough about normality to see some of its bad behavior.  The Sorgenfrey

line  is normal ( ) but the Sorgenfrey plane  is not normal.W W ‚ WExample 4.4

To see this, let  a countable dense set in .  Every continuous real-valued functionH œ ‚ ß W ‚ W� �
on  is completely  by its values on .  (W ‚ W Hdetermined See Theorem II.5.12.  The theorem is stated

for the case of functions defined on a pseudometric space, but the proof is written in a way that

applies just as well to functions with any space  as domain.\ )  Therefore the mapping

GÐW ‚ WÑ Ä GÐHÑ 0 È 0lH lGÐW ‚ WÑl Ÿ lGÐHÑ Ÿ l l œ - œ -Þ given by  is one-to-one, so ‘H i!

E œ ÖÐBß CÑ − W ‚ W À B < C œ "× is closed and discrete in the subspace topology, so every function

defined on  is continuous, that is,  and so   ,E œ GÐEÑ lGÐEÑl œ - œ # Þ W ‚ W‘E - - If were normal

then each  could be extended (by Tietze's Theorem) to a continuous function in .0 − GÐEÑ GÐW ‚ WÑ
This would mean that . which is false.  Therefore lGÐW ‚ WÑl   l l œ - œ # � -‘E - - normality is not

even finitely productive.
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The comments following the statement of Urysohn's Lemma imply that  must contain closedW ‚ W
sets that are not zero sets.

A completely similar argument “counting continuous real-valued functions” shows that the

Moore plane  (Example III.5.6) is not normal:  use that  is separable and the -axis in  is> > >B
an uncountable closed discrete subspace.

Questions about the normality of products are difficult.  For example, it was an open question for a

long time whether the product of a normal space with such a nice, well-behaved space as must\ Ò!ß "Ó
be normal.  In the 1950's, Dowker proved that is normal iff  is normal and “countably\ ‚ Ò!ß "Ó \
paracompact.”

However, this result was unsatisfying because no one knew whether a normal space was�
automatically “countably paracompact.”  In the 1960's, Mary Ellen Rudin constructed a normal space

\which was not countably paracompact.  But this example was still unsatisfying because the

construction assumed the existence of a space called a “Souslin line” and whether a Souslin line�
exists cannot be decided in the ZFC set theory!  In other words, the space she constructed required\
adding a new axiom to ZFC.

Things were finally settled in 1971 when Mary Ellen Rudin constructed a “real” example of a normal

space  whose product with is not normal.  By “real,” we mean that  was constructed in ZFC,\ Ò!ß "Ó \
with no additional set theoretic assumptions. Among other things, this complicated example made use

of the box topology on a product.

Example 5.8   The Sorgenfrey line  is , so  is  and therefore the Sorgenfrey plane  isW X W X W ‚ W% $ "#

also .  So   is an example showing that    .X W ‚ W X X$ $ %" "
# #

does not imply

 

Extension theorems such as Tietze's are an important topic in mathematics.  In general, an “extension

theorem” has the following form:

E © \ 0 À E Ä F 1 À \ Ä F 1lE œ 0 and , then there is a function  such that .

For example, in algebra one might ask: if  is a subgroup of  and  is anE \ 0 À E Ä F
isomorphism, can  be extended to a homomorphism  ?0 1 À \ Ä F

   

If we let  be the injection , then the condition “ ” can be rewritten3 À E Ä \ 3Ð+Ñ œ + 1lE œ 0
as .  In the language of algebra, we are asking whether there is a suitable function 1 ‰ 3 œ 0 1
which “makes the diagram commute.”
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Specific extension theorems impose conditions on  and , and usually we want  to share someE \ 1
property of  such as continuity.  Here are some illustrations, without further details.0

1)   by putting stronger hypothesesExtension theorems that generalize of Tietze's Theorem:

on , we can relax the hypotheses on .\ F

Suppose  is closed in  and  is continuous.E \ 0 À E Ä F

If      

is normal and    (Tietze's Theorem)

 is normal and 

 is collectionwise normal** and is a separable Banach s

ÚÝÝ
ÛÝÝÜ

\ F œ
\ F œ
\ F

‘

‘8

pace*

 is paracompact** and is a Banach space*\ F

then   has a continuous extension 0 1 À \ Ä FÞ

The statement that  can replace  in Tietze's Theorem is easy to prove:‘ ‘8

If  is normal and  is continuous, write \ 0 À E Ä 0ÐBÑ œ Ð0 ÐBÑß 0 ÐBÑß ÞÞÞß 0 ÐBÑÑ‘8
" # 8

where each .  By Tietze's Theorem, there exists for each  a continuous0 À E Ä 33 ‘
extension  with .  If we let , then1 À \ Ä 1 lE œ 0 1ÐBÑ œ Ð1 ÐBÑß ÞÞÞß 1 ÐBÑÑ3 3 3 " 8‘
1 À \ Ä 1lE œ 0‘8 and .  In other words, we separately extend the coordinate

functions in order to extend . And in this example,  could even be an infinite0 8
cardinal.

* A normed linear space is a vector space with a norm  ( “absolute value”) thatZ l@l œ
defines the “length” of each vector.  Of course, a norm must satisfy certain axioms for�
example,  .  These properties guarantee that a norm can be used tol@ < @ l Ÿ l@ l < l@ l" # " #

define a metric:   A  is a normed linear space which is.Ð@ ß @ Ñ œ l@ � @ lÞ" # " # Banach space

complete in this metric ..
For example,  the usual norm  produces‘8

" # 8 " #
# #

8
#À lÐB ß B ß ÞÞÞß B Ñl œ B < B < ÞÞÞ < BÈ

the usual metric, which is complete. So is a separable Banach space.‘8

** Roughly, a “collectionwise normal” space is one in which certain  collections ofinfinite

disjoint closed sets can be enclosed in disjoint open sets.  We will not give definitions for

“collectionwise normal” (or the stronger condition,  “paracompactness”) here, but is true

that

  paracompact collectionwise normal normal

metric

   or

compact 

Ú
Û
Ü

Ê
X

Ê Ê

#

Therefore, in the theorems cited above, a continuous map  defined on a closed subset of a0
metric space (or, compact space) and valued in a Banach space  can be continuouslyX F#

extended a function .1 À \ Ä F



312

2)  The  is another example, taken from functional analysis, of anHahn-Banach Theorem

extension theorem.  A special case states:

 Suppose  is a linear subspace of a real normed linear space  and that Q \ 0 À Q Ä ‘
 is linear and satisfies for all  There there is a linear 0ÐBÑ Ÿ llBll B − QÞ J À \ Ä ‘
 such that  and for all JlQ œ 0 JÐBÑ Ÿ llBll B − \Þ

3)  is usually not discussed in terms of extension theorems, but extensions are reallyHomotopy

at the heart of the idea.

Let ,  be continuous and suppose that  and0 1 À Ò!ß "Ó Ä \ 0Ð!Ñ œ 1Ð!Ñ œ B!
0Ð"Ñ œ 1Ð"Ñ œ B Þ 0 1 \ B B Þ F" ! "  Then  and  are paths in  that start at  and end at   Let 

be the  of the square and define byboundary Ò!ß "Ó © J À F Ä \# #‘

    JÐBß !Ñ œ 0ÐBÑ JÐBß "Ñ œ 1ÐBÑ
    JÐ!ß >Ñ œ B JÐ"ß >Ñ œ B! "

Thus agrees with  on the bottom edge of  and with  on the top edge.   is constantJ 0 F 1 J
Ð œ B Ñ F Ð œ B Ñ F J! " on the left edge of and constant on the right edge of .  We ask whether 

can be extended to a continuous map defined on the whole square,  L À Ò!ß "Ó Ä \Þ#

If such an extension  does exist, then we haveL

  

For each  restrict  to the line segment at height  to define .  Then> − Ò!ß "Óß L > 0 ÐBÑ œ LÐBß >Ñ>

for each ,   is also a path in  from to .  As  varies from  to , we can think> − Ò!ß "Ó 0 \ B B > ! "> ! "

of the 's as a family of paths in  that continuously deform  into 0 \ 0 œ 0 0 œ 1Þ> ! "

The continuous extension (if it exists) is called a       L 0 1homotopy between and with fixed

endpoints homotopic with fixed endpoints, and we say that the paths  and  are .0 1
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In the space  on the left, below, it seems intuitively clear that  can be continuously\ 0
deformed (with endpoints held fixed)  into in other words, that  exists.1 � L

However in the space  pictured on the right,  and  together form a loop that surrounds a] 0 1
“hole” in , and it seems intuitively clear that the path  cannot be continuously deformed] 0
into the path  inside the space that is, the extension  does not exist.1 ] � L

In some sense, homotopy can be used to detect the presence of certain  “holes” in a space, and

is one important part of algebraic topology.

The next theorem shows us where compact Hausdorff spaces stand in the discussion of separation

properties.

Theorem 5.9  A compact  space is .X \ X# %

Proof  \ is Lindelöf, and a regular Lindelöf space is normal (Theorem 4.3).  Therefore it is sufficient

to show that  is regular. Suppose \ J  is a closed set in  and  For each  we can pick\ B Â JÞ C − J
disjoint open sets  and  with  and Y Z B − Y C − ZC C C C .    is compact so a finite number of the 'sJ ZC
cover say J � Z ß Z ß ÞÞÞ ß ZC C C" # 8

Þ B − Y œ Y J © Z œ Z Y ß Z  Then ,  , and  are disjoint+ -
3œ" 3œ"
8 8

C C3 3

open sets.  ñ

Therefore, our results line up as:

 (*) compact metric

compact 

   ____

  metric

Ê Ê X Ê X Ê X Ê X Ê X Ê X
XÚ

Û
Ü

#

% $ $ # " !
"
#

In particular, Urysohn's Lemma and Tietze's Extension Theorem hold in metric spaces and in compact

X# .spaces
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Notice that

 i)    the space  is  but not compact  Ð!ß "Ñ X X% #

 ii)   the Sorgenfrey line is  (see example 5.4) but not metrizable.  W X Ð% If  were metrizable,W
 then be metrizable and therefore which is false  see Example 5.7W ‚ W A9?6. X � À% ).

 iii)  is compact  ( ) butÒ!ß "Ó X-
# assuming, for now, the Tychonoff Product Theorem VI.3.10

 not metrizable ( )why?

 iv)  is metrizable but not compact.Ð!ß "Ñ

Combining these observations with earlier examples, we see that none of the implications in

(*) is reversible.  

Example 5.10   ( )  The Sorgenfrey plane   is , so can be embeddedSee Example 5.7 W ‚ W X W ‚ W$ "#

in a cube  and  is compact  ( ).  Since Ò!ß "Ó Ò!ß "Ó X W ‚ W7 7
# assuming the Tychonoff Product Theorem

is not normal, we see now that a normal space can have nonnormal subspaces.  This example,

admittedly, is not terribly satisfying since we can't visualize how “sits” inside .  InW ‚ W Ò!ß "Ó7

Chapter VIII (Example 8.10), we will look at an example of a  space in which it's easy to “see” whyX%
a certain subspace isn't normal.

6. Some Metrization Results

Now we have enough information to completely characterize separable metric spaces topologically.

Theorem 6.1 (Urysohn's Metrization Theorem)   A second countable -space is metrizable.X$
Note: We proved a similar metrization theorem in Corollary 3.18, but there the separation hypothesis

was  rather than .X X$ $"
#

Proof    is second countable so  is Lindelöf, and Theorem 4.3 tells us that a Lindelöf\ \
X X Þ \ X \ ñ$ % $-space is   Therefore  is .  So by Corollary 3.18,  is metrizable.   "

#

Because a separable metrizable space  second countable and , we have a completeis X$
characterization:  - . So, with\ \is a separable metrizable space iff  is a second countable spaceX$
hindsight, we now see that the hypothesis “ ” in Corollary 3.18 was unnecessarily strong.  In fact,X$ "#
we see that  and  are equivalent in a space that is second countable.X X$ $ "#

Further developments in metrization theory hinged on work of Arthur H. Stone in the late 1940's in�
particular, his result that metric spaces have a property called “paracompactness.” This led quickly to a

complete characterization of metrizable spaces that came roughly a quarter century after Urysohn's

work.   We state this characterization here without a proof.
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A family of sets  in is called   if each point  has a neighborhood  that hasU Ð\ß Ñ B − \ Rg locally finite

nonempty intersection witth only finitely many sets in .  The family  is called -  if weU U 5 locally finite

can write where each subfamily  is locally finite.U U Uœ -
8− 8 8�

Theorem 6.2 (The Bing-Smirnov-Nagata Metrization Theorem)  Ð\ß Ñ \ Xg  is metrizable iff  is $

and has a -locally finite base .5 U

Note: If  is second countable, a countable base   -locally\ œ ÖS ßS ß ÞÞÞß S ß ÞÞÞ ×U 5" # 8 is

finite because we can write where Therefore this Metrization Theorem� œ ß œ ÖS ×ÞU U U- 8 8 8

includes Urysohn's Metrization Theorem as a special case.

The Bing-Smirnov-Nagata Theorem has the typical form of most metrization theorems:  is\
metrizable iff  “ has enough separation” and “  has a nice enough base.”\ \
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Exercises

E15.  Let  be a metric space and .  Prove that if each continuous  extends to aÐ\ß .Ñ W © \ 0À W Ä ‘
continuous , then  is closed.  (1À\ Ä W‘ The converse, of course, follows from Tietze's Extension

Theorem.)

E16.  Urysohn's Lemma says that in a -space disjoint closed sets are completely separated.  Part a)X%
shows that this is also true in a Tychonoff space if one of the closed sets is compact.

  a) Suppose  is Tychonoff and  where  is closed,  is compact.  and\ JßO © \ J O \
J ∩O œ g 0 − GÐ\Ñ 0 ± O œ ! 0 ± J œ ".  Prove that there is an  such that  and .  (This is another

example of the rule of thumb that “compact spaces act like finite spaces.”  If necessary, try proving

the result first for a finite set  OÞ )

           b) Suppose  is Tychonoff and that , where  is open in Prove  is a  set in \ : − Y Y \Þ Ö:× K \$

iff there exists a continuous function  such that and .0 À \ Ä Ò!ß "Ó 0 Ð"Ñ œ Ö:× 0 l\ � Y œ !�"

E17.  Suppose  is a Hausdorff space.  Define  in  iff there does not exist a continuous] B µ C ]
function  such that ) .  Prove or disprove:   is a Tychonoff space.0 À \ Ä Ò!ß "Ó 0ÐB Á 0ÐCÑ ] Î µ

E18. Prove that a Hausdorff space  is normal iff for each finite open cover , ... ,  of ,\ œ ÖY Y × \h " 8

there exist continuous functions   ,  such that = 1 for each 0 À\ Ä Ò!ß "Ó Ð3 œ "ß ÞÞÞ 8Ñ 0 ÐBÑ B − \3 33œ"
8�

and such that, for each , .   (3 0 ± \ � Y ´ !3 3 Such a set of functions is called a partition of unity

subordinate to the finite cover h .)

         Hint First build a new open cover V ,...,V  that “shrinks”  in the sense that,Ð Ê Ñ œ Ö ×i h" 8

 cl  for each .  To begin the construction, let  Pick an openZ © Z © Y 3 J œ \ � Y Þ3 3 3 " 33�"
-

  so that cl Then  still covers   Continue byZ J © Z © Z © Y Þ ÖZ ß Y ß ÞÞÞß Y × \Þ" " " " " " # 8

 looking at  and defining  so that  is still aJ œ \ � ÐZ ∪ Y Ñ Z ÖZ ß Z ß Y ß ÞÞÞß Y ×# " 3 # " # $ 83�#
-

 cover and cl   Continue in this way to replace the U 's one by one.  Then useZ © Z © Y Þ# # # 3

 Urysohn's lemma to get functions which can then be used to define the 's. .1 03 3

E19.  Suppose  is a compact, countable Hausdorff space.   Prove that  is completely metrizable.\ \

Hint:  1)  For each pair of points  in  pick disjoint open sets  and B Á B \ Y Z8 7 7ß8 7ß8

containing these points.  Consider the collection of all finite intersections of such sets.

 2)  Or:  Since  is, countable, every singleton  is a  set.  Use regularity to find\ Ö:× K$

a descending sequence of open sets containing  such that cl   Prove thatZ : Z œ Ö:×Þ8 88œ"
∞+

the 's are a neighborhood base at .Z :8
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E20. A space  is called  if every subspace of  is normal.  (\ \completely normal For example, every

metric space is completely normal).

 a) Prove that  is completely normal if and only if the following condition holds:\
  

  whenever  and (cl cl  (that is, each of  isEßF © \ E ∩FÑ ∪ ÐE ∩ FÑ œ g EßF
  disjoint from the closure of the other), then there exist disjoint open set  and   = Y Z
  with  and E © Y F © Z Þ

 b) Recall that the “scattered line” ( ) consist of the set  with theExercise IIIE.10 \ œ ‘
 topology   is open in the usual topology on  and .   Prove that theg ‘ �œ ÖY ∪ Z À Y Z © ×
 scattered line is completely normal and therefore X Þ%

E21. A -space  is called X \" perfectly normal if whenever  and  are disjoint nonempty closed setsE F
in , there is an  with  and .\ 0 − GÐ\Ñ 0 Ð!Ñ œ E 0 Ð"Ñ œ F�" �"

 a) Prove that every metric space is perfectly normal.Ð\ß .Ñ

 b) Prove that  is perfectly normal iff  is  and every closed set in  is a -set.\ \ X \ K% $

 Note: Example 3.10 shows a . space  that is not perfectly normal.X \%

 c) Show that the scattered line (see )  is not perfectly normal, even though everyExercise E20

 singleton set  is a -set.Ö: × K$

 

 d) Show that the scattered line is X Þ%
 Hint: Use the fact that , with the usual topology, is normal.  Nothing deeper than Urysohn's‘
 Lemma is required but the problem is a bit tricky.

E22.  Prove that a  space  has a locally finite base iff  is the discrete topology.X Ð\ß Ñ$ g U g
( )Compare to Theorem 6.2.
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Chapter VII Review
Explain why each statement is true, or provide a counterexample.

1. Suppose  is a topological space and let  be the weak topology on  generated by Ð\ß Ñ \ GÐ\ÑÞg gA
Then g g© ÞA

2.  If  is regular and cl , then cl .\ B − ÖC× C − ÖB×

3.  Every separable Tychonoff space can be embedded in .Ò!ß "Ói!

4.  If  we say  is a square root of  if and .  If a function  in has0 − GÐ Ñß 1 0 1 − GÐ Ñ 1 œ 0 GÐ Ñ� � �# f

more than one square root, then it has  square roots.-

5.  In a Tychonoff space,  every closed set is an intersection of zero sets.

6. A subspace of a separable space need not be separable, but every subspace of the Sorgenfrey line is

separable.

7.  Suppose  has the cofinite topology.  If  is closed in , then every  can be extended to� �E 0 − GÐEÑ
a function 1 − GÐ ÑÞ�

8. For , let  be given by  and let  be the weak topology on 8 œ "ß #ß ÞÞÞ 0 À Ä 0 ÐBÑ œ B < 88 8‘ ‘ g ‘
generated by the 's.  Then the evaluation map  given by  is an0 / À Ä /ÐBÑÐ8Ñ œ 0 ÐBÑ8 8

i‘ ‘ !

embedding.

9. Let be the  of points in the Cantor set with the subspace topology from the Sorgenfrey line .G Wset

Every continuous function  can be extended to a continuous function 0 À G Ä 1 À W Ä Þ‘ ‘

10. If  is a metric space, then  is homeomorphic to a dense subspace of some compactÐ\ß .Ñ \
Hausdorff space.

11.  Suppose  is closed iff  is a zero set.J © Þ J J‘#

12.  Suppose  is a compact subset of the Hausdorff space .  Let .  Then  is O \ ‚ ] E œ ÒOÓ E X Þ1\ %

13.  Every space is the continuous image of a metrizable space.

14. Let  is not continuous .  The weak topology on  generated by  is theY ‘ ‘ Yœ Ö0 − À 0 ×‘

discrete topology.

55. A compact  space is metrizable if and only if it is second countable.X#

16.  Suppose  and  are disjoint subsets of a Tychonoff space , where is closed and  isJ O \ J O
compact.  There are disjoint  sets  and  with  and cozero Y Z J © Y O © Z Þ

17. Every  space is homeomorphic to a subspace of some cube X Ò!ß "Ó Þ%
7

18.. Suppose  is a -space with nonempty pairwise disjoint closed subspaces .  There is an\ X J ß ÞÞÞß J% " 8

0 − GÐ\Ñ 0 lJ œ 3 3 œ "ß ÞÞÞß 8Þ such that  for all 3


