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Examples

Classical regression models only deal with continuous response
variable. Let Y denote response (dependent) variable and X

denote explanatory (independent) variable (predictor).

Grade point average (GPA). X : entrance test scores; Y :
GPA by the end of freshman year.

X : height; Y : weight.

X : education level; Y : income.

The covariate X is usually continuous in regression and
categorical covariates are commonly investigated in ANOVA
(analysis of variance). But we can also use regression model to
study the relationship between a continuous response and a
categorical covariate by creating some dummy variables. This is
equivalent to ANOVA/ANCOVA/MANOVA to some extend.
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General Model Setup

Simple linear regression for one covariate:

Yi = β0 + β1Xi + ei , i = 1, · · · , n,

where Yi and Xi are the ith observed response and covariate
variables, ei is the random error, β0 and β1 are the unknown
parameters.
Assumptions:

1 E (ei ) = 0 for all i 's.

2 Var(ei ) = σ2. (Homogeneity)

3 ei and ej are independent for any i 6= j . (Independence)

4 ei
iid∼ N(0, σ2). (Normality)
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Goal of Study:

Describe the relationship between explanatory and response
variables.
⇔ Estimate β0, β1, σ

2.

Predict/Forecast the response variable for a new given
predictor value.
⇔ Predict E (Ynew |Xnew ) = β0 + β1Xnew .

Inference: testing whether the relationship is statistically
signi�cant.
⇔ Find CI for β1 to see whether it includes 0.
⇔ Test: H0 : β1 = 0.

Prediction interval of response variable.
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Estimator: a function of data that provides a guess about
the value or parameters of interest.
Example: X̄ can be used to estimate µ.

Criteria: how to choose a �good" estimator?
The smaller the following quantities are, the better the
estimator is:
Bias: E (β̂)− β,
Variance: Var(β̂),
MSE: E{(β̂ − β)2}.
Question: the distribution of β̂ is usually unknown since
the distribution of Y is unknown!
Approximate Bias, Variance and MSE by their sample
version.
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Least Square Estimator

To predict Y well in a simple linear regression, it is natural to
obtain the estimators by minimizing:

Q =
n∑

i=1

[Yi − (β0 + β1Xi )]2,

which is the so called �Least Square Criterion�.
The obtained estimators

β̂0 = Ȳ − β̂1X̄

β̂1 =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2
= ρX ,Y

SY

SX
,

are the so called �Least Square Estimators� (LSE).
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Regression Line

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

−2 −1 0 1

−
2

−
1

0
1

2
3

x

y

Ŷi − Yi

Regression lines:
y = β̂0 + β̂1x .

Fitted values:
Ŷi = β̂0 + β̂1Xi .

Residuals:
êi = Ŷi − Yi .

For LSE, we have
∑n

i=1 êi = 0 and
∑n

i=1 ê
2
i is minimized.
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Sum Squares in ANOVA Table

SSE: sum of square errors
∑n

i=1 ê
2
i .

SSTO:
∑n

i=1(Yi − Ȳ )2.

SSR:
∑n

i=1(Ŷi − Ȳ )2.

DF: the degree of freedom.
DF of the residuals

= the number of observations - the number of parameters
in the model.

MSE: SSE/DF of the error term.
1

n−2

∑n
i=1 ê

2
i = σ̂2 (estimator for σ2).
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Best Linear Unbiased Estimation (BLUE)

Note that

LSE are unbiased estimators.
E (MSE ) = E (σ̂2) = σ2;E (β̂0) = β0;E (β̂1) = β1.

Both β̂0 and β̂1 are linear functions of observations
Y1, · · · ,Yn.

Among all unbiased estimators, LSE has smallest variance.
In another words, it is more precise than any other
unbiased linear predictors.

Remark: BLUE property still hold without the normality
assumption in (4).
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Other Type of Estimators

Least absolute deviation estimator (LAD): a robust
estimator.

Weighted least square estimator (WLSE): an estimator to
adjust for heterogeneity.

Maximum Likelihood Estimator (MLE): MLE is based on
the likelihood function and hence is only valid under the
assumption (4).
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MLE

Recall Likelihood:

L =
n∏

i=1

f (Yi ) =
n∏

i=1

1√
2πσ2

exp{− 1

2σ2
(Yi − β0 − β1Xi )

2}.

The parameters (β0, β1, σ
2) which maximize above likelihood

function, L(β0, β1, σ
2), are de�ned as MLE of (β0, β1, σ

2), and
denoted by (β̂0,ML, β̂1,ML, σ̂

2
ML).
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Properties of MLE

In the simple linear regression with the normality assumption on
errors, LSE for β's are same as MLE for β's. (They are di�erent
for σ2.) So MLE for β's are also BLUE. Usually in most of
models, MLE are

Consistent: β̂ → β in probability or a.s.

Su�cient: f (Y1, · · · ,Yn|θ̂ML) does not depend on θ.

MVUE: minimum variance unbiased estimator.

Asymptotic e�cient: Var(β̂) reach the Cramér-Rao lower
bound. (minimum variance)
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Con�dence Interval

Note: β̂0, β̂1, σ̂
2 are functions of data and so are random

variables. As point estimators, they only provide a guess about
true parameters and will change if the data are changed. We
also want to get a range guess for β̂0, β̂1, σ̂

2, which guarantee
that with certain probability the true parameter will be in the
range. For example, if we repeat the experiments 100 times and
collect 100 set of data, 95 out the 100 guessed range will
contain the true parameters. This range is called con�dence
interval.

CI for β0 : β̂0 ± t1−α/2,n−2se(β̂0);

CI for β1 : β̂1 ± t1−α/2,n−2se(β̂1).

October 10, 2013 15 / 40

Simple
Regression

Model Setup

Estimation

Inference

Prediction

Model
Diagnostic

Multiple
Regression

Model Setup
and
Estimation

Model
Selection

Collinearity
and Ridge
Regression

Standard Errors

Var(β̂0) = Var(Ȳ − β̂1X̄ )

=

= σ2(
1

n
+

X̄∑n
i=1(Xi − X̄ )2

)

Var(β̂1) = Var(

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2
)

=

= σ2(
1∑n

i=1(Xi − X̄ )2
)

But σ2 is still unknown, so we use the estimator σ̂2 = MSE to
replace σ2 in estimating standard errors.
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Standard Errors

Hence

se(β̂0) =

√
MSE (

1

n
+

X̄ 2∑n
i=1(Xi − X̄ )2

),

se(β̂1) =

√
MSE (

1∑n
i=1(Xi − X̄ )2

).
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Distribution of Estimators

Under the normality assumption,

β̂p − βp
se(β̂p)

∼ tn−2,

and without the normality assumption,

β̂p − βp
se(β̂p)

∼ tn−2 approximately,

for p = 1, 2.
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Hypothesis Test

H0 : β1 = 0 v.s. β1 6= 0.
(Whether Yi depends on Xi or not.)

Test statistic: t = β̂1−0

se(β̂1)
∼ tn−2.

p-value=P(Tn−2 > |t|). (two sided)
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Two−sided p−value
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Con�dence Interval for the Mean of an Observation

Let Ŷnew = β̂0 + β̂1Xnew .

Var(Ŷnew ) = Var(β̂0 + β̂1Xnew )

=

= σ2(
1

n
+

(X̄ − Xnew )2∑n
i=1(Xi − X̄ )2

).

Hence a (1−α)% CI for the mean value of the observation
E (Ynew ) = β0 + β1Xnew is

Ŷnew ± t1−α/2,n−2

√
MSE (

1

n
+

(X̄ − Xnew )2∑n
i=1(Xi − X̄ )2

),

which is denoted as CLM in SAS output.
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Prediction Interval (PI)

A (1− α)% prediction interval is an interval I such that
P(Ynew ∈ I ) = 1− α. Note that Ynew = β0 + β1Xnew + enew is
random in the sense that Var(Ynew ) = σ2 6= 0. We can derive

Ynew − Ŷnew ∼ N(0, σ2(1 +
1

n
+

(X̄ − Xnew )2∑n
i=1(Xi − X̄ )2

)),

1− α = P(| Ynew − Ŷnew√
MSE (1 + 1

n
+ (X̄−Xnew )2∑n

i=1(Xi−X̄ )2
))

| ≤ t1−α/2,n−2).

Hence (1− α)% PI for Ynew , denoted as RLCLI in SAS, is:

Ŷnew ± t1−α/2,n−2

√
MSE (1 +

1

n
+

(X̄ − Xnew )2∑n
i=1(Xi − X̄ )2

).
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Simultaneous Con�dence/Prediction Bands

Con�dence band for E (Y ): Di�erent from prediction
interval and con�dence interval for the mean, it is a
simultaneous band for the entire regression line.

Ŷi ±W

√
MSE (

1

n
+

(X̄ − Xi )2∑n
i=1(Xi − X̄ )2

)),

where W 2 = 2F (1− α; 2, n − 2) and i = 1, · · · , n.
Prediction band for the Yi 's in the entire region:

Ŷi ± S(or B)

√
MSE (

1

n
+

(X̄ − Xi )2∑n
i=1(Xi − X̄ )2

)),

where S2 = gF (1− α; g , n − 2) (Sche�é type) and
B = t(1− α/2g , n − 2) (Bonferroni type).
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Coe�cient of Determination

Coe�cient of Determination is de�ned as
R2 = SSR

SSTO
= 1− SSE

SSTO
∈ [0, 1].

Interpretation: the proportion reduction of total variation
associated with the use of the predictor variable X . The
larger R2 is, the more the total variation of Y is explained
by X .

In simple linear regression, R2 is same as ρ̂2.

The R close to 0 does not imply that X and Y are not
related, but simply means that the linear correlation
between X and Y is small.
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F-test for Goodness of Fit

H0 : Reduced modelYi = β0 + ei , v.s.
H1 : Full modelYi = β0 + β1Xi + ei .
This is equivalent to test H0 : β1 = 0.

Test statistic: F = MSR
MSE

∼ F (1− α; 1, n − 2),
where MSR = SSR/the number of model parameters− 1.
(Note that F1,df = t2df )

P-value:
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General F-test

If model 1 (reduced model) is nested (submodel) within model
2 (full model), the comparison between two models can be done
by F-test.

F ∗ =
SSE (R)− SSE (F )

df (R)− df (F )
÷ SSE (F )

df (F )

General F-test is commonly used in model selection.
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Residual Plots

Residuals against the index of observations:

1 symmetric around 0;
2 constant variability;
3 no serial correction.

Residuals against the predicted values. (add a link to
possible problematic residual plots.)

QQ plot/normality plot: check the normality assumption.
Under the normality assumption, the residuals should be
close to the reference line or look linear.
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Prototype Residual Plots
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Outliers and In�uential Observations

Cook's distance is de�ned as

Di =

∑n
j=1 Ŷj − Ŷj(i)

p ·MSE
=

n∑
i=1

ê2i
p ·MSE

[
hii

(1− hii )2
].

The value of Cook's distance for each observation represents a
measure of the degree to which the predicted values change if
the observation is left out of the regression.

If an observation has an unusually large value for the Cook's
distance, it might be worth to further investigations. (small
in�uence: D < 0.1; huge in�uence: D > 0.5)

Although above de�nition requires to �t regression n times, it
can be simpli�ed and only need to �t model once. Here hii is
the i-th diagonal element of the hat matrix
H = X (XTX )−1XT .
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Model Setup

Two predictors: Yi = β0 + β1Xi1 + β2Xi2 + ei .

More general:
Consider p − 1 predictors Xi1, · · · ,Xi(p−1),

Yi = β0 + β1Xi1 + β2Xi2 + βp−1Xi(p−1) + ei ,

for i = 1, · · · , n. We may write it in the following matrix
form

Y = Xβ + e,

where Y = (Y1, · · · ,Yn)T , β = (β0, · · · , βp−1)T ,
e = (e1, · · · , en)T ∼ N(0, σ2I ) and X is the n × p design
matrix.
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Estimation

The LSE for β̂LS = (XTX )−1XTY

Cov(β̂LS) = σ2(XTX )−1.

se(β̂LS) = [MSE (XTX )−1]1/2.

Under normality assumption, β̂ML = β̂LS .

The �tted values: Ŷ = X β̂ = X (XTX )−1XT
Y .

Hat matrix H = X (XTX )−1XT .

The residuals: ê = Y − Ŷ = (I − H)Y , and
Cov(e) = σ2(I − H).
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ANOVA Table

SSE: êT ê = Y
T (I − H)Y .

SSTO:
∑n

i=1(Yi − Ȳ )2 = Y
T
Y − 1

n
Y

T JY , where J is
the n × n matrix with all components equal to 1.

SSR=SSTO-SSE.

MSE=SSE/(n-p).

MSTO=SSTO/(n-1).

MSR=SSR(p-1).

Overall F-test:
H0 : β = 0 (β1 = β2 = · · · = βp−1 = 0)
Ha : not all β's are zeros.
F = MSR

MSE
∼ F1−α;p−1,n−p.

R2 = SSR
SSTO

= 1− SSE
SSTO

.

Adjusted R2: adjust for the number of predictors
1

n−1(1− R2
A) = 1

n−p (1− R2).
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Model Selection: Covariates

Forward selection: from no covariates

Backward selection: from all covariates

Stepwise selection: Backward+forward
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When Collinearity Happens

Adding or deleting a predictor changes R2 substantially.

Type III SSR heavily depends on other variables in the
model.

se(β̂k) is large.

Predictors are not signi�cant individually, but simple
regression on each covariate is signi�cant.
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Remedy for Collinearity

Centering and standardize the predictors, which might be
helpful in polynomial regression when some of the
predictors are badly scaled.

Drop the correlated variables by model selection.
1 The predictor is not signi�cant.
2 The reduced model after dropping the predictor �ts data

nearly as well as the full model.

Add new observations. (Economy, Business)

Use the index of several variables (PCA)

Ridge Regression
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Variance In�ation Factor (VIF)

Let R2
j is the coe�cient of determination of Xj on all other

predictors. (R2
j is the R2 of regression model

Xij = β0+β1Xi1+· · ·+βj−1Xi(j−1)+βj+1Xi(j+1)+· · ·+eij .)

De�ne VIFj = 1
1−R2

j

.

VIFj ≥ 1 since R2
j ≤ 1 for all j .

If VIF > 10, we usually believe the variable has in�uential
variation to cause collinearity problem.

In standardized regression Var β̂j = σVIFj .

In SAS, VIF table is reported in PROC REG by adding VIF
option in MODEL statement.
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Ridge Regression

Recall that β̂LS = (XTX )−1XTY , E (β̂LS) = β and
Var(β̂) = (XTX )−1. When (XTX ) is nearly singular (the
determinate is close to 0), LSE is unbiased but has large
variance, which leads to large mean square error of the
estimator.

−4 −2 0 2 4 6
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5

beta

The idea of the ridge regression
is:
reduce variance at the cost of
increasing bias.
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Ridge Regression

The ridge regression estimator is:

β̂r (b) = (XTX + bI )−1XTY ,

where b is a constant chosen by users and referred as tuning
parameter.
As b increases, the bias increases but the variance decreases,
β̂r (b)→ 0 (componentwise).
One may choose the tuning parameter b, such that

ridge trace (β̂r (b) against b) gets �at,

VIFj (against b) drop around 1.
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SAS Program

PROC GLM;

PROC REG;

PROC CATMOD;

PROC GENMOD;

PROC LOGISTIC;

PROC NLINL;

PROC PLS;

PROC MIXED;
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Reading Assignment

Textbook: Chapter 5 and Chapter 9.
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