# Math 233 FALL 2016

## 1. Section Information

 Section Time Location Instructor Email Office Hours 01 MWF  9 - 10  AM Brown 100 Jack Shapiro M, W : 2:30 - 3:30 pm T, Th : 9:30 - 10:30 am Cupples I ,  107B 02 MWF  11 AM - 12  PM Hillman 70 Jack Shapiro M, W : 2:30 - 3:30 pm T, Th : 9:30 - 10:30 am Cupples I, 107B 03 MWF  12 - 1 PM Hillman 70 Jack Shapiro jshapiro@math.wustl.edu M, W : 2:30 - 3:30 pm T, Th : 9:30 - 10:30 am Cupples I, 107B

## 2. Grading Information

There will be three evening exams during the semester, E1, E2, E3.

There will also be a final, E4.

 Exam Date Location Time Solutions E1 September  21 6:30-8:30PM E2 October 26 6:30-8:30PM E3 November 16 6:30-8:30PM E4 December 15 3:30 – 5:30 PM

GRADES  :   Each of the Exams  1-3  will count  19%  toward the final course grade while the Final Exam will count  28% .  The remaining  15%  will reflect webwork grades .  If  E1 , E2 , E3 , and F  are your four exam scores and  WW  is your webwork average , each scaled to  100,   then your  total   T  is given by  :

T = .19(E1 + E2 + E3 ) +  .28 F  +  .15 WW

In cases where the lowest of the E1-E3  is  less  than the grade on the final, this lowest value will be replaced in the formula  for  T   by   F .  Thus, the lowest in-semester exam will be dropped out in computing averages provided this lowest score isn’t the final.

Then your   letter grade     for the course will be based on the scale appearing in the following table.

 Numerical Range Letter Grade 98 - 100 ;   94 – 97.99 ;    90 -93.99 A+  ;   A ;   A- 85 – 89.99 ;   80 – 84.99 ;  75 – 79.99 B+  ;   B ;    B- 70 -  74.99 ;   65 – 69.99 ;  60 – 64.99 C+  ;     C ;    C- 50 – 59.99 D 0 -  49.99 F   or  NC

Missed Exams  :   If you are  unable to take one of   Exams  E1-E3 for legitimate reasons ( such as verified illness or serious family emergency )  you  will not be given   a  make-up   exam .  You first need to explain to me why you missed the exam and if everything is in order you will get an   excused absence.  Your grade for the missed exam will be calculated by a statistical procedure which uses your scores on the other taken exams, including the Final.  If the only exam you miss is the Final Exam, and for that receive an excused absence, then you must take a make-up Final exam at the beginning of the Spring semester. Until then your grade will be listed as F/NCR.

 Rules for Exams : You should always bring your Washington University Photo  ID  to exams ; proctors will check student ID's . Graphing calculators and programmable calculators are not permitted for this course. Calculators which do not compute integrals and are not programmed for graphing are acceptable. Here are some examples of such calculators: Casio FX-250, Casio FX-260, FX-270, Casio FX-300 Sharp EL-501, Sharp EL-506, Sharp EL-520, Sharp EL-531, Sharp EL-546 TI-30, TI-34, TI-36 Note: Use of a prohibited calculator at an exam is an academic integrity violation. Any detected violation of academic integrity will be referred to the disciplinary committee of the College of Arts and Sciences. Just before each exam you can look up your exam room assignment on the web  (see above, "check here on exam day" ) . The room will probably not be your regular classroom, and it may change for each exam. You will be allowed to enter the exam room a few minutes before the starting time to locate your seat and personalized exam booklet which will have your name printed on it in large letters.

EXAM   RETURNS   :    There will be a short time after each exam is graded when you can look at your graded exam to see if you feel there might have been some error in the grading.

Resources  for  Help with  Math 233   :  Old Exams  and solutions are posted on the web as a study guide ( see above , "solutions" ) .  This comes from the Math Department page and it includes exams from the past semesters.

Calculus Study Group   :   Study groups are organized as needed  by   The Center for Advanced Learning    located  in   Conerstone  ( in Gregg Hall on the south 40 ) .  They are conducted by graduate and undergraduate math students . If you want to belong to such a study group you must make a commitment to attend the group regularly   ( not just  " come when you feel like it"  ) .  For more information you can look on the website   cornerstone.wustl.edu      or   call them  at    935-5970  .

## 3. Text

Multivariable Calculus, Eighth Edition, James Stewart.   No other book is required.

Access to eBook through WebAssign

1) www.webassign.net

2) Upper right hand corner of the screen “Click Enter Class Key”

3) wustl 7169 8901 (please use lower case letters)

4) Verify your class information “Click , Yes, This is my Class”

5) Create a WebAssign account – “Click, Continue”

6) Complete the next steps and fill out only the blanks that have an *. “Click Create my Account”

7) Prompted for your code that you purchased at the bookstore – Enter the code exactly as it appears on the card.

8) Finish the steps to complete your set up.

This is a one-time set up. Next time you enter WebAssign to access the eBook, you will enter your username, institution code (wustl) and then your password.

## 4. Syllabus

 Week Sections Suggested Problems #1   M  8/29          W  8/31         F   9/2 12.1 – 12.2   Three Dimension, Vectors 12.3  Dot product   12.4  Cross Product 12.2: 9-29 odd 12.3: 3-9 odd, 15-19 odd, 23, 39-43 odd, 49, 51   12.4: 1-7 odd, 21 – 35 odd, 43 #2   M  9/5                     W   9/7         F   9/9 No Class – Labor Day   12.5:  Lines and Planes   12.5:  Lines and Planes     WW #1  Due 12.5:  19-27 odd     12.5:  45, 47, 51 – 59 odd, 71, 73 #3   M   9/12               W  9/14                  F  9/16 13.1:  Vector Functions & Space Curves 13.2:  Derivatives & Integrals of Vector Functions   13.4: Velocity & Acceleration 13.1:  1, 3, 17, 19, 43, 45 13.2: 3-7 odd, 9, 11,17 - 31, 35, 37 13.4:  9-23 odd, 37 – 41 odd #4   M   9/19          W   9/21                 F    9/23 13.3: Arc Length and curvature           WW #2 Due 14.1: Functions of Several Variables       EXAM I  ( 7-9 pm)  sections: 12.1-13.2, 13.4 14.2: Limits & Continuity 13.3:  1 – 9 odd,  21 – 29 odd   14.1: 9, 11, 15, 19, 45, 49   14.2:  5 – 15 odd, 25, 29, 31 #5   M  9/26                W  9/28               F   9/30 14.3: Partial Derivatives       14.4: Tangent Planes   16.6: Parametric Surfaces 14.3:  15-39 odd, 47-55 odd, 63, 65     14.4:  1 – 5 odd, 11 – 15 odd, 19, 21, 25 – 33 odd 16.6: 3, 5, 19, 33, 35 #6   S   10/2                M  10/3               W  10/5         F  10/7 WW # 3 Due   15.7,8: Cylindrical and Spherical surfaces   14.5: Chain Rule   14.6: Directional Derivatives 15.7: 1 – 11.      15.8: 1 - 13 14.5:  1 – 11 odd, 21 – 33 odd      14.6:  5, 11-17 odd, 21-25 odd #7   M  10/10                W 10/12        F  10/14 14.6: Gradient Vector      WW # 4 Due   No Class   14.7:  Max  &  Min 14.6: 7, 9,  33, 41 - 45 odd     14.7: 5 - 13 odd, 31 – 37 odd #8  M  10/17          W  10/19          F   10/21 ` ``Fall Break`` ``14.7: Max & Min  WW # 5 Due   `` ``14.8: Lagrange Multiplier `` `` ` ` ``14.7:  41 – 49 odd ``14.8: 3 – 11 odd, 31, 33 ` #9     M  10/24                    W  10/26          F    10/28 Exam Review                  15.1: Double Integrals     EXAM II  (7-9 pm)  WW # 6  Due   15.1: Iterated Integrals` 15.1:  1, 3, 11 – 21 odd   15.1:  27 – 31 odd, 37, 39 #10  M   10/31                  W   11/2          F     11/4 15.2: Over General Regions   15.2: Over General Regions   15.3: Polar Coordinates 15.2:  1-9 odd, 23, 25   15.2:  27, 51 - 55 odd   15.3:  7 -13 odd #11   M   11/7                  W   11/9             F     11/11 15.3:  Polar Coordinates    WW # 7 Due   15.5: Surface Area   15.6: Triple Integrals 15.3:  19 - 27 odd   15.5:  1 – 11 odd      16.6: 49       15.6:  1 – 13 odd, 19, 21 #12   M   11/14                    W   11/16          F      11/18 15.9: Change of Variables      WW # 8 Due   16.2:  Line Integrals       EXAM III  (7-9 pm)   16.1: Vector Fields 15.9: 1 – 9 odd, 15 – 19 odd                                   16.2:  1 – 15 odd    16.1: 11, 13, 21, 23 #13   M   11/21                  W - F   11/23- 11/25 16.2: Line Integrals                         THANGSGIVING BREAK 16.2:  19, 21, 39, 41 #14   M   11/28           W   11/30             F     12/2 16.3: Fundamental Theorem          16.3: Fundamental Theorem        16.4: Green’s Theorem 16.3:  3 – 9 odd   16.3:  13 – 17 odd, 33, 35     16.4:  1 – 9 odd #15   M  12/5                     W    12/7           F    12/9 16.4: Green’s Theorem      WW # 9  Due       16.5: Curl & Divergence 16.4:  11, 13, 17, 19, 21               16.5:  1 – 7 odd, 13 – 17 odd M   12/12 FINAL EXAMINATION WW # 10 Due              Th  December 15        3:30 – 5:30 pm Please verify in Course Listings