# Math 233 SPRING 2018

## 1. Section Information

 Section Time Location Instructor Email Office Hours 01 MWF  11 AM - 12  PM Rebstock 215 Jack Shapiro M, W : 2:30 - 3:30 pm T, Th : 9:30 - 10:30 am Cupples I, 107B 02 MWF  12 - 1 PM Rebstock 215 Jack Shapiro jshapiro@math.wustl.edu M, W : 2:30 - 3:30 pm T, Th : 9:30 - 10:30 am Cupples I, 107B

## Welcome to the page for Math 233! This course is about differential and integral calculus of functions of two and three variables. We will cover vectors, curves and surfaces in space, partial derivatives, multiple integrals, line integrals, and vector calculus through Green’s Theorem. The prerequisite is Math 132, or a score of 4 or 5 on the Advanced Placement Calculus Examination (BC version).       ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- WEBWORK: There will be 10 Webwork assignments during the semester and the dates that each are due are listed below on the syllabus, and each must be completed by 11:59pm on that day.  Webwork can be found on Blackboard.

There will be three evening exams during the semester, E1, E2, E3.

There will also be a final, E4.

 Exam Date Location Time Solutions E1 January 31 6:30-8:30PM E2 March 7 6:30-8:30PM E3 April 11 6:30-8:30PM E4 May 3 3:30 – 5:30 PM

GRADES  :   Each of the Exams  1-3  will count  19%  toward the final course grade while the Final Exam will count  28% .  The remaining  15%  will reflect webwork grades .  If  E1 , E2 , E3 , and F  are your four exam scores and  WW  is your webwork average , each scaled to  100,   then your  total   T  is given by  :

T = .19(E1 + E2 + E3 ) +  .28 F  +  .15 WW

In cases where the lowest of the E1-E3  is  less  than the grade on the final, this lowest value will be replaced in the formula  for  T   by   F .  Thus, the lowest in-semester exam will be dropped out in computing averages provided this lowest score isn’t the final.

Then your   letter grade     for the course will be based on the scale appearing in the following table.

 Numerical Range Letter Grade 98 - 100 ;   94 – 97.99 ;    90 -93.99 A+  ;   A ;   A- 85 – 89.99 ;   80 – 84.99 ;  75 – 79.99 B+  ;   B ;    B- 70 -  74.99 ;   65 – 69.99 ;  60 – 64.99 C+  ;     C ;    C- 50 – 59.99 D 0 -  49.99 F   or  NC

Missed Exams  :   If you are  unable to take one of   Exams  E1-E3 for legitimate reasons ( such as verified illness or serious family emergency )  you  will not be given   a  make-up   exam .  You first need to explain to me why you missed the exam and if everything is in order you will get an   excused absence.  Your grade for the missed exam will be calculated by a statistical procedure which uses your scores on the other taken exams, including the Final.  If the only exam you miss is the Final Exam, and for that receive an excused absence, then you must take a make-up Final exam at the beginning of the Spring semester. Until then your grade will be listed as F/NCR.

 Rules for Exams : You should always bring your Washington University Photo  ID  to exams ; proctors will check student ID's . Graphing calculators and programmable calculators are not permitted for this course. Calculators which do not compute integrals and are not programmed for graphing are acceptable. Here are some examples of such calculators: Casio FX-250, Casio FX-260, FX-270, Casio FX-300 Sharp EL-501, Sharp EL-506, Sharp EL-520, Sharp EL-531, Sharp EL-546 TI-30, TI-34, TI-36 Note: Use of a prohibited calculator at an exam is an academic integrity violation. Any detected violation of academic integrity will be referred to the disciplinary committee of the College of Arts and Sciences. Just before each exam you can look up your exam room assignment on the web  (see above, "check here on exam day" ) . The room will probably not be your regular classroom, and it may change for each exam. You will be allowed to enter the exam room a few minutes before the starting time to locate your seat and personalized exam booklet which will have your name printed on it in large letters.

EXAM   RETURNS   :    There will be a short time after each exam is graded when you can look at your graded exam to see if you feel there might have been some error in the grading.

Resources  for  Help with  Math 233   :  Old Exams  and solutions are posted on the web as a study guide ( see above , "solutions" ) .  This comes from the Math Department page and it includes exams from the past semesters.

Calculus Study Group   :  Check the following,   https://www.math.wustl.edu/~blake/calculus/.

## 3. Text

Multivariable Calculus, Eighth Edition, James Stewart.   No other book is required.

## 4. Syllabus

 Week Sections Suggested Problems #1   W  1/17           F 1/19 12.1 – 12.2   Three Dimension, Vectors 12.3  Dot product 12.2: 9-29 odd 12.3: 3-9 odd, 15-19 odd, 23, 39-43 odd, 49, 51 #2   M  1/22                     W   1/24           F   1/26 12.4  Cross Product   12.5:  Lines and Planes    12.5:  Lines and Planes 12.4: 1-7 odd, 19 – 35 odd, 43 12.5:  19-27 odd              12.5:  45, 47, 51 – 59 odd, 71, 73 #3   M   1/29                       W  1/31                  F  2/2 13.1:  Vector Functions & Space Curves   WW #1 Due  13.2:  Derivatives & Integrals of Vector Functions EXAM I  ( 6:30-8:30 pm)  sections: 12.1-12.5   13.4: Velocity & Acceleration 13.1:  1, 3, 17, 19, 43, 45 13.2: 9, 11,17 – 31 odd, 35, 37 13.4:  9 -19 odd, 37 – 41 odd #4   M   2/5          W   2/7                 F    2/9 13.3: Arc Length    (Mon)       13.3:  Curvature      WW #2 Due       (Wed) 14.1: Functions of Several Variables      (Friday) 14.2: Limits & Continuity 13.3:  1 – 9 odd    (Mon)     13.3:   21 – 29  odd   (Wed)   14.1: 9, 11, 45, 49     (Friday) 14.2:  5 – 15 odd, 29, 31 #5   M  2/12                W  2/14               F   2/16 14.3: Partial Derivatives       14.4: Tangent Planes      WW #3 Due   14.5: Chain Rule 14.3:  15-39 odd, 47-55 odd, 63, 65     14.4:  1 – 5 odd, 11 – 15 odd, 19, 21, 25 – 33 odd 14.5:  1 – 11 odd, 21 – 33 odd #6   M  2/19               W  2/21         F  2/23 14.6: Directional Derivatives   14.6: Gradient Vector      WW #4 Due      NO CLASS 14.6:  5, 11-17 odd, 21-25 odd 14.6: 7, 9,  33, 41 - 45 odd #7   M  2/26                W 2/28        F  3/2 14.7:  Max  &  Min       14.7: Max & Min      WW #5 Due   14.8: Lagrange Multiplier 14.7:  5 - 13 odd, 31 – 37 odd   14.7:  41 – 49 odd14.8: 3 – 11 odd, 31, 33 #8  M  3/5         T  3/6          W  3/7          F   3/9 15.1: Double Integrals       WW #6 Due   (T) EXAM II  ( 6:30-8:30 pm)  sections: 13.1-14.8         15.1: Iterated Integrals 15.1:  1, 3, 11 – 21 odd   (M)         15.1:  27 – 31 odd, 37, 39   (F) #9     M – F            3/12 – 3/16 SPRING BREAK #10  M   3/19                  W   3/21          F     3/23 15.2: Over General Regions   15.2: Over General Regions   15.3: Polar Coordinates 15.2:  1-9 odd, 23, 25   15.2:  27, 51 - 55 odd   15.3:  7 -13 odd #11   M   3/26                  W   3/28             F     3/30 15.3:  Polar Coordinates    WW # 7 Due   15.5: Surface Area   15.6: Triple Integrals 15.3:  19 - 27 odd   15.5:  1 – 11 odd      16.6: 49       15.6:  1 – 13 odd, 19, 21 #12   M   4/2                    W   4/4          F      4/6    (P) 15.9: Change of Variables       16.2:  Line Integrals       WW # 8 Due   16.2: Line Integrals 15.9: 1 – 9 odd, 15 – 19 odd                                   16.2:  1 – 15 odd    16.2: 19, 21, 29(a), 39, 41 #13   M   4/9                    T   4/10                    W    4/11          F      4/13 16.1: Vector Fields                         WW #9 Due   16.3: Fundamental Theorem      EXAM III  ( 6:30-8:30 pm)  sections: 15.1 -16.2    16.4: Green’s Theorem 16.1: 11, 13, 21, 23           16.3:  3 – 9 odd, 13 – 17 odd, 33, 35         16.4:  1 – 9 odd #14   M   4/16           W   4/18             F     4/20 16.4: Green’s Theorem     16.5: Curl & Divergence      15.8: : Triple Integrals in Spherical Coordinates 16.4:  11, 13, 17, 19, 21                16.5:  1 – 7 odd, 13 – 17 odd   15.8: 21, 23, 25, 27 #15   M  4/23                     W    4/25           F    4/27 15.7: Triple Integrals in Cylindrical Coordinates                           WW # 10 Due 15.7: 17, 19 21, 23 M   5/3 FINAL EXAMINATION Th  MAY 03        3:30 – 5:30 pm Please verify in Course Listings