Homework 5, Math 4111, due October 3

Do not submit problems in blue, but at least do them.

(1) Prove that the only subsets of \mathbb{R}^n which are both open and closed are \mathbb{R}^n and the empty set. (Hint: If X is another such a set, pick $a \in X, b \notin X$ and consider $\sup \{t \in [0, 1] | a + t(b - a) \in X\}$. In other words, imitate what we did in class.)

(2) Let (M, d) be a metric space. If S, T are subsets of M, define $d(S, T) = \inf \{d(s, t) | s \in S, t \in T\}$, which makes sense, since this set is bounded below by zero. If $S = \{a\}$, a singleton set, we will write $d(a, T)$ instead of $d(\{a\}, T)$.

(a) Prove that if S is a closed subset and $a \in M$, then $d(a, S) = 0$ if and only if $a \in S$.

(b) If S is compact and T is closed with $S \cap T = \emptyset$, prove that $d(S, T) > 0$.

(c) Give an example of two closed subsets S, T of \mathbb{R}^2 with $S \cap T = \emptyset$, but $d(S, T) = 0$.

(d) Prove that every closed subset of M is the intersection of countably many open sets.

(3) Prove that a collection of disjoint open sets in \mathbb{R}^n is necessarily countable. Give an example of a collection of disjoint closed sets which is not countable.

(4) If X, Y are connected subsets of a metric space and $X \cap Y \neq \emptyset$, prove that $X \cup Y$ is connected.

(5) If S is a subset of \mathbb{R}^n such that for every point $x \in S$ has an open neighbourhood $B(x, r)$ ($r > 0$ may depend on x) which intersects S in a countable set, prove that S is countable.

(6) We say that a subset S of \mathbb{R}^n is convex, if for any two points $a, b \in S$ and for any $t \in [0, 1]$, $ta + (1 - t)b \in S$.

(a) Prove that any open ball in \mathbb{R}^n is convex.

(b) Prove that if S is convex, so is its closure. (Remember that the closure of S is its union with all its accumulation points.)

(c) For a set S we define the interior of S, denoted by $\text{int} S$ to be $\{x \in S | B(x, r) \subset S\}$ (again, $r > 0$ may depend on x). Prove that if S is convex, so is $\text{int} S$. (Hint: If U, V are open in \mathbb{R}^n, so is $U + V$ defined as $\{u + v | u \in U, v \in V\}$.)