Homework 6, Math 4111, due October 10

Do not submit problems in blue, but at least attempt them.

(1) Prove that any continuous map from \mathbb{R} to \mathbb{Q} (with the usual metrics) is constant.

(2) Let $f : \mathbb{R} \to \mathbb{R}$ be a function and assume that it is continuous at a point $p \in \mathbb{R}$. Does that mean there is a small interval $(p - r, p + r)$ ($r > 0$) where f is continuous?

(3) Prove that the function $f : \mathbb{R} - \{0\} \to \mathbb{R} - \{0\}$ given by $f(x) = x^{-1}$ is continuous. Deduce that if $g : M \to \mathbb{R}$ is a continuous function (M, as usual a metric space) with $g(x) \neq 0$ for all $x \in M$, then the function $h : M \to \mathbb{R}$ given by $h(x) = \frac{1}{g(x)}$ is continuous.

(4) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function with the property $f(x + y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$. Prove that there exists an $a \in \mathbb{R}$ such that $f(x) = ax$ for all $x \in \mathbb{R}$. (Hint: What is a? What is $f(x/n)$ for $n \in \mathbb{N}, x \in \mathbb{R}$?)

(5) Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given as $f(x, y) = \frac{xy^2}{x^2+y^2}$ if $(x, y) \neq (0, 0)$ and $f(0, 0) = 0$. Show that f is not continuous at $(0, 0)$. Decide whether the function $g : \mathbb{R}^2 \to \mathbb{R}$ given by $g(x, y) = \frac{x^2y^2}{x^2+y^2}$ if $(x, y) \neq (0, 0)$ and $g(0, 0) = 0$ is continuous at $(0, 0)$.

(6) Let $S \subset \mathbb{R}^3$ consist of the three unit line segments starting from the origin along the three axes. Algebraically,

$$S = \{(x, 0, 0) | x \in [0, 1]\} \cup \{(0, y, 0) | y \in [0, 1]\} \cup \{(0, 0, z) | z \in [0, 1]\}.$$

If $f : S \to \mathbb{R}$ is any continuous function, show that there exists $a \neq b$ in S such that $f(a) = f(b)$.

(7) (a) Let \mathcal{B} be the set of bounded functions from $[0, 1] \to \mathbb{R}$ with the sup norm $||f|| = \sup_{x \in [0,1]} |f(x)|$. So, the metric $d(f, g) = ||f - g||$ also makes sense, since $f - g \in \mathcal{B}$ if $f, g \in \mathcal{B}$. Prove that \mathcal{B} is complete with respect to this metric. (Hint: Prove that for any CS $\{f_n\} \in \mathcal{B}$ and any $x \in [0, 1]$, $\{f_n(x)\}$ is a CS.)

(b) Prove that \mathcal{C}, the set of continuous functions on $[0, 1]$ is a subset of \mathcal{B}. Deduce that \mathcal{C} is complete.