Homework 3, Math 4121, due 6 Feb 2014

1) Prove that if \(f_n \to f, g_n \to g \) uniformly on a set \(S \), so does \(f_n + g_n \to f + g \). Give an example where \(f_n g_n \) does not converge uniformly to \(fg \).

2) Let \(\{f_n\} \) be a sequence of continuous functions on a compact interval monotonically decreasing (or increasing), converging pointwise to a continuous function \(f \). Prove that the convergence is uniform.

Deduce using the above, if \(\{f_n\} \) is a sequence of positive continuous functions on a compact interval and \(\sum_{n=1}^{\infty} f_n \) converges pointwise to a continuous function, then the convergence is uniform.

3) Let \(X \subset \mathbb{R}^n \) be a closed subset and \(U \) an open subset containing \(X \). Given a continuous function on \(X \), show that it has an extension to all of \(\mathbb{R}^n \), which is continuous and zero outside \(U \).

4) For any \(k \in \mathbb{N} \cup \{0\} \) show that the series \(\sum_{n=1}^{\infty} n^k x^n \) has a radius of convergence 1. Denoting this function by \(f_k(x) \) in \((-1, 1)\), calculate \(f_2(\frac{1}{2}) \).

5) Let \(J(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^n (n!)^2} \) (Bessel function of order zero). Find its radius of convergence, and show that it is a solution of the differential equation \(xy'' + y' + xy = 0 \).

6) (a) Assume \(\sum_{n=0}^{\infty} a_n x^n \) has a radius of convergence \(R > 0 \). Further assume that \(\sum_{n=0}^{\infty} a_n R^n \) also converges. Prove that \(\sum_{n=0}^{\infty} a_n x^n \) converges uniformly on \([0, R]\).

(b) Let \(\lim_{n \to \infty} a_n = L \) and \(f(x) \) be the series \(\sum a_n x^n \). Show that \(\lim_{x \uparrow 1}(1 - x)f(x) = L \).