HOMEWORK 10

DUE NOVEMBER 21

- (1) Let S be a finite set of cardinality n. We showed in class that Aut $S = \{f : S \to S | fa \text{ bijection}\}$ is a finite set with cardinality n!. If $f \in \text{Aut } S$, clearly $f^r = f \circ f \circ \cdots \circ f$, r times, is also a bijection from S to S and thus $f^r \in \text{Aut } S$. Show that for some $r \in \mathbb{N}, f^r$ is the identity map.
- (2) Let $f : \mathbb{N} \to S$ be a sequence where S is any set. If $g : \mathbb{N} \to \mathbb{N}$ is an *increasing* function (i. e. g(n+1) > g(n) for all n), we call the sequence $f \circ g : \mathbb{N} \to S$ a subsequence of f.
 - (a) Show that if f, g are as above, $g(n) \ge n$ for all $n \in \mathbb{N}$.
 - (b) Now, let $S = \mathbb{Q}$. Show that if f gives a CS, any subsequence is also a CS. Also show that if $\{x_n\}$ is a CS, any subsequence is related (as defined in class) to $\{x_n\}$.
 - (c) Give an example (with $S = \mathbb{Q}$) to show that a sequence may not be a CS, but a subsequence can be a CS.
- (3) Let $\{x_n\}$ be a non-decreasing sequence (i. e. $x_{n+1} \ge x_n$ for all n). Assume the set $\{x_n | n \in \mathbb{N}\}$ is bounded above (i. e. there exists an M such that $x_n \le M$ for all n). Show that $\{x_n\}$ is a CS.
- (4) Let $0 \le b_n \le a_n$ for all n. Let $x_n = \sum_{i=1}^n a_i$ and $y_n = \sum_{i=1}^n b_i$. Show that if $\{x_n\}$ is a CS, so is $\{y_n\}$.
- (5) Let $\{x_n\}$ be a CS with $x_n \ge r > 0$ for a fixed $r \in \mathbb{Q}$. Show that the sequence $\{\frac{1}{x_n}\}$ is also a CS. Give an example of a CS $\{x_n\}$ with $x_n > 0$ for all n, but $\{\frac{1}{x_n}\}$ is not a CS.