These are some problems about infinite sets.

(1) Let \(A \) be an infinite set and let \(B \subset A \) a finite set. Show that \(A \approx (A - B) \).

(2) If \(A_n, n \in \mathbb{N} \) is a countable collection of countable sets, show that \(\bigcup_{n \in \mathbb{N}} A_n = X \) is countable.

(3) Let \(\mathbb{Z}[X] \) denote the set of all polynomials in \(X \) with integer coefficients. Let \(A_d \subset \mathbb{Z}[X] \) be the subset of all polynomials of degree at most \(d \). (This means a polynomial \(a_0 + a_1X + \cdots + a_nX^n \in A_d, a_n \neq 0 \) if and only if \(n \leq d \).) Show that \(A_d \approx \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}, \ d + 1 \) copies. Deduce that \(\mathbb{Z}[X] \) is countable.

(4) Show that \([a, b] \approx [c, d] \), closed intervals with \(a < b, c < d \) of real numbers.

(5) Show that \([a, b] \approx (a, b), \ a < b \).

(6) Show that \(\mathbb{R} \approx (a, b), \ a < b \).

(7) In class we identified \(F(\mathbb{N}, \{0, 1\}) = X \) with \([0, \frac{1}{2}] \), by sending \(f \in F(\mathbb{N}, \{0, 1\}) \) to \(\sum_{n=1}^{\infty} f(n)10^{-n} \). Consider the map \(X \times X \) to \(\mathbb{R} \), defined by \((f, g) \) maps to \(\sum_{n=1}^{\infty} a_n10^{-n} \), where \(a_{2n-1} = f(n), a_{2n} = g(n) \). Show that this map is injective and thus show that \(\mathbb{R} \times \mathbb{R} \approx \mathbb{R} \).