Lecture 2: Area under a curve

When Gauss was 7, his teacher thought he had a good problem to keep the class busy. He said, find
\[1 + 2 + 3 + \ldots + 100 = ? \]
In a few seconds Gauss wrote 5,050. How did he do it?
\[1 + 2 + 3 + \ldots + 50 + 51 + \ldots + 98 + 99 + 100 \]

50 pairs
each adds to 101
\[50 \times 101 = 5,050. \]

We can rewrite this sum more compactly in "sigma notation":
\[\sum_{i=1}^{100} i = 5050. \]

Can we also find \(S_n = \sum_{i=1}^{n} i = 1 + \ldots + n \) for any \(n \)?

First we need some rules about sums:

\[\sum_{k=1}^{n} a_k = a_1 + a_2 + \ldots + a_n \]

\[\sum_{k=1}^{n} k \times \text{sum of \(k \times \) the same } \]

as long as there are the same, makes no difference whether it's \(i, j, k, l \) etc. - called "dummy index".

SUM RULES

- \(\sum_{k=1}^{n} 1 = 1 + \ldots + 1 = n \)
- \(\sum_{k=1}^{n} (c \cdot a_k) = c \cdot \sum_{k=1}^{n} a_k \)
- \(\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k \)
Now then: \((i+1)^2 - i^2 = 2i + 1\), right?

So \(\sum_{i=1}^{n} [(i+1)^2 - i^2] = \sum_{i=1}^{n} (2i + 1)\)

\[\sum_{i=1}^{n} (i+1)^2 - \sum_{i=1}^{n} i^2 = 2 \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1\]

\[-[i^2 + 2i^2 + \ldots + n^2 + (n+1)^2] \quad \text{collapsing sum!}\]

\[(n+1)^2 - 1^2 = 2S_n + n\]

\[n^2 + 2n + 1 - 1 = 2S_n + n\]

\[n^2 + 2n = 2S_n + n\]

\[\frac{n(n+1)}{2} = \frac{n^2 + n}{2} = S_n = \sum_{i=1}^{n} i = (1 \ldots + n)\]

You can do exactly the same thing, but with \((i+1)^2 - i^2 = 3i^2 + 3i + 1\)

at the beginning, to find that

\[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}\]

If you want the details, try it yourself and/or look in Appendix E of your book.
Areas from limits of sums

Let's use this formula (R) to find the area under a parabola, from 0 to 2:

\[y = f(x) = x^2 \]

We can't compute the area of the parabola, so we'll approximate it with a polygon, and compute that area!

Begin by partitioning the interval $[0,2]$ into n subintervals of length $\Delta x = \frac{2}{n}$.

So,

\[
\begin{align*}
 x_0 &= 0 \\
 x_1 &= \frac{2}{n} \\
 x_2 &= \frac{4}{n} \\
 \vdots \\
 x_i &= \frac{2i}{n} \\
 x_n &= \frac{2n}{n} = 2
\end{align*}
\]

Consider now the rectangle with base $[x_{i-1}, x_i]$ and height $f(x_i) = x_i^2$.

Its area is just

\[
A(R_i) = (\Delta x) \cdot x_i^2
\]

\[
= (\Delta x) \cdot f(x_i)
\]

\[
= \frac{2}{n} \cdot \left(\frac{2i}{n}\right)^2
\]

\[
= \frac{8}{n^3} \cdot i^2
\]
If we add the areas of these boxes up, we get a pretty good estimate of the area under the curve. This will be a slight overestimate, because we took the height of each box to be the largest value assumed by \(f(x) \) on the \(i \)th subinterval \([x_{i-1}, x_i]\).

TERMINOLOGY: this is called an upper sum, and yields an upper bound on the area. You could also use lower sums (to get a lower bound), or always take the height to be \(f(x_i) \) (right endpoint rule), \(f(x_{i-1}) \) (left endpoint rule), or \(f(\frac{x_i + x_{i-1}}{2}) \) (midpoint rule), or just any point in \([x_{i-1}, x_i]\).

Here the right endpoint rule & upper sum were the same, because \(f(x) \) is increasing, but that won’t always be the case!

Let’s do it! I’m going to add an extra index and call \(R_i \) instead of \(R^n \)

and \(R^n \) will be the union of all these boxes as \(i \) runs from 1 to \(n \). So

\[
A(R^n) = \sum_{i=1}^{n} A(R_i) = \frac{8}{n^3} \sum_{i=1}^{n} i^2
\]

\[
= \frac{8}{n^3} \sum_{i=1}^{n} i^2 = \frac{8}{n^3} \frac{n(n+1)(2n+1)}{6}
\]
\[
\frac{4}{3} \cdot \frac{2n^3 + 3n^2 + n}{n^3} = 4 \left(2 + \frac{3}{n} + \frac{1}{n^2} \right) = \frac{8}{3} + \frac{4}{n} + \frac{4}{3n^2}.
\]

As \(n (= \# \text{ of boxes}) \to \infty \), \(\Delta x \to 0 \) and the red-shaded overestimate on the last page \(\to 0 \) too; so

\[
A = \lim_{n \to \infty} A(R^n) = \lim_{n \to \infty} \left(\frac{8}{3} + \frac{4}{n} + \frac{4}{3n^2} \right) = \frac{8}{3} \quad \text{is the exact area under the curve!}
\]

Limits of sums from areas

Let's go the other way around now. Suppose I hand you the sum

\[
S_n = \frac{1}{n} \sum_{i=1}^{n} \sqrt{1 - \frac{i^2}{n^2}}
\]

and suggest you find its limit. You might reason that this looks a bit like the last example, and wonder what happens if we think of \(\frac{1}{n} \sqrt{1 - \frac{i^2}{n^2}} \) as the area of a box under some curve. Which curve?
So S_n is the area of the union of the rectangles displayed, and $\lim_{n \to \infty} S_n = \pi/4$, the area of a quarter of a disk of radius 1.

Estimating areas

A ball-park estimation of the area A under a curve can be got by using upper and lower sums.

For example, $f(x) = 8^x \sin(\pi x/2)$ is a pretty weird function. You might think the area under its graph from $x = 0$ to 1 is hard to estimate. But the function is increasing on $[0,1]$, and if we take $n=3$ (boxes) the upper and lower
Sums are a brave to compute:

\[
U = \frac{1}{3} \cdot f\left(\frac{1}{3}\right) + \frac{1}{3} \cdot f\left(\frac{2}{3}\right) + \frac{1}{3} \cdot f(1) \\
= \frac{1}{3} \left\{ 8^{\frac{1}{3}} \sin\left(\frac{\pi}{6}\right) + 8^{\frac{2}{3}} \sin\left(\frac{\pi}{3}\right) + 8^{1} \sin\left(\frac{\pi}{2}\right) \right\} \\
= \frac{1}{3} \left\{ 2 \cdot \frac{1}{2} + 4 \cdot \frac{\sqrt{3}}{2} + 8.1 \right\} = 3 + \frac{2\sqrt{3}}{3}
\]

\[
L = \frac{1}{3} \cdot f(0) + \frac{1}{3} \cdot f\left(\frac{1}{3}\right) + \frac{1}{3} \cdot f\left(\frac{2}{3}\right) = \frac{1}{3} \left\{ 3^0 + 8^{\frac{1}{3}} \frac{1}{2} + 8^{\frac{2}{3}} \frac{\sqrt{3}}{2} \right\} \\
= \frac{1}{3} + \frac{2\sqrt{3}}{3}, \quad \text{and so}
\]

\[1.48 \approx L \leq A \leq U \approx 4.15.\]

Pretty awful estimate, but taking \(n \) much larger leads to the idea of the definite integral we'll develop in the next lecture:

The difference between the areas of the red & green boxes (shown in yellow) will go \(\rightarrow 0 \) as we make more, \(\delta \) thinner, boxes \((n \rightarrow \infty)\). That is,
U gets smaller & L larger, in such a way that \(U - L \to 0 \).

Since "A" is sandwiched in between, BOTH U and L limit to A.

Areas and distances

A final conceptual remark is that the area under a curve is more than just a geometry problem. If \(y = f(t) \) is the speed of your car as a function of time, then the area under this curve from \(t = t_0 \) to \(t = t \), is the total distance traveled during that time. For example, if your speed (height of graph) is a constant \(C \) on \([t_0, t_1]\), then obviously distance \(\overline{t_1 - t_0} \cdot C \) is the area under \(C \).

For a curvy graph, the area over a small enough interval is approximated by a rectangle, and we
can take a limit as above to get the total distance exactly right. This connection will be useful later in understanding the Fundamental Theorem.

Likewise, if you are pushing a box along a straight path (which is smoother in some places than others) and \(y = F(x) \) is the force you applied as a function of position, then the area under the graph is the total work done. There are numerous other applications that we’ll see in due course.