Lecture 29: Infinite Series

Today we are going to take all the numbers in an infinite sequence \(\{a_n\} \) and add them together.

Definition 1: An infinite series is an expression of the form
\[
\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots
\]

To make sense of anything "infinite" in calculus, we invoke limits. But let's first look at the corresponding finite sums.

Definition 2: The \(n \)th partial sum of a series is
\[
S_n = a_1 + a_2 + \ldots + a_n = \sum_{i=1}^{n} a_i
\]

So
\[
S_1 = a_1 \\
S_2 = a_1 + a_2 \\
S_3 = a_1 + a_2 + a_3 \\
\vdots
\]

forms a sequence \(\{S_n\} \), the sequence of \(n \)th partial sums. Notice that it starts to look more
and more like the expression in Definition 1 as it continues on. This motivates the key.

Definition 3: The sum of the series $\sum_{n=1}^{\infty} a_n$ is defined to be the limit $S = \lim_{n \to \infty} S_n$ of the sequence of partial sums. We write

$$\sum_{n=1}^{\infty} a_n = S$$

and say the series converges to S. Unless of course the sequence $\{S_n\}$ diverges, in which case we say the series $\sum_{n=1}^{\infty} a_n$ diverges as well.

Ex. 1 / Some divergent series:

\[\sum_{n=1}^{\infty} 1 = 1 + 1 + 1 + \cdots \quad (S_n = n \to \infty) \]

\[\sum_{n=1}^{\infty} (-1)^n = -1 + 1 + (-1) + 1 + (-1) + \cdots \]

\((S_n = \{ -1 \text{ if } n \text{ odd} \}) \)

\[\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + \cdots \quad (S_n = \frac{n(n+1)}{2} \to \infty) \]

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots \]

(“Harmonic series”)

- roughly: group is shown, yet $\sum \frac{1}{n} > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \cdots$
Ex 2/ some convergent series:

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \ldots = \frac{\pi^2}{6} \]

We won't show that in this course, but will show series converges.

\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \ldots = \ln(2) \]

will see this later in the course.

\[\sum_{n=1}^{\infty} \frac{3}{10^n} = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \ldots = 0.3 + 0.03 + 0.003 + \ldots = 0.3333\ldots = \frac{1}{3} \]

\[\sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots = 1 \]

to see this:

\[S_1 = \frac{1}{2} \]
\[S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \]
\[S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8} \]
\[\vdots \]
\[S_n = \frac{2^n-1}{2^n} = 1 - 2^{-n} \]

so \(\lim_{n \to \infty} S_n = 1 \).

The last two series above are of a type called geometric series, which means one of the form

\[a + ar + ar^2 + ar^3 + \ldots \] \((r = "ratio")\)

here it is convenient to start our sequence at \(n = 0 \),
and write \(a_n = ar^n \) (note that \(\frac{a_n}{a_{n-1}} = r \)), so the series is \(\sum_{n=0}^{\infty} ar^n \) with \(n^{th} \) partial sum

1. \(S_n = \sum_{i=0}^{n} ar^i = a + ar + \ldots + ar^n \). Notice that

2. \(rS_n = \sum_{i=0}^{n} ar^{i+1} = ar + \ldots + ar^n + ar^{n+1} \).

Subtracting (1) - (2) gives

\[
(1-r)S_n = a - ar^{n+1} = a(1-r^{n+1})
\]

so that (if \(r \neq 1 \))

\[
S_n = \frac{a(1-r^{n+1})}{1-r}.
\]

This converges if and only if \(|r| < 1 \), as we know from our study of sequences. So we conclude:

- If \(|r| \geq 1 \), \(\sum_{n=0}^{\infty} ar^n \) diverges.
- If \(|r| < 1 \), \(\sum_{n=0}^{\infty} ar^n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1-r^{n+1})}{1-r} = \frac{a}{1-r} \).

Ex 3/ Examples of geometric series:

\[\frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + \ldots = \sum_{n=0}^{\infty} \frac{3}{10} \left(\frac{1}{10}\right)^n = \frac{\frac{3}{10}}{1 - \frac{1}{10}} = \frac{3}{9} = \frac{1}{3}\]

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots = \sum_{n=0}^{\infty} \frac{1}{2} \left(\frac{1}{2}\right)^n = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1\]
Try: \[6 \frac{1}{4} + \frac{8}{3} + \frac{16}{9} + \frac{32}{27} - \ldots \]

\[\text{Ans.: } \frac{6}{1+2/3} = \frac{6}{5/3} = \frac{18}{5} = 3.6 \]

We could also try functions: \[1 + x + x^2 + x^3 + \ldots = \frac{1}{1-x} \quad (\text{valid for } |x|<1) \]

Actually, any time you have a repeating decimal you can use geometric series to represent the number as a fraction:

Ex 4/ \[1.167167167\ldots = 1 + \frac{167}{1000} + \frac{167}{(1000)^2} + \frac{167}{(1000)^3} + \ldots \]
\[= 1 + \sum_{n=0}^{\infty} \frac{167}{1000} (\frac{1}{1000})^n = 1 + \frac{167}{1000} \left(\frac{1}{1-\frac{1}{1000}} \right) = 1 + \frac{167}{999} \]
\[= 1.166\overline{6} \]

Why might you care about this? The book has an example about drug concentrations in the bloodstream: the idea is that perhaps each dose raises the concentration by \(\alpha \), whereas the time between doses dilutes the concentration, multiplying it by \(\beta \) (eg. 0.8 for 80%). So after initial dose, the concentration \(C_0 = \alpha \); after the next, \(C_1 = \alpha + \beta C_0 = \alpha + \beta \alpha \); after another, \(C_2 = \alpha + \beta C_1 = \alpha + \beta \alpha + \beta^2 \alpha \). Eventually we reach \(C_n = \alpha + \beta \alpha + \ldots + \beta^n \alpha \), and by now it's clear these are the partial sums of \(\sum_{i=0}^{\infty} \frac{\alpha \beta^i}{(1-\beta)} \). Thus, the concentration, if this regime is maintained forever, limits to \(\frac{\alpha}{1-\beta} \).
Geometric series can come in fancy guises:

Ex 5. \[
\sum_{n=1}^{\infty} \frac{3^n - 2^{n+2}}{5^n} = ? \quad \text{Be careful!!}
\]

The series starts at \(n=1\), among other things...

\[
\sum_{n=1}^{\infty} \frac{3^n}{5^n} - \sum_{n=1}^{\infty} \frac{2^{n+2}}{5^n} = \sum_{m=0}^{\infty} \frac{3}{25} \left(\frac{3}{5}\right)^m - \sum_{m=0}^{\infty} \frac{8}{25} \left(\frac{2}{5}\right)^m
\]

reindex: first series has \(a = \frac{3}{5}, r = \frac{3}{5}\)
second has \(a = \frac{8}{25}, r = \frac{2}{5}\)

\[
= -\frac{\frac{3}{25}}{1-\frac{3}{5}} - \frac{\frac{8}{25}}{1-\frac{2}{5}} = \frac{5}{25} - \frac{8}{25} \cdot \frac{5}{5}
\]

\[
= \frac{3}{10} - \frac{8}{15} = -\frac{7}{30}.
\]

TRY:

\[
\sum_{n=1}^{\infty} \left(\frac{1}{6}\right)^n - \left(\frac{1}{6}\right)^{n+1} = ?
\]

We could break this into two pieces... but there's a better way!

\[
\sum_{n=1}^{\infty} \left(\frac{1}{6}\right)^n - \left(\frac{1}{6}\right)^{n+1} = \frac{1}{6} - \left(\frac{1}{6}\right)^2 + \left(\frac{1}{6}\right)^2 - \left(\frac{1}{6}\right)^3 + \left(\frac{1}{6}\right)^3 - \left(\frac{1}{6}\right)^4 + \ldots
\]

\[
= \frac{1}{6}.
\]

"telescoping sum" — man on this or

...