Lecture 4: Areas & Antiderivatives

Let's begin with the function

\[f(t) = t \]

Here \(x \) is fixed (for the time being) and we are interested in the area under the curve from 0 to \(x \):

\[\int_0^x f(t) \, dt = \int_0^x t \, dt = \text{Area}(\triangle) = \frac{1}{2} \cdot \text{base} \cdot \text{height} = \frac{1}{2} x^2. \]

Next, let's try

\[f(t) = t^2 \]

... only, let's do it with Riemann sums.
\[\int_a^b f(t) \, dt = \int_a^b t^2 \, dt = \lim_{n \to \infty} \left(\frac{a}{n} \right) \sum_{i=1}^{n} \left(\frac{i}{n} \right)^2 \Delta x \]

\[= \int_a^b x^3 \, dx = \lim_{n \to \infty} \frac{1}{n^3} \sum_{i=1}^{n} i^2 = \int_a^b \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \]

\[= \frac{1}{n^3} \left\{ \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2} \right\} = \frac{x^3}{3} \]

One more: take \(f(t) = e^t \)

and write

\[\int_a^b f(t) \, dt = \int_a^b e^t \, dt = \lim_{n \to \infty} \frac{e^x}{n} \sum_{i=1}^{n} e^{x_i} \]

\[= \lim_{n \to \infty} \frac{x}{n} \sum_{i=1}^{n} \left(e^{x_i} \right)^i = \lim_{n \to \infty} \frac{x}{n} \cdot \frac{e^{x+n} - e^x}{e^x - 1} = \ldots \to \]

\[= \frac{x^e}{e} \]

if \(S = a + a^2 + a^3 + \ldots + a^n \), then

\[aS = a^2 + a^3 + \ldots + a^n + a^{n+1} \]

\[\Rightarrow (a-1)S = a^{n+1} - a \Rightarrow S = a \frac{a^n - 1}{a - 1} \]

Quick "proof":

\[(i+1)^3 - i^3 = 3i^2 + 3i + 1 \]

\[\sum_{i=1}^{n} (i+1)^3 - i^3 = 3 \sum_{i=1}^{n} i^2 + 3 \sum_{i=1}^{n} i + n \]

\[\sum_{i=1}^{n} i^3 + 3n^2 + 3n = 3 \sum_{i=1}^{n} i^2 + 3n^2 + \frac{3n}{2} \]

\[\sum_{i=1}^{n} i^3 + \frac{3n^2}{2} + \frac{1}{2} \]

\[\sum_{i=1}^{n} i^3 \frac{(n+1)(2n+1)}{6} = \sum_{i=1}^{n} i^2 \]
\[(\text{continued}) \]
\[\ldots = (e^x - 1) \lim_{n \to \infty} \frac{1}{n} (\text{why?}) \]
\[= e^x - 1. \]

\[\text{What do these three examples have in common?} \]
\[\text{That's right,} \quad \begin{cases} x^{\frac{1}{2}} \\ x^{\frac{1}{3}} \\ e^x \\ e^x - 1 \end{cases} \]
\[\text{is an antiderivative of} \quad \begin{cases} e^t \\ e^x \end{cases} \]
\[\text{— carefully chosen flukes or general phenomenon?} \]

\[\text{In other words, if we define} \]
\[F(x) := \int_a^x f(t) \, dt = \text{“area up to } x\text{”} \]
\[\text{is } F \text{ an antiderivative of } f \text{? i.e. does} \]
\[F'(x) = f(x) ? \]

\[\text{Aside:} \quad \int_a^x f(t) \, dt \text{ is a function of } x, \text{ not of } t. \]
\[\text{We're looking at area under } y=f(t) \text{ from } t=a \text{ to } t=x; \text{ this area depends on } x. \text{ Here } t \text{ is just the integral version of a dummy index — The “integration variable”}. \]
How should we think of the rate of change of area (under the curve) up to x, with respect to x?

Heuristically, \[
\frac{\Delta F}{\Delta x} \approx \frac{f(x) \cdot \Delta x}{\Delta x} = f(x).
\]

More precisely, you want to use the definition of the derivative:

\[
F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{\int_{a}^{x+h} f(t) \, dt - \int_{a}^{x} f(t) \, dt}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) \, dt.
\]

To go further we use the picture.
As \(h \to 0 \), the maximum (\(M \)) and minimum (\(m \)) values of \(f \) on \([x, x+h]\) limit to \(f(x)\) by continuity. So by the Squeeze Theorem, we get

\[
F'(x) = \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(t) \, dt = f(x),
\]

\(\Rightarrow \) \(\int_a^x f(t) \, dt \) is always an antiderivative of \(f(x) \)!!

For different choices of \(a \), you’ll get different antiderivatives. Say \(b > a \). Then

\[
\int_a^x f(t) \, dt = \int_a^b f(t) \, dt + \int_b^x f(t) \, dt;
\]

as you’ll recall, two functions that differ by a constant have the same derivative (and indeed all antiderivatives of \(f \) differ by a constant).
So we write at the

Fundamental Theorem of Calculus (V.1)

\[
\frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x).
\]

This says that "taking the slope function" and "taking the area up to x function" are "inverse" to each other — do one, then the other, and you get back essentially the same thing. But it’s not surprising if you think the rate of accumulation of area under a function is proportional to the height of the function!

Ex/ Find \(\frac{dy}{dx} \)

(a) \(y = \int_{-2}^{x} \frac{1}{u+3} \, du \).

(b) \(y = \int_{0}^{3x} (1+t^4) \, dt \).

† If you do (a) then (b), the result may differ from the original by a constant.
In (b), we're taking the right-hand limit of integration to move \(3 \) times as fast (\(3x \) rather than \(x \)). So you'd expect the area to increase \(3 \) times as quickly, and that's right. But we should be more systematic here and use the \underline{Chain Rule}.

What is \(\frac{d}{dx} \int_0^{g(x)} f(t) \, dt \)? If \(F(u) \) means \(\int_0^u f(t) \, dt \), this is \(\frac{d}{dx} F(g(x)) \). Some goofy function \(g(x) \) is controlling how the right-hand limit of integration is being moved. The \underline{Chain Rule} gives

\[
\frac{d}{dx} \int_0^{g(x)} f(t) \, dt = \frac{d}{dx} F(g(x)) = F'(g(x)) \cdot g'(x)
\]

\[= f(g(x)) \cdot g'(x).\]

\[F' = f\]

\(\uparrow\) The (right- and left-hand) limits of integration are the endpoints \(a \) and \(b \) of the interval over which you are calculating a definite integral \(\int_a^b f(x) \, dx \).
In particular, we get
\[\frac{d}{dx} \int_0^{3x} f(t) \, dt = 3 \cdot f(3x) . \]

Warning: \[\frac{d}{dx} \int_0^x f(g(t)) \, dt = f(g(x)) \]

There is no chain rule here: \(f(g(x)) \) is not being differentiated; only the "area up to \(x \)" is.

Example
\[y = \int_2^x \sqrt{3+u} \, du , \quad x > 0 . \]

\[\frac{dy}{dx} = \frac{d}{dx} (x^2 - 2) \cdot \sqrt{3 + (x^2 - 2)} \]
\[= 2x \cdot \sqrt{x^2 + 1} . \]

To formalize this, which may make it more or less comprehensible, write
\[\int_2^{x^2 - 2} \sqrt{3+u} \, du = F(g(x)) \]
where
\[
\begin{align*}
F(z) &= \int_2^z \sqrt{3+u} \, du \quad (\text{has derivative } \frac{1}{\sqrt{3+z}}) \\
g(x) &= x^2 - 2 .
\end{align*}
\]
Then
\[\frac{d}{dx} F(g(x)) = F'(g(x)) \cdot g'(x) = f(g(x)) \cdot g'(x) \]
\[= 2x \cdot \sqrt{3 + g(x)} = 2x \sqrt{x^2 + 1} . \]
Ex: \(y = \int_{x}^{2x} (1+t^2) \, dt \). Find \(\frac{dy}{dx} \)!

We'll look on Friday at how the relationship between differentiation and integration discovered today makes computing integrals a whole lot more straightforward.