Lecture 3: Sets of real numbers

Set notation: Sets are collections of elements.

- "roster notation": \(A = \{2, 3, 4, 5, 6\} \) (list the elements)
 - write \(2 \in A \) to say "2 is an element of A"
 - write \(\{2\} \subseteq A \) to say "\{2\} is a subset of A"
 - (other subsets of \(A \): \(\{2, 4\}, \{3, 5, 6\}, A \) itself, \(\emptyset \))

- "predicate notation": \(A = \{ x \in \mathbb{Z} \mid 2 \leq x \leq 6 \} \)
 - this requires \(A \) to be a subset of the "domain". Some common sets of numbers:
 - \(\mathbb{Z} \) (integers), \(\mathbb{Q} \) (rationals), \(\mathbb{R} \) (reals), \(\mathbb{C} \) (complex nos.)

- building sets from other sets: given sets \(A \) and \(B \),
 - \(A \cup B \) = union = \(\{ x \mid x \in A \text{ or } x \in B \} \)
 - \(A \cap B \) = intersection = \(\{ x \mid x \in A \text{ and } x \in B \} \)
 - \(A - B \) or \(A \setminus B \) = difference = \(\{ x \mid x \in A \text{ and } x \notin B \} \)

Can do the same for a collection (or "family") \(\mathcal{F} = \{ A_1, \ldots, A_n \} \):
 - \(\bigcup_{k=1}^{n} A_k \), \(\bigcap_{k=1}^{n} A_k \)

The real numbers

These are defined axiomatically in the text:

- Field axioms (commutativity, associativity, distributivity, negatives & inverses [except \(1/0 \) !], etc.) — true for \(\mathbb{Q} \), \(\mathbb{R} \), \(\mathbb{C} \)
• **Order axioms:** existence of a subset of positive numbers closed under addition and multiplication, such that every \(x \) has \(x = 0, x > 0 \) or \(x < 0 \). (Define \(a < b \) if \(b - a \) is positive.) — true for \(\mathbb{Z}, \mathbb{Q}, \mathbb{R} \).

Here's a consequence — ** Transitive law:** if \(a < b \) and \(b < c \), then \(a < c \).

Proof: \(b - a > 0 \) and \(c - b > 0 \) \(\Rightarrow \) their sum is \(> 0 \), i.e., \((b - a) + (c - b) = c - a > 0 \).

• **The least-upper-bound axiom:** (this one is only true for \(\mathbb{R} \)) Suppose \(S \subset \mathbb{R} \) is nonempty & bounded above: i.e., \(\exists b \in \mathbb{R} \) such that \(s \leq b \) for every \(s \in S \). Then \(S \) has a least upper bound — that is, \(B \in \mathbb{R} \) such that (i) \(B \) is an upper bound for \(S \) (ii) no number less than \(B \) is an upper bound for \(S \).

We write \(\sup S := B \)

Similarly, if \(S \) is bounded below, then it has a greatest lower bound or *infimum* \(\inf S := -\sup(-S) \).

These axioms define \(\mathbb{R} \); one then defines

- the positive numbers \(\mathbb{P} \) as in lecture 1 (basically, \(1, 2, 1, 1, 1, 1, \ldots \))
- the integers \(\mathbb{Z} = \mathbb{P} \cup \{ 0 \} \cup -\mathbb{P} \)
- the rationals \(\mathbb{Q} := \{ a / b \mid a, b \in \mathbb{Z} \text{ and } b \neq 0 \} \)

Of course, \(\mathbb{P} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \).

Archimedean Property: If \(x \in \mathbb{R}^+ \), \(y \in \mathbb{R} \), then \(\exists n \in \mathbb{P} \) s.t. \(nx > y \).

Proof: \(\mathbb{P} \) is not bounded above (otherwise, then \(\beta := \sup \mathbb{P} \) and \(m \in \mathbb{P} \) with \(m > \beta - 1 \) \(\Rightarrow \) \(m + 1 > \beta \)). So there must be an element of \(\mathbb{P} \) bigger than \(y / x \). \(\square \)
Ex. Let \(R := \{ x \in \mathbb{R} \mid x^2 < 2 \} \). This is bounded above (by, say, 2), and hence so has a least upper bound \(B := \text{sup} R \).

There are only 3 possibilities: \(B^2 < 2 \), \(B^2 > 2 \), or \(B^2 = 2 \). If we can rule out the first two, then the third holds, and \(B \) is a square root of 2.

- Suppose \(B^2 > 2 \). Let \(c := B - \frac{B^2 - 2}{2B} = \frac{B + 2}{2} \), so that \(0 < c < B \) and

\[
 c^2 = B^2 - 2 + \frac{(B^2 - 2) \cdot 2}{4B^2} = 2 + \frac{(B^2 - 2)^2}{4B^2} > 2
\]

\(\Rightarrow \) \(c \) is an upper bound for \(R \)
\(\Rightarrow \) \(B \leq c \) \(\checkmark \)
(\(B \) least \(UB \))

- Suppose \(B^2 < 2 \). Let \(c \in \mathbb{R}^+ \) be less than \(B \) and \(\frac{2-B^2}{3B} \), so that \((B+c)^2 = B^2 + 3Bc < B^2 + (2-B^2) = 2 \)

\(\Rightarrow \) \(B+c \in \mathbb{R} \)
\(\Rightarrow \) \(B+c \leq B \) \(\Rightarrow \) \(c \leq 0 \) \(\checkmark \)
(\(B \) \(UB \))

Upshot: \(\sqrt{2} \) exists in \(\mathbb{R} \). But not in \(\mathbb{Q} \):

Ex. Let \(S := \{ x \in \mathbb{Q} \mid x^2 < 2 \} \). I claim that \(S \) does not have a least upper bound. We need 2 facts:

- \(\sqrt{2} \) is irrational: Suppose there was a rational number \(\frac{a}{b} \in \mathbb{Q} \) with \(\left(\frac{a}{b} \right)^2 = 2 \). We may assume that \(a \) or \(b \) is odd, since otherwise we can cancel pairs of 2 until this is true (why?).

\(\Rightarrow a^2 = 2b^2 \Rightarrow a \) can't be odd \(\Rightarrow a \) even = \(2c \), \(c \in \mathbb{P} \)

\(\Rightarrow 4c^2 = 2b^2 \Rightarrow 2c^2 = b^2 \Rightarrow b \) even. Contradiction.
If $p, r \in \mathbb{R}$ and $p < r$, then $\exists q \in \mathbb{Q}$ with $p < q < r$.

I'll prove this tomorrow: it's a consequence of the Archimedean property together with the "well-ordering principle".

So now, let $r \in \mathbb{Q}$ be a least upper bound for S, and put $p = \sqrt{2}$. We can't have $r = p$ (since $p \notin \mathbb{Q}$).

Suppose $r < p$; then $\exists t \in \mathbb{Q}$ between them, so that $t^2 < p^2 = 2 \Rightarrow t \in S$ but $r < t$, impossible since r is an upper bound for S. So we are left with $r > p$; but then any $s \in \mathbb{Q}$ between them is an upper bound for S. Contradiction. //

Upshot: \mathbb{Q} does not satisfy the least upper bound axiom.

(It isn't "close" enough.)

Properties of \inf & \sup (Apostol, pp. 26-28)

Lemma: If $a, x, y \in \mathbb{R}$ satisfy $a \leq x \leq a + \frac{y}{n}$ for all $n \in \mathbb{N}$, then $x = a$.

Proof: By the Archimedean property, if $x > a$ then $\exists n \in \mathbb{N}$ s.t. $n(x-a) > y$, i.e. $x > a + \frac{y}{n}$, clearly $x > a$ is false, so $x = a$. □

Property I: If $S \subset \mathbb{R}$ has UB, and $h \in \mathbb{R}^+$, then $\exists x \in S$ with $x > \text{sup} S \setminus \text{LB}$.

Proof: Otherwise $\text{sup} S - h$ is an UB for S, impossible by $h \leq \text{sup} S$ is least.

Property II: Given $A, B \subset \mathbb{R}$ with UB, $C := \{atb : a \in A, b \in B\}$, we have $\sup C = \sup A + \sup B$. (same for inf)

Proof: Since $\sup A + \sup B$ is an UB for C (why?)
\[\sup C \leq \sup A + \sup B. \] By property I, for any \(n \in \mathbb{N} \) exists \(a, b \in A, B \) such that \(a > \sup A - \frac{1}{n} \) and \(b > \sup B - \frac{1}{n} \). Then:

\[\sup A + \sup B < a + b + \frac{2}{n} \leq \sup C + \frac{2}{n}. \]

Now apply the lemma! \(\square \)

Property III: If \(S, T \subset \mathbb{R} \) are nonempty and \(\forall s \in S, t \in T \) we have \(s < t \), then \(\sup S \leq \inf T \).

Proof: Every \(t \in T \) is an UB for \(S \), so \(\sup S \leq t \) (sets are finite!)

\[\Rightarrow \sup S \text{ is a LB for } T \Rightarrow \sup S \leq \inf T. \]

(\(\inf T \) is greatest LB.) \(\square \)