Lecture 3: Sets of real numbers

Set notation: Sets are collections of elements.

- "roster notation": \(A = \{2, 3, 4, 5, 6\} \) (list the elements)

 write \(2 \in A \) to say "2 is an element of A"

 write \(\{2\} \subseteq A \) to say "\{2\} is a subset of A"

 (other subsets of A: \(\{2, 4\} \), \(\{3, 5, 6\} \), A itself, \(\emptyset \))

- "predicate notation": \(A = \{ x \in \mathbb{Z} \mid 2 \leq x \leq 6 \} \)

 this requires \(A \) to be a subset of the "domain". Some common sets of numbers:

 \(\mathbb{Z} \) (integers), \(\mathbb{Q} \) (rationals), \(\mathbb{R} \) (reals), \(\mathbb{C} \) (complex num.)

- building sets from other sets: given sets \(A \) and \(B \),

 \(A \cup B = \text{union} = \{ x \mid x \in A \text{ or } x \in B \} \)

 \(A \cap B = \text{intersection} = \{ x \mid x \in A \text{ and } x \in B \} \)

 \(A - B \text{ or } A \setminus B = \text{difference} = \{ x \mid x \in A \text{ and } x \notin B \} \)

 Can do the same for a collection (or "family") \(\mathcal{A} = \{ A_1, \ldots, A_n \} \):

 \(\bigcup_{A \in \mathcal{A}} A = \bigcup_{k=1}^n A_k \), \(\bigcap_{A \in \mathcal{A}} A = \bigcap_{k=1}^n A_k \)

The real numbers

These are defined axiomatically in the text:

- Field axioms (commutativity, associativity, distributivity, negatives & inverses [except for \(\frac{1}{0} \) !], etc.) — true for \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \)
• **Order axioms**: existence of a subset of positive numbers closed under addition and multiplication, such that every x has $x = 0$, $x > 0$ or $x < 0$. (Define $a < b$ if $b - a$ is positive.) — true for \mathbb{Z}, \mathbb{Q}, \mathbb{R}

Here's a consequence — **TRANSITIVE LAW**: if $a < b$ and $b < c$, then $a < c$.

Proof: $b - a > 0$ and $c - b > 0$ \Rightarrow their sum is > 0,

i.e. $(b - a) + (c - b) = c - a > 0$. \Box

• **The least-upper-bound axiom**: (this one is only true for \mathbb{R}) Suppose $S \subseteq \mathbb{R}$ is nonempty & bounded above: i.e., $\exists b \in \mathbb{R}$ such that $s \leq b$ for every $s \in S$. Then S has a least upper bound — that is, $B \in \mathbb{R}$ such that

(i) B is an upper bound for S

(ii) no number less than B is an upper bound for S.

We write $\sup S := B$

Similarly, if S is bounded below, then it has a greatest lower bound or infimum $\inf S := - \sup (-S)$.

These axioms define \mathbb{R}; one then defines

- the positive numbers \mathbb{P} as in lecture 1 (basically, $1, 1+1, 1+1+1, \ldots$)
- the integers $\mathbb{Z} := \mathbb{P} \cup \{0\} \cup \{-\mathbb{P}\}$
- the rationals $\mathbb{Q} := \{a/b \mid a, b \in \mathbb{Z} \text{ and } b \neq 0\}$

Of course, $\mathbb{P} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$.

Archimedean Property: If $m \in \mathbb{R}^+$, $y \in \mathbb{R}$, then $\exists n \in \mathbb{P}$ s.t. $ny > y$.

Proof: \mathbb{P} is not bounded above (otherwise, there $\beta := \sup \mathbb{P}$ and $m \in \mathbb{P}$ with $m > \beta - 1 \Rightarrow m + 1 > \beta$ $\forall \beta$). So there must be an element of \mathbb{P} bigger than y/x. \Box
Ex. Let \(R := \{ x \in \mathbb{R} \mid x^2 < 2 \} \). This is bounded above (by, say, 2), and (by the Compactness Theorem) so has a least upper bound \(B := \sup R \).

There are only 3 possibilities: \(B^2 < 2 \), \(B^2 > 2 \), or \(B^2 = 2 \). If we can rule out the first two, then the third holds, and \(B \) is a square root of 2.

- Suppose \(B^2 > 2 \). Let \(c := B - \frac{B^2 - 2}{2B} = \frac{B + \frac{2}{B}}{2} \),
so that \(0 < c < B \) and
\[
c^2 = B^2 - (B^2 - 2) + \left(\frac{B^2 - 2}{4B^2}\right)^2 = 2 + \left(\frac{B^2 - 2}{4B^2}\right)^2 > 2
\]
\(\Rightarrow \) \(c \) is an upper bound for \(R \)
\(\Rightarrow \) \(B \leq c \) \(\star \)

(\(B \leq \text{UB} \))

- Suppose \(B^2 < 2 \). Let \(c \in \mathbb{R}^+ \) be less than \(B \) and \(\frac{2 - B^2}{3B} \),
so that \((B+c)^2 < B^2 + 3Bc < B^2 + (2-B^2) = 2 \)
\(\Rightarrow B+c \in R \)
\(\Rightarrow B+c \leq B \) \(\Rightarrow c \leq 0 \) \(\star \)

(\(B \leq \text{UB} \))

Upshot: \(\sqrt{2} \) exists in \(\mathbb{R} \). But not in \(\mathbb{Q} \):

Ex. Let \(S := \{ x \in \mathbb{Q} \mid x^2 < 2 \} \). I claim that \(S \) does **not** have a least upper bound. We need 2 facts:

- **"\(\sqrt{2} \) is irrational":** suppose there was a rational number \(\frac{a}{b} \in \mathbb{Q} \) with \((\frac{a}{b})^2 = 2 \). We may assume that \(a \) or \(b \) is odd, since otherwise we can cancel powers of 2 until this is true (why?).
Now \(a^2 = 2b^2 \Rightarrow a \) can't be odd \(\Rightarrow a \) even = \(2c \), \(c \in \mathbb{P} \)
\(\Rightarrow 4c^2 = 2b^2 \Rightarrow 2c^2 = b^2 \Rightarrow b \) even. Contradiction.
• If $p, r \in \mathbb{R}$ and $p < r$, then $\exists q \in \mathbb{Q}$ with $p < q < r$.

I'll prove this tomorrow: it's a consequence of the Archimedean property together with the "well-ordering principle".

• So now, let $r \in \mathbb{Q}$ be a least upper bound for S, and put $p = \sqrt{2}$. We can't have $r = p$ (since $p \notin \mathbb{Q}$).

Suppose $r < p$; then $\exists t \in \mathbb{Q}$ between them, so that $t^2 = r^2 < 2 \Rightarrow t \notin S$ but $r < t$, impossible since r is an upper bound for S. So we are left with $r > p$; but then any $s \in \mathbb{Q}$ between them is an upper bound for S. Contradiction. \[\]

Upshot: \mathbb{Q} does not satisfy the least upper bound axiom.

(It isn't "dense" enough.)

Properties of inf & sup (Apostol, pp. 26-28)

Lemma: If $a, x, y \in \mathbb{R}$ satisfy $a \leq x \leq a + \frac{y}{n}$ for all $n \in \mathbb{N}$, then $x = a$.

Proof: By the Archimedean property, if $x > a$ then $\exists n \in \mathbb{N}$ s.t. $n(x - a) > y$, i.e. $x > a + \frac{y}{n}$. Clearly $x < a$ is false, so $x = a$. \[\]

Property I: If $S \subseteq \mathbb{R}$ has UB, and $h \in \mathbb{R}^+$, then $\exists x \in S$ with $x > \sup S - h$.

Proof: Otherwise $\sup S - h$ is an UB for S, impossible by $\text{c sup} S$ is least.

Property II: Given $A, B \subseteq \mathbb{R}$ with UB, $C := \{ab \mid a \in A, b \in B\}$, we have $\sup C = \sup A \times \sup B$. (same for $\inf L$).

Proof: Since $\sup A + \sup B$ is an UB for C (why?),
\[\sup C \leq \sup A + \sup B. \] By property I, for any \(n \in \mathbb{N} \) there exists \(a \in A \) such that \(a > \sup A - \frac{1}{n} \) and \(b \in B \) such that \(b > \sup B - \frac{1}{n} \), then

\[\sup A + \sup B < ab + \frac{2}{n} \leq \sup C + \frac{2}{n}. \] Now apply the lemma!

Property III: If \(S, T \subset \mathbb{R} \) are nonempty and \(\forall s \in S, t \in T \) we have \(s < t \), then \(\sup S \leq \inf T \).

Proof: Every \(t \in T \) is an upper bound for \(S \), so \(\sup S \leq t \) (\(\forall t \in T \)). \(\Rightarrow \) \(\sup S \) is a lower bound for \(T \) \(\Rightarrow \) \(\inf S \leq \inf T \). (\(\inf T \) is greatest lower bound)