Lecture 40: Linear independence

Let's begin by doing some calculations.

Example:
\[A = (2, -5, -1), \quad B = (-7, -4, 6) \]

\[A \cdot A = 30 \Rightarrow ||A|| = \sqrt{30}, \quad B \cdot B = 101 \Rightarrow ||B|| = \sqrt{101} \]

\[A \cdot B = 0 \Rightarrow A \perp B \]

We can produce unit vectors in the directions of \(A \) and \(B \) by:

\[\frac{A}{||A||} = \frac{1}{\sqrt{30}} (2, -5, -1), \quad \frac{B}{||B||} = \frac{1}{\sqrt{101}} (-7, -4, 6). \]

(Works since \(\frac{A}{||A||} \cdot \frac{B}{||B||} = \frac{A \cdot A}{||A||^2} \frac{B \cdot B}{||B||^2} = 1 \).)

The distance between \(A \) and \(B \) (as points) is:

\[||A - B|| = ||(9, -1, -4)|| = \sqrt{131}. \]

Projections

Going down a dimension to \(V_2 \), we want to calculate the projection of \(A \) onto \(B \), as shown.

To do this, write \(A = C + tB \), where \(C \cdot B = 0 \).

This gives:

\[A \cdot B = C \cdot B + tB \cdot B = tB \cdot B \Rightarrow t = \frac{A \cdot B}{B \cdot B} = \frac{A \cdot B}{||B||^2} \]

\[\Rightarrow tB = \left(\frac{A \cdot B}{||B||^2} \right) \frac{B}{||B||}. \]

More generally, these formulas are taken as the definitions of projection and angle in higher dimensions.

by Cauchy-Schwarz, this is always between \(-1, 1\), so is cosine of something! \]
Ex / A = (1, 2, 1), B = (1, 1, 0) \Rightarrow \cos \theta = \frac{(1, 2, 1) \cdot (1, 1, 0)}{\|1, 2, 1\| \|1, 1, 0\|} = \frac{3}{\sqrt{5} \sqrt{3}} = \frac{\sqrt{3}}{2}
\Rightarrow \theta = \frac{\pi}{6} \text{ (always taken to be in } [0, \pi])

The law of cosines is an immediate consequence of our definition of angle: $\|A - B\|^2 = \|A\|^2 + \|B\|^2 - 2\|A\|\|B\| \cos \theta$.

Linear Combinations

If $A_1, \ldots, A_n \in \mathbb{V}_n$, a linear comb. of them is $\sum c_i A_i \ (c_i \in \mathbb{R})$. Their span (or linear span) is the set of all of these linear combinations. If this span equals \mathbb{V}_n, we say "the $\{A_i\}$ span \mathbb{V}_n.

Ex / $\{E_1, E_2, \ldots, E_n\}$ span \mathbb{V}_n, where $E_i := (0, \ldots, 0, 1, 0, \ldots, 0)$ are the "unit coordinate vectors". Any A can be written as a linear combination of them (in a unique way, as it turns out):

$A = (a_1, a_2, \ldots, a_n) = a_1 (1, 0, \ldots, 0) + a_2 (0, 1, 0, \ldots, 0) + \cdots + a_n (0, 0, \ldots, 0, 1)$

$= \sum_{i=1}^n a_i E_i$.

Note: If $S = \{A_1, \ldots, A_n\}$, write $L(S)$ for the linear span.

S spans $\mathbb{V}_n \Leftrightarrow L(S) = \mathbb{V}_n$.

Definition: A set S of vectors is linearly independent if $\sum_{i=1}^n c_i A_i = 0 \Rightarrow \text{ all } c_i = 0$.

(The basis calls this "spanning the 0-vector uniquely"). An immediate consequence is that S spans every vector in $L(S)$ uniquely;
the same that \(\sum c_i A_i = \sum d_i A_i \Rightarrow c_i = d_i \) (V.i).

\[
\begin{align*}
\text{Ex:} & \quad S = \{(1,2), (1,0), (0,1)\} \text{ spans } V_2 \text{ but is not independent} \\
S = \{(1,0)\} \text{ doesn't span } V_2 \text{ but is independent} \\
S = \{(1,0), (1,2)\} \text{ spans } V_2 \text{ and is independent}
\end{align*}
\]

Note: if a set contains the 0-vector, it is not independent. (V.i).

Definition: \(S \) is a basis of \(V_n \) if it spans \(V_n \) and is linearly independent.

Theorem:
(i) Any basis of \(V_n \) consists of exactly \(n \) vectors.
(ii) Any set of linearly independent vectors is a subset of a basis.

Corollary: Any set of \(n \) linearly independent vectors is a basis.

To prove the Theorem, we'll use the following

Lemma: If \(S = \{A_1, \ldots, A_k\} \subset V_n \) is linearly independent, then any set of \(k+1 \) vectors in \(L(S) \) is dependent.

Proof: (Base case) \(S = \{A_1\}, A_1 \neq 0, L(S) \) consists of multiples of \(A_1 \), so any two are dependent (\(B_i = c_i A_1 \Rightarrow c_i B_2 - c_i B_1 = 0 \)) (inductive step) \(T = \{B_1, \ldots, B_{k+1}\} \subset L(S), B_i = \sum a_{ij} A_j \).

If \(a_{i1} = 0 \) (V.i), then \(T \subset L(\{A_2, \ldots, A_k\}) \Rightarrow T \) dependent.

Otherwise, since \(a_{i1} \neq 0 \), we may assume \(a_{i1} \neq 0 \).

Writing \(c_i = \frac{a_{i1}}{a_{i1}}, \quad c_i B_1 = a_{i1} A_1 + \sum_{j \neq i} c_i a_{ij} A_j \)

\[
\begin{align*}
-(B_i = a_{i1} A_1 + \sum_{j \neq i} a_{ij} A_j) \\
c_i B_1 - B_i = \sum (c_i a_{ij} - a_{ij}) A_j
\end{align*}
\]

\(\Rightarrow \{c_i B_1 - B_i\} \subset L(\{A_2, \ldots, A_k\}) \Rightarrow \{c_i B_1 - B_i\} \) dependent.
\[\sum_{i=2}^{k} t_i (c_i B_i - B_i) = 0 \quad \text{for all } c_i \in \mathbb{R} \implies \left(\sum_{i=2}^{k} t_i c_i \right) B_2 - \sum_{i=2}^{k} t_i B_i = 0 \implies T \text{ is dependent.} \]

Proof of Theorem:

(i) \(V_n = L(\{E_1, \ldots, E_n\}) \). By the lemma, if \(S \) consists of more than \(n \) vectors, it is dependent (hence not a basis). If \(S \) consists of less than \(n \) vectors, it can't span \(V_n \) — otherwise, the lemma would say \(E_1, \ldots, E_n \) are dependent. So if \(S \) is to be a basis, it had better consist of exactly \(n \) vectors.

(ii) \(S = \{A_1, \ldots, A_n\} \) independent. If it doesn't span \(V_n \), pick \(A_k \) such that \(\mathbf{v} \notin L(S) \). \(\{A_1, \ldots, A_{k-1}\} \) is still independent (why?). Continue in this fashion until you have \(n \) elements. At this point the set spans \(V_n \) — otherwise we'd get \(n+1 \) independent vectors at the next step, which is absurd by the lemma (since \(\{E_1, \ldots, E_n\} \) spans \(V_n \)).

Ex: Let \(S = \{A_1, \ldots, A_n\} \) be orthonormal, i.e., \(A_i \cdot A_j = 0 \quad \forall i \neq j \).

Then \(S \) is independent: if \(0 = \sum_{i=1}^{n} c_i A_i \) then taking \(A_j \cdot \) both sides gives \(0 = c_j \|A_j\|^2 = c_j \) (\(\forall j \)). (In particular, if \(k = n \) then \(S \) is a basis of \(V_n \).) For any \(B \in L(S) \), we have \(B = \sum_{i=1}^{n} b_i A_i \implies A_j \cdot B = b_j A_j \cdot A_j \implies b_j = \frac{A_j \cdot B}{A_j \cdot A_j} \)

\[B = \sum_{i=1}^{n} \frac{B \cdot A_i}{A_i \cdot A_i} A_i \] is the unique linear combination of \(\{A_i\} \) giving \(B \).