Lecture 41: Lines & planes in n-space

LINES

Given \(P \in V_n\), \(A \in V_n^{\mathbb{R}^{n+1}} \), set \(L(P, A) = \{ P + tA \mid t \in \mathbb{R} \} \subset V_n \).

This is the linear span \(L(A) \) translated by \(P \) : \(L(P, A) = L(A) + P \).

It is parametrized by \((= \) the image of \(X \))

\[
 \text{(parametric form)} \quad X : \mathbb{R} \rightarrow V_n \\
 t \mapsto X(t) = (p_1, \ldots, p_n) + t(a_1, \ldots, a_n) = (p_1 + ta_1, \ldots, p_n + ta_n)
\]

Facts:

- A line \(l \) contains \(P \) \(\iff \) \(l = L(P, A) \) for some \(A \).

Proof: \((\Leftarrow)\) obvious

\((\Rightarrow)\) Given \(l = L(Q, B) \ni P \), write \(l' = L(P, B) \). I claim \(l = l' \).

Indeed, \(P \in l \Rightarrow P = Q + t_0B \). So \(X \in l' \iff X = Q + t_xB \Rightarrow X = (P - t_0B) + t_xB = P + (t_x - t_0)B = P + t_x'B \Rightarrow X \in l' \). \(\square \)

- \(L(P, A) = L(P, B) \iff A \parallel B \).

Definition: \(L(P, A) \parallel L(Q, B) \iff A \parallel B \).

- If \(P \neq Q \), then \(L(P, Q-P) \) is the unique line containing \(P \& Q \). (Reduce to the case \(P = 0 \); then a line containing \(Q \) contains \(L(Q) \) hence \(L(Q) \).)

- \(\{A, B\} \subset V_n \) is linearly independent \(\iff \) \(A, B \) don't lie on a line through \(0 \) \(\iff \) \(A, B \neq 0 \) and \(A \not\parallel B \) not parallel.

Proof: \((\Rightarrow)\) If they lie on a line \(l \) through \(0 \), then \(l = L(0, C) = L(C) \Rightarrow A = t_0C, B = t_1C \Rightarrow t_0A - t_1B = 0 \Rightarrow \) dependent (not L.I.)

\((\Leftarrow)\) If \(A, B \) dependent, then \(B = cA \) (or vice versa) \(\iff \) both in \(L(0, A) \).

Ex. Do \(P = (2, 1, 1), Q = (4, 1, -1), R = (3, -1, 1) \) lie on a straight line?

(Hint: equiv. to same question for \(0, Q-P, R-P \).)
Ex. \((n=2)\) Let \(l=(P, A)\), \(A=\langle a_1, a_2 \rangle\); and consider \(N:=\langle a_2, -a_1 \rangle\). Since \(N \cdot A = 0\), \(N \perp A\).

Let \(I := \{X \in \mathbb{R}_2 : (X-P) \cdot N = 0\}\). \(\square\) (Cartesian form)

Then \(l = I\) because \(X \in I \iff X = P + \epsilon A \iff X - P = \epsilon A \iff (X-P) \cdot N = 0\).

Now write \(\text{proj}_N(P) := (P \cdot \frac{N}{\|N\|}) \frac{N}{\|N\|} \in L(N)\). This is on \(l\) because \((\frac{P \cdot N}{N \cdot N} N - P) \cdot N = \frac{P \cdot N}{N \cdot N} N - P \cdot N = 0\). We claim that \(\|\text{proj}_N(P)\| = \frac{P \cdot N}{\|N\|}\) is the distance from \(O\) to \(l\):

- **Cauchy-Schwarz proof:** \(\|X\| = \frac{\|X\|\|N\|}{\|N\|} \geq \frac{|X \cdot N|}{\|N\|} = \frac{|P \cdot N|}{\|N\|}\) for any \(X \in l\) \(\square\)

- **Calculus proof:** \[\frac{d}{dt} |X(t)|^2 = \frac{d}{dt} X(t) \cdot X(t) = 2 \dot{X}(t) \cdot X(t) \]
 \((X(t) = P + tA)\)
 \[\Rightarrow 2A \cdot X(t)\]. If \(t = t_0\) solves this, then
 \[X(t_0) \perp A \Rightarrow X(t_0) \parallel N \Rightarrow X(t_0) = L(N) \cap l = \text{proj}_N(P)\]. \(\square\)

More generally, if we want \(\text{dist}(Q, l)\) for \(Q\) different from \(O\), just translate the line to \(l - Q = L(P-Q, A)\), so that

\[\text{dist}(Q, l) = \text{dist}(O, L(P-Q, A)) = \|\text{proj}_N(P-Q)\| = \frac{|P-Q \cdot N|}{\|N\|}\]. That is, you take any point \(P \in l\) and \(\text{dist}(P-Q)\) with the unit normal vector \(\frac{N}{\|N\|}\). \(\square\)
Planes

Given $P \in \mathbb{V}_n$, $\{A, B\} \subset \mathbb{V}_n$ independent, set

$$M(P, \{A, B\}) := \{ P + sA + tB \mid s, t \in \mathbb{R} \} = L(\{A, B\}) + P.$$

A plane is any subset of \mathbb{V}_n of this form; we may regard it as the image of a parameterization map

$$X : \mathbb{R}^2 \rightarrow \mathbb{V}_n$$

$$(s, t) \mapsto X(s, t) := P + sA + tB = (p_1 + sa_1 + tb_1, \ldots, p_n + sa_n + tb_n).$$

Two planes $M(P, \{A, B\})$, $M(Q, \{C, D\})$ are called parallel if $L(\{A, B\}) = L(\{C, D\})$.

Facts:

- $M(P, \{A, B\}) = M(P, \{C, D\}) \iff L(\{A, B\}) = L(\{C, D\})$ [just use (*)]
- $M(P, \{A, B\}) = M(Q, \{A, B\}) \iff Q \in M(P, \{A, B\})$

 [again, (*) gives $L(\{A, B\}) \subseteq L(\{A, B\}) + P = L(\{A, B\}) + Q \iff Q - P \in L(\{A, B\})$]
- If P, Q, R aren't collinear (don't lie on a line), then $O, Q - P, R - P$ are non-collinear $\implies Q - P \& R - P$ are not parallel $\implies \{Q - P, R - P\}$ independent.

 So we may define $M_{PQR} := M(P, \{Q - P, R - P\})$, which contains P, Q, R.

Theorem: M_{PQR} is the only plane containing P, Q, R. (\Rightarrow non-collinear pts. determine a plane)

Proof: $\{\text{planes containing } P, Q, R\} = \{\text{planes containing } O, Q - P, R - P\} + P$.

So we may assume $P = O$. We need then to show that $M := L(\{Q, R\})$ is the only plane containing O, Q, R, given $\{Q, R\}$ linearly independent.

Let $M' := M(O, \{A, B\}) = L(\{A, B\})$ also contain O, Q, R.

Then $Q = aA + bB$ & $R = cA + dB$ $\implies L(\{B, Q\}) \subseteq L(\{A, B\})$.

$2bQ = a(2A + bB)$ & $6cR = 6cA + 6dB$ $\implies aQ - cR = (ac - bc)A$
\[A = \frac{d}{ad-bc} \mathbf{Q} + \frac{-b}{ad-bc} \mathbf{R} \in \mathbf{L}(\mathbb{R}^2). \] (We knew \(ad-bc \neq 0 \); otherwise \(d\mathbf{Q} - b\mathbf{R} = 0 \Rightarrow \{ \mathbf{Q}, \mathbf{R} \} \) dependent.) Similarly, \(B \in \mathbf{L}(\mathbb{R}^2) \); \(d \) \(\therefore \) \(\mathbf{L}(\{A, B\}) \subseteq \mathbf{L}(\{R, Q\}) \). So \(M' = M \), done. \(\square \)

Corollary: 3 vectors in \(V_n \) are dependent \(\Rightarrow \) they lie on the same plane than the origin \(\mathbf{O} \).

Proof: \((\Rightarrow)\) \(\forall \mathbf{C} : \mathbf{C} = a\mathbf{A} + b\mathbf{B} \Rightarrow \mathbf{C} \in \mathbf{L}(\{A, B\}) \)\(\uparrow \)

\((\Leftarrow)\) \(\forall \mathbf{A}, \mathbf{B} \) independent; then \(\exists \) plane than \(\mathbf{O} \) (namely \(\mathbf{L}(\{A, B\}) \) containing \(\mathbf{A}, \mathbf{B} \) (by Thm.). Hence \(\mathbf{C} \in \mathbf{L}(\{A, B\}) \). \(\square \)

Ex/

Consider the plane \(\mathbf{M} = \mathbf{M}(1, 1, -1), \{(2, 2, 3), (2, -2, -1)\} \subset \mathbf{V}_3 \).

Which of the points \((2, 2, 3), (4, 0, -2), (5, 1, -3), (3, 1, 3), (0, 0, 0)\) lie on \(\mathbf{M} \)? (Hint: Write \(\mathbf{M} \) parametrically, then eliminate \(\mathbf{C} \) to get a Cartesian equation.) \(\uparrow \)

Next time, we will do the plane analogue of the normal vector business (done above for lines). The key point is to introduce the cross-product to define \(\mathbf{N} \) by \(\mathbf{N} := (\mathbf{R} - \mathbf{P}) \times (\mathbf{Q} - \mathbf{P}) \). This allows us to (for example) find the distance from a point to a plane.

† **WARNING:** \(\{A, B, C\} \) dependent does not imply that each one is a linear combination of the others. It only implies that at least one of them is a linear combination of the other two. (Why?)