Curvilinear motion in polar coordinates

Let \(\mathbf{r} : I \to \mathbb{V}^2 \) be a vector-valued function (with continuous \(1^{\text{st}} \) & \(2^{\text{nd}} \) derivatives). Write \(\dot{\mathbf{r}}(t) = r(t)(\cos \theta(t), \sin \theta(t)) = r(t) \Theta'(t) \), or \(\mathbf{r}' = r \Theta' \) for short. We have \(\frac{d}{dt} \theta(t) = \frac{d}{dt} (\cos \theta(t), \sin \theta(t)) = \theta'(t)(-\sin \theta(t), \cos \theta(t)) = \theta'(t)(\cos(\theta(t) + \frac{\pi}{2}), \sin(\theta(t) + \frac{\pi}{2})) = \theta'(t) \Theta'(t + \frac{\pi}{2}) \), or \(\dot{\theta} = \Theta'(t + \frac{\pi}{2}) \) for short. So then we have

- \(\mathbf{v} = (r \Theta')' = r' \Theta + r \Theta' \Theta + \frac{\pi}{2} \)
- \(\mathbf{a} = \mathbf{v}' = r'' \Theta + r' \Theta' \Theta + \frac{\pi}{2} + r \Theta'' \Theta + \frac{\pi}{2} + \frac{\pi}{2} \Theta' \Theta' \Theta + \frac{\pi}{2} \Theta' \)
- \(\mathbf{v} = \| \mathbf{v} \| = \sqrt{(r')^2 + r^2 (\Theta')^2} \) since \(\Theta, \Theta + \frac{\pi}{2} \) are orthogonal unit vectors which can be used to calculate curvature as well.

Proof of Kepler's 1st Law

Recall where we left off in our proof of the 2nd law:

- \(\mathbf{F} = m \mathbf{a} \) & \(\mathbf{F} = -\frac{GMm}{r^2} \) \(\Rightarrow \mathbf{a} = -\frac{GM}{r^2} \mathbf{r} = -\frac{GM}{r^2} \Theta \)
- \(\mathbf{r} \times \mathbf{a} = 0 \Rightarrow \mathbf{r} \times \mathbf{v} = \mathbf{C} = C \mathbf{k} \) (constant)

Now consider

\(\mathbf{a} \times \mathbf{C} = \left(-\frac{GM}{r^2} \Theta \right) \times (r^2 \Theta' \mathbf{k}) = GM \Theta' \Theta + \frac{\pi}{2} \).

See Apostol for proof of 3rd law (easy but technical, not conceptual).
Integrating both sides gives \(\ddot{r} \times \ddot{c} = GM \tau_0 + \ddot{c} = GM (\tau_0 + \ddot{c}) \), and dotting with \(\ddot{r} \) gives

\[
GM (\tau_0 + \ddot{c}) \cdot \ddot{r} = \ddot{r} \cdot (\ddot{r} \times \ddot{c}) = \ddot{r} \cdot (\ddot{r} \times \ddot{r}) = \ddot{c} \cdot \ddot{c} = C^2.
\]

Writing \(\phi \) for the angle between \(\ddot{r}(t) \) and \(\ddot{c} \), and \(e := \| \ddot{c} \| \),

\[
GM r (1 + e \cos \phi) = C^2 \quad \text{becomes} \quad \text{(with } d := \frac{C^2}{GM e})
\]

\[r(t) = \frac{ed}{1 + e \cos \phi}\]

which is the polar equation of a conic of eccentricity \(e \) and focus at the origin \(O \).

Planets are planets because they are in orbit (and not visitors from deep space which are flung back therefrom), and so this conic must be an ellipse, i.e. \(e \in (0, 1) \).

\[\text{For the remainder of the course we will be studying (real) vector spaces, or linear spaces in Apostol's terminology.}\]

Definition: A (real) vector space is a set \(V \) together with two binary operations

\[+ : V \times V \to V \quad \text{and} \quad \cdot : \mathbb{R} \times V \to V \]

(vector addition \((x, y) \to x + y \))

(scalar mult. \((r, x) \to r x) \)

and an "zero element" \(0 \in V \) such that (for all \(r, s, x, y \))

- \(x + y = y + x \)
- \((x + y) + z = x + (y + z) \)
- \(r(sx) = (rs)x \)
- \((r + s)x = rx + sx \)
- \(0 + X = X \)
- \(1X = X \)
- \(X + (-1)X = 0 \)
- \(r(x + y) = rx + ry \)

herefrom and "\(-X\)"
Remark: 0 is unique: if $0'$ also satisfies this property, then
$0' = 0 + 0' = 0' + 0 = 0$.

$-x$ is unique: if $x + y = 0$, then adding $-x$ to both sides gives
$-x + (x + y) = -x + 0 \Rightarrow (-x + x) + y = -x \Rightarrow y = -x$.

$0 \times 0 = 0: \quad 0 \times + 0 \times = (0 + 0) \times = 0 \times$
now add $-0 \times$ to both sides.

Ex 1 / Obvious example: V_n
Along the linear span $L(S)$ of a subset $S \subset V_n$.
Or, the subset $W \subset V_n$ of vectors perpendicular to S.

Ex 2 / Less obvious: we can take V to be a set of functions:
- all real-valued functions on $[a,b]$.
- all real-valued functions on $[a,b]$ with $f(a) = 0$ (why doesn’t this work?)
- all continuous real-valued funs. on $[a,b]$ with $f(a) = 1$ work?
- all differentiable real-valued funs. on $[a,b]$.
- polynomials with real coefficients.
- polynomials of degree $\leq d$ with real coefficients.
 (Why don’t polynomials of degree d work?)
- solutions of $y'' + ay' + by = 0$ (why not $F(x)$?)

Considering "vector spaces of functions" is not just the right way to study higher-order ODEs: It is how you break a sound wave or electrical signal into its constituent frequencies (Fourier analysis).

Problem: (1) Let $V := \mathbb{R} \times \mathbb{R}$, with operations $(x, y) + (a, b) = (x + a, y + b)$
 $c(x, y) = (cx, cy)$.
Is this a vector space?

(2) What if we replace the operations by
 $(x, y) + (a, b) = (x + a, 0)$ and $c(x, y) = (cx, 0)$?