Lecture 52: Isomorphisms & Inverses

Let \(T : V \rightarrow W \) be a linear transformation.

[Note: Most of this will be re-done next semester in terms of matrices.]

Definition: (i) \(T \) is onto or surjective if \(\text{im}(T) = W \),
 in which case we write \(T : V \rightarrow W \)

(ii) \(T \) is 1-to-1 or injective if \(\vec{v} \neq \vec{v}' \Rightarrow T\vec{v} \neq T\vec{v}' \)
 (i.e. \(T\vec{v} = T\vec{v}' \Rightarrow \vec{v} = \vec{v}' \))

In this case we write \(T : V \rightarrow W \).

(iii) If \(T \) is 1-to-1 & onto, it is an isomorphism,
 which is written \(T : V \cong W \). Two vector spaces are called isomorphic \((V \cong W) \) if there exists an isomorphism between them, in either direction (though we'll soon see the two are equivalent).

Proposition 2: \(T \) is 1-to-1 \(\iff \ker(T) = \{0\} \).

Proof: \((\Rightarrow)\) is clear: only \(\vec{0} \) can go to \(\vec{0} \)

\((\Leftarrow)\) Suppose \(\ker(T) = \{0\} \), and let \(T\vec{v} = T\vec{v}' \).
 By linearity, \(\vec{0} = T\vec{v} - T\vec{v}' = T(\vec{v} - \vec{v}') \), so
 \(\vec{v} - \vec{v}' \in \ker(T) = \{0\} \Rightarrow \vec{v} - \vec{v}' = \vec{0} \Rightarrow \vec{v} = \vec{v}' \). \(\square \)

Ex: \(W \leq V \) subspace of inner-product space \(V \), inclusion \(W \rightarrow V \), projection \(V \rightarrow W \). //
Proposition 2: A linear transformation $T: V \to W$ is determined by where it sends a basis. That is, if $\{\vec{v}_1, \ldots, \vec{v}_n\} \subseteq V$ is a basis, and $\vec{w}_1, \ldots, \vec{w}_n \in W$ (not necessarily distinct!), then there is exactly one T with $T\vec{v}_k = \vec{w}_k$ for $k = 1, \ldots, n$.

If $\{\vec{w}_1, \ldots, \vec{w}_n\}$ are independent, then T is 1-to-1.

If they span W, then T is onto. If they're a basis, T is an isomorphism.

Proof: Any element $\vec{v} = \sum_{k=1}^n c_k \vec{v}_k \in V$ would have to be sent to $(\vec{v}) = \sum_{k=1}^n c_k T\vec{v}_k$ by linearity; and this also gives a definition of T.

If $\{\vec{w}_1, \ldots, \vec{w}_n\}$ is L.I., then $\vec{v} \in \ker(T)$ implies

$$0 = T\vec{v} = T\left(\sum_{k=1}^n c_k \vec{v}_k\right) = \sum_{k=1}^n c_k T\vec{v}_k = \vec{0} \quad (c_k = 0)$$

$\Rightarrow \vec{v} = 0$, so T is injective.

If any vector $\vec{w} \in W$ is in the linear span of $\vec{w}_1 = T\vec{v}_1, \ldots, \vec{w}_n = T\vec{v}_n$, then $\vec{w} = \sum_{k=1}^n c_k T\vec{v}_k = T(\sum_{k=1}^n c_k \vec{v}_k) \in \text{im}(T)$.

\[\square\]

Example: Let $T: \mathbb{V}_3 \to \mathbb{P}_2$ be the L.T. determined by $T(\hat{i}) = 1$, $T(\hat{j}) = x$, $T(\hat{k}) = x^2$. By the Prop., this is an isomorphism.

//

Proposition 3: Assume V, W are finite-dimensional. Then

$$\dim V = \dim W \iff V \cong W.$$

Proof: (\Leftarrow) Suppose $T: V \to W$ (or vice-versa) is an \cong.

Then ker$(T) = \{0\} \Rightarrow \text{mult}(T) = 0 \Rightarrow \dim(V) = \text{rank}(T) + \dim(\text{ker}(T)) = \dim(\text{im}(T)) = \dim(W).$
Suppose \(\dim V = n = \dim W \). Let \(\{ \bar{v}_1, \ldots, \bar{v}_n \} \) and \(\{ \bar{w}_1, \ldots, \bar{w}_n \} \) be bases. The L.T. defined (via Prop 2) to send \(\bar{v}_j \mapsto \bar{w}_j \) is an isomorphism.

We may compose linear transformations (just as we would compose any functions): e.g.,

\[
U \xrightarrow{R} V \xrightarrow{T} W
\]

is written \(TR \) (or \(TR \)). This is linear because

\[
TR(\alpha \bar{v} + \beta \bar{w}) = T(R(\alpha \bar{v} + \beta \bar{w})) = T(\alpha R \bar{v} + \beta R \bar{w}) = \alpha TR \bar{v} + \beta TR \bar{w}.
\]

Definition: Given \(T: V \to W \), \(S: W \to V \) is

(i) a right inverse for \(T \) if \(T \circ S = I_W \)

(ii) a left inverse for \(T \) if \(S \circ T = I_V \)

(iii) an inverse of \(T \) if it is both: write \(S = T^{-1} \).

(In this case, we say \(T \) is invertible.)

Theorem: \(T: V \to W \) has...

(i) a right inverse \(\iff \) \(T \) is onto

(ii) a left inverse \(\iff \) \(T \) is 1-to-1

(iii) an inverse \(\iff \) \(T \) is an isomorphism.

Proof: (i) \((\Rightarrow) \): If \(TS = I_W \), then any \(\bar{w} = I_w(\bar{w}) = T(S(\bar{w})) \in \text{im}(T) \).

\((\Leftarrow) \): I prove this only in the finite dimensional case (otherwise it requires non-dimensional bases & the Axiom of Choice).

Let \(\{ \bar{v}_1, \ldots, \bar{v}_m \} \) = basis of \(W \) and choose \(\bar{v}_1, \ldots, \bar{v}_m \) with \(T\bar{v}_j = \bar{w}_j \) (since \(T \) is onto). Define \(S \) to and \(\bar{v}_j \mapsto \bar{w}_j \).
(i) \(\Rightarrow \): If \(ST = I \), then \(T\hat{v} = \hat{v} \Rightarrow \hat{v} = I_{n} \hat{v} = S(T\hat{v}) = S(\hat{v}) = \hat{v} \).

(\Leftarrow): Some comment as above \(\Rightarrow \ker(T) = \{0\}. \)

Let \(\{\hat{v}_{1}, \ldots, \hat{v}_{n}\} = \text{basis of } \text{im}(T). \) (So \(\hat{v}_{j} = T\hat{v}_{j} \) for some \(\{\hat{v}_{1}, \ldots, \hat{v}_{n}\} \subseteq V. \)) Extend this to a basis \(\{\hat{w}_{1}, \ldots, \hat{w}_{n}, \hat{w}_{n+1}, \ldots, \hat{w}_{m}\} \) of \(W. \) Define \(S \) to send \(\hat{w}_{i} \rightarrow \hat{v}_{i}, \ldots, \hat{w}_{n} \rightarrow \hat{v}_{n}; \hat{w}_{n+1} \rightarrow 0. \) Then \(\hat{w}_{m} \rightarrow 0. \)

(ii) \(\Leftarrow \): Any \(\hat{w} \in W \) is \(T \) of some \(\hat{v}_{m} \in V, \) since \(T \) is onto. Since \(T \) is 1-to-1, this \(\hat{v}_{m} \) is unique. So define \(S\hat{w} := \hat{v}_{m} \) for each \(\hat{w}. \) Clearly \(T(S\hat{w}) = T(\hat{v}_{m}) = \hat{w} \) by definition, and clearly \(S(T\hat{v}) = \hat{v} \) as well. So \(S = T^{-1}. \) \(\square \)

Ex. Let \(a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R} \) be distinct, and consider the evaluation map \(T : P_{n} \rightarrow \mathbb{R}_{n+1}, \)

\[f(t) \mapsto (f(a_{0}), \ldots, f(a_{n})). \]

Is this invertible / an isomorphism?

Set \(f_{i}(t) := \prod_{k=0}^{n} \frac{t-a_{k}}{a_{i}-a_{k}} \) \((\text{product of these as } k \text{ runs from } 0 \text{ to } n \text{ skipping } i) \).

Then \(f_{i}(a_{j}) = \prod_{k=0}^{n} \frac{a_{j}-a_{k}}{a_{i}-a_{k}} \) \(= \{0 \text{ if } j \neq i \} \) \(= \{1 \text{ if } j = i \} \).

Define \(S(b_{0}, \ldots, b_{n}) := \sum_{i=0}^{n} b_{i} f_{i}(t), \) we have \(TS(b_{0}, \ldots, b_{n}) = T(\sum_{i=0}^{n} b_{i} f_{i}(t)) = \sum_{i=0}^{n} b_{i} T f_{i}(t) \)

\(= (\sum b_{i} f_{i}(a_{0}), \sum b_{i} f_{i}(a_{1}), \ldots, \sum b_{i} f_{i}(a_{n})) = (b_{0}, b_{1}, \ldots, b_{n}). \)
So \(T \circ S = \text{Id}_{V_{n+1}} \Rightarrow S \) is a right inverse \(\Rightarrow T \) is onto. By Rank + Nullity,
\[
\dim(V_{n+1}) = \dim(\text{im}(T)) + \dim(\ker(T)) = n + 1
\]
\[
\Rightarrow \ker(T) = \{0\} \Rightarrow T \text{ is } 1 \text{-to-1} \Rightarrow T \text{ is an isomorphism.}
\]

Notice that what we've really done here is shown that the function \(\sum_{2=0}^{n} f(x) \) takes prescribed values \(b_0, \ldots, b_n \) at \(x_0, \ldots, x_n \). This is called Lagrange interpolation. //

We conclude with the following observation, which came up in the example just done:

Proposition 4: If \(V \) \& \(W \) are of the same finite dimension \(n \), then the following are equivalent for \(T : V \to W \):

(a) \(T \) is onto
(b) \(T \) is 1-to-1
(c) \(T \) is an isomorphism

Proof: Use Rank + Nullity:

\[
\dim(\text{im}(T)) + \dim(\ker(T)) = n.
\]
If (a) holds, \(\dim(\text{im}(T)) = \dim(W) = n \Rightarrow \ker = \{0\} \Rightarrow (c) \).
If (b) holds, \(\dim(\ker(T)) = 0 \Rightarrow \dim(\text{im}(T)) = n \Rightarrow \dim(T) = W \).
Since (a)+(b) is equivalent to (c), done.