Lecture 6: Integration of step functions

Let \(f: [a, b] \to \mathbb{R}_{\geq 0} \) be a function with domain the closed interval \([a, b] := \{ x \in \mathbb{R} | a \leq x \leq b \}\).

Definition 1: The ordinate set of \(f \) is \(Q_f := \{ (x, y) \in \mathbb{R}^2 | a \leq x \leq b, 0 \leq y \leq f(x) \} \).

Question: For what functions \(f \) is this "well-approximable," hence measurable — that is, \(Q_f \in \mathcal{M} \) and \(a(Q_f) \) is defined?

We'll see that the class of such functions is quite large in the next lecture; for now, we will consider a small class of functions. I'd also like to point out that it isn't true for just any function:

Ex/On \([0, 1]\), neither \(f(x) := \begin{cases} 1 & \text{if } x \in \mathbb{Q} \text{ (x is rational)} \\ 0 & \text{otherwise (x is irrational)} \end{cases} \)

nor \(g(x) := \begin{cases} \frac{1}{x}, & x > 0 \\ 0, & x = 0 \end{cases} \) is well-approximable.

For \(f \), the smallest step-region enclosing \(Q_f \) is \(T = [0, 1] \times [0, 1] \), while the largest step-region contained in \(Q_f \) is \(S = [0, 1] \times \{0\} \).

So there is certainly not a unique real number \(\alpha \) satisfying \(a(S) \leq \alpha \leq a(T) \) for all step-regions \(S, T \) with \(S \subseteq Q_f \subseteq T \):

the largest \(a(S) \) can be is \(0 \) and the smallest \(a(T) \) can be is \(1 \).

For \(g \), we have a different issue: we can choose the "lower step region" \(S \) to be the \(S_n \) in the picture below,
so that \(a(S_n) = \sum_{j=2}^{n} \frac{1}{j} = \sum_{j=2}^{n} \frac{1}{j} \).

Though we won't prove this now, this can be made arbitrarily large by taking \(n \) arbitrarily large. So in this case the problem is not uniqueness of \(c \) but existence of \(c \) : there is no number at all which is \(\geq a(S) \) for every step region \(S \) with \(S \subseteq \Omega_g \).

Definition 2: A partition of \([a, b]\) is a finite set
\[
P = \{x_0, x_1, \ldots, x_n\} \subseteq \mathbb{R}
\]
of real numbers with \(a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b \).
It determines a subdivision \([a, b] = \bigcup_{i=1}^{n} [x_{i-1}, x_i] \).

Definition 3: A step function on \([a, b]\) is a function
\(s : [a, b] \rightarrow \mathbb{R} \) which is constant on each open subinterval \((x_{i-1}, x_i)\) of some partition \(P \) of \([a, b]\). (Write \(s_i \) for this constant value. Note that \(s \) may take completely unrelated values at the points \(x_i \).)

\[Ex/ \ s(x) = \lfloor x \rfloor := \text{greatest integer} \leq x. \text{ Its graph on } [0, 9]:\]

\[\text{e.g. } [3.91] = 3\]

If we change \(s \) so that \(s(3) = 2, 7, 18, 28, 1 \), it is still a step function (according to Def. 3).
Note that if s takes nonnegative values on $[a,b]$, and (for each i, $s(x_i)$ is the larger of S_i (the value on $(a_{i-1}, x_i]$) and S_{i+1} (the value on $(x_i, x_{i+1}]$), then the ordinate set Q_s is a step region, i.e., a union of closed rectangles. But even if we change the values at the points x_i, that only adds or subtracts line segments from Q_s, which doesn't affect its area.

Definition 4: The definite integral of a step function s on $[a,b]$ is

$$\int_a^b s(x) \, dx := \sum_{i=1}^n (x_i - x_{i-1}) \cdot S_i \quad (= a(Q_s) \text{ if } s \geq 0 \text{ on } [a,b]).$$

Ex. $\int_0^4 [x] \, dx = (1-0) \cdot 0 + (2-1) \cdot 1 + (3-2) \cdot 2 + (4-3) \cdot 3$

$$= 1 + 2 + 3 = 6.$$ //

Ex. $\int_0^4 [2x] \, dx = ?$

In this case, the value jumps each time we add $\frac{1}{2}$ to x. So we have to use the finer partition $P = \{0, \frac{1}{2}, 1, \frac{3}{2}, \ldots, 4\}$ to count $S(x) = [2x]$ as a step function. The integral is then $\frac{1}{2} \cdot (0 + 1 + 2 + 3 + \ldots + 7) = 14.$ //

Ex. $\int_0^n [t]^2 \, dt = 1 \cdot \left(0^2 + 1^2 + 2^2 + \ldots + (n-1)^2\right) = \frac{p_2(n-1)}{6}$

Variable of integration is just a dummy variable — changing its name does nothing. //
But does the definition make sense? Given \(S \), there are tons of partitions \(P \) on whose subintervals \(S \) is constant: just add more points to \(P \) — this is called refining the partition. This had better not affect the value of \(\int_a^b S(x) \, dx \)!

Fortunately, it doesn’t: inserting \(y \) between \(x_{i-1} \) and \(x_i \) merely subdivides the rectangle \([x_{i-1}, x_i] \times [0, S_i]\) and “changes” \((x_i - x_{i-1})S_i\) to \((x_i - y)S_i + (y - x_{i-1})S_i\) (i.e. changes nothing!). We say that \(\int_a^b S(x) \, dx \) is “well-defined”, i.e. depends only on \(a, b, P \) and \(S(x) \) itself.

Properties of the definite integral of a step function:

1. \(\int_a^b c \cdot S(x) \, dx = c \cdot \int_a^b S(x) \, dx \) (“homogeneous property”)
2. \(\int_a^b (S(x) + T(x)) \, dx = \int_a^b S(x) \, dx + \int_a^b T(x) \, dx \) (“additive property”)
3. If \(S(x) < T(x) \) for each \(x \in [a,b] \), then \(\int_a^b S(x) \, dx < \int_a^b T(x) \, dx \) (“comparison property”)
4. If \(a \leq b \leq c \), then \(\int_a^b S(x) \, dx + \int_b^c S(x) \, dx = \int_a^c S(x) \, dx \) (“additivity with respect to the interval”)
5. \(\int_a^{b+c} S(x) \, dx = \int_a^b S(x-c) \, dx \) (“translation invariance”)
6. \(\int_a^b k \cdot S(x) \, dx = k \int_a^b S(x) \, dx \) (“expansion/contraction property”)

(We also set \(\int_b^a S(x) \, dx := -\int_a^b S(x) \, dx \) if \(a < b \).)

Proofs: You can prove all of these just using the definition, but a geometric proof is more natural for some of them:

- In (5), the LHS (left-hand side) is \(a(Q_c) \) and the RHS is \(a(c(Q_s)) \),
 - where \(c \) is translation by \(c \) units to the right. By translation invariance of area, these areas are equal.
• proving ④ is part of HW #2. You can also do this one geometrically.

• ⑥: if ⑤ has underlying partition \(\{x_0, x_1, \ldots, x_n\} \) then \(S(k) \) has partition
\[\{kx_0, kx_1, \ldots, kx_n\} \] (of \([ka, kb]\)). The LHS is
\[\sum_{i=1}^{n} (kx_i - kx_{i-1}) \cdot s_i = k \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot s_i = \text{the RHS}. \]

• ③ & ⑤ use the same (important) idea: the common refinement of two partitions \(\mathcal{P} \) and \(\mathcal{P}' \) means combining all the points: \(\mathcal{P} \cup \mathcal{P}' \). If \(s \) is constant on subintervals of \(\mathcal{P} \), and \(t \) is constant on subintervals of \(\mathcal{P}' \), then \(s + t \) are both constant on subintervals of \(\mathcal{P} \cup \mathcal{P}' = \{y_0, y_1, y_2, \ldots, y_N\} \). So therefore is \(s + t \), and ⑤ simply reduces to \[\sum_{i=1}^{N} (y_i - y_{i-1}) (s_i + t_i) = \sum_{i=1}^{N} (y_i - y_{i-1}) s_i + \sum_{i=1}^{N} (y_i - y_{i-1}) t_i; \] while ③ is \[\sum_{i=1}^{N} (y_i - y_{i-1}) s_i < \sum_{i=1}^{N} (y_i - y_{i-1}) t_i. \]