Lecture 7: Integration of more general functions

We already have some intuition for how this should go. If the function \(f \) is \(\geq 0 \) on \([a,b]\), its integral should be defined to be the area of the region "under the graph of \(f \)". But in some cases, we already know that this region \(Q_f \) has no "area" — either because

\[(1) \ f \ \underline{grows} \ \underline{without} \ \underline{bound} \ \text{somewhere} \ \text{and} \ Q_f \ \underline{is} \ \underline{too} \ "\underline{big}" \ (i.e., \ \text{contains subsets with arbitrarily large area}, \ \text{we find} \ \{x \in \mathbb{R} : x \geq 0\})\]

\[(2) \ f \ \underline{jumps} \ \underline{up} \ \underline{and} \ \underline{down} \ \underline{in \ a \ \underline{crazy} \ \underline{way}} \ \text{and we can't do a good job trapping} \ Q_f \ \underline{between} \ \underline{upper} \ \underline{and} \ \underline{lower} \ \underline{step} \ \underline{regions} \ (\text{like the} \ g(x) = \{1 \ x \in \mathbb{Q} \ \text{example})}.\]

So we will eventually have to assume that \(f \) is "bounded" and "\(f \) doesn't oscillate too much" if we want an integral.

But let's try to make a general

Definition 1: Write

\[
\mathcal{S} := \{ \int_a^b s(x) \,dx \mid s \text{ step function}, \ s \leq f \text{ on } [a,b] \}
\]

\[
\mathcal{T} := \{ \int_a^b t(x) \,dx \mid t \text{ step function}, \ f \leq t \text{ on } [a,b] \}
\]

We say \(f \) is integrable on \([a,b]\) if there exists a unique \(I \in \mathbb{R} \) with \(s \leq I \leq t \) for all \(s \in \mathcal{S} \) and \(t \in \mathcal{T} \).
this case, we write \(I = \int_a^b f(x) \, dx \) and call it the integral of \(f \) from \(a \) to \(b \).

Definition 2: \(f \) is bounded on \([a, b]\) if there is a \(M \in \mathbb{R}^+ \) such that \(-M \leq f(x) \leq M\) for all \(x \in [a, b] \).

The first thing you may notice is that for \(f \) bounded, \(\mathcal{D} \& \mathcal{T} \) are nonempty. (Why?) This is important!

Theorem 1: If \(f \) is bounded, there exists an \(I \in \mathbb{R} \) with \(s \leq I \leq t \) for all \(s \in \mathcal{S} \), \(t \in \mathcal{T} \). (But it may not be unique!)

Proof: For all \(s, t \) step functions with \(s \leq f \leq t \) on \([a, b]\), we have \(s = \int_a^b s(x) \, dx \leq \int_a^b t(x) \, dx = t \). So any \(s \in \mathcal{S} \) is a lower bound for \(I \Rightarrow \) the "upper integral" \(\overline{I}(f) := \inf_{s \in \mathcal{S}} I(s) \) exists and \(s \leq \overline{I}(f) \). Hence \(\overline{I}(f) \) is an UB for \(\mathcal{S} \), and the "lower integral" \(\underline{I}(f) := \sup_{t \in \mathcal{T}} I(t) \) exists and \(\underline{I}(f) \leq \overline{I}(f) \). Picking any \(I \in \overline{I}(f) \), we see that \(I \leq \overline{I}(f) \leq \overline{I}(f) \) and \(I \leq \overline{I}(f) \leq I \) for all \(s \in \mathcal{S} \), \(t \in \mathcal{T} \).

Boundness solves issue (1). But we still have to deal with (2):

Definition 3: On any interval \(I \) (e.g. \([a, b], [a, b), (a, b], (a, b)\)), we say \(f \) is increasing if \(x < y \Rightarrow f(x) < f(y) \). (It's called "strictly increasing" if \(f(x) < f(y) \).) If \(f \) is either increasing or decreasing on \(I \), it is said to be monotonic there. Finally, \(f \) is piecewise monotonic on \([a, b]\) if there is a partition \(P = \{y_0, y_1, \ldots, y_n\} \) and \(f \) is monotone on each open interval \((y_{i-1}, y_i)\).

Theorem 2: \(f \) is integrable on \([a, b]\) if it is bounded and piecewise monotonic.
Proof: First, suppose \(f \) is increasing on \([a,b]\). Since \(f \) is bounded, we must show that \(\underline{I}(f) = \overline{I}(f) \) to make \(I \) unique. Take the partition \(P = \{x_0, x_1, \ldots, x_n\} \) with \(x_i = a + \frac{b-a}{n} i \). Consider the step functions \(s_n(x) = f(x_{i-1}) \) for \(x \in [x_{i-1}, x_i) \) on \([a,b]\), which satisfy \(s_n \leq f \leq t_n \): this means

\[
\begin{align*}
\underline{\lambda}_n &:= \int_a^b s_n(x) \, dx = \frac{b-a}{n} \sum_{i=1}^{n} f(x_{i-1}) \in \mathcal{R} \\
\overline{\lambda}_n &:= \int_a^b t_n(x) \, dx = \frac{b-a}{n} \sum_{i=1}^{n} f(x_i) \in \mathcal{R}
\end{align*}
\]

so that

\[
\underline{\lambda}_n \leq \underline{I}(f) \leq \overline{I}(f) \leq \overline{\lambda}_n
\]

\[\Rightarrow 0 \leq \overline{I}(f) - \underline{I}(f) \leq \overline{\lambda}_n - \underline{\lambda}_n = \frac{b-a}{n} \left(\frac{1}{n} \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \right)
\]

\[\Rightarrow \overline{I}(f) - \underline{I}(f) \leq \frac{b-a}{n} \left(f(b) - f(a) \right) = \frac{C}{n}
\]

\[\Rightarrow \overline{I}(f) = \underline{I}(f), \text{ done.}
\]

This part of the proof is less important (and not so well written.)

Next, if we change the values at \(a \) and \(b \), this means that we have to modify \(s_n(x) \) and \(t_n(x) \) on \([x_0, x_i)\) and \([x_{n-1}, x_n]\), to (say) \(s_a, t_a, s_b, t_b \). So \(\overline{\lambda}_n - \underline{\lambda}_n \) becomes

\[\frac{b-a}{n} \left(t_a - s_a + \sum_{i=2}^{n-1} (f(x_i) - f(x_{i-1})) + t_b - s_b \right) =
\]

\[\frac{b-a}{n} \left(t_a - s_a + t_b - s_b + f(x_{n-1}) - f(x_1) \right) \leq \frac{b-a}{n} (k + 2M) = \frac{C}{n},
\]

\[k \text{ const.}
\]

Same story. So we only need \(f \) increasing on \((a,b)\). Similarly,
The case of \(f \) decreasing is dealt with.

Finally, if \(f \) is only piecewise monotonic, it is integrable on each open subinterval \((y_{i-1}, y_i)\) of the partition, by the last 2 paragraphs. That is, the upper \& lower integrals agree: \(\overline{I}_j(f) = \underline{I}_j(f) \).

But \(\overline{I}(f) \) (for example) is the sup of sums of sub integrals over the subintervals, which is the same as the sum of the sups, \(\sum_j \overline{I}_j(f) \).

Similarly, \(\underline{I}(f) = \sum_j \underline{I}_j(f) \). So \(\overline{I}(f) = \overline{I}(f) \).

\[\square \]

You can see from the diagram in the proof that, if \(f \geq 0 \), we have \(Q_{f_n} \subseteq Q_f \subseteq Q_{f_n} \), and that only one number — namely \(I = \overline{I}(f) = \overline{I}(f) = \int_a^b f(x) \, dx \) — belongs to \([a(Q_{f_n}), \alpha(Q_{f_n})] = [\alpha_n, \alpha_n] \) for all \(n \in \mathbb{N} \). Hence \(Q_f \in \mathcal{M} \) and \(\alpha(Q_f) = I \).

Properties (to be proved next week): For piecewise monotonic, bounded \(f, g \):

1. \(\int_a^b (\alpha f(x) + \beta g(x)) \, dx = \alpha \int_a^b f(x) \, dx + \beta \int_a^b g(x) \, dx \)
2. \(\int_a^b f(x) \, dx + \int_a^b f(x) \, dx = \int_a^b f(x) \, dx \)
3. \(\int_a^b f(x) \, dx = \int_{a+c}^{b+c} f(x-c) \, dx \) (Also: \(\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx \))
4. \(\int_a^b f(x) \, dx = \frac{1}{h} \int_{a+kh}^{b+kh} f(x) \, dx \)
5. \(\int_a^b g(x) \, dx \leq \int_a^b f(x) \, dx \) if \(g \leq f \) on \([a,b] \).
6. [Key consequence of Thm 2 & its proof] If \(f \) is \{bounded on \([a,b]\)\}, then \(\int_a^b f(x) \, dx \) is the (unique) number \(I \) satisfying \(\frac{b-a}{n} \sum_{i=0}^{n-1} f(x_i) \leq I \leq \frac{b-a}{n} \sum_{i=1}^{n} f(x_i) \) for all \(n \in \mathbb{N} \), where \(x_i = a + \frac{b-a}{n} i \).
Ex. 1/ Let \(f(x) = x^p \). You showed in HW#1 that

\[
\frac{b}{n} \sum_{i=0}^{n-1} \left(\frac{bi}{n} \right)^p \leq \frac{b^{p+1}}{p+1} \leq \frac{1}{n} \sum_{i=1}^{n} \left(\frac{bi}{n} \right)^p
\]

for every \(n \). So \(\int_a^b x^p \, dx = \frac{b^{p+1}}{p+1} \). More generally,

\[
\int_a^b x^p \, dx = \int_a^0 x^p \, dx + \int_0^b x^p \, dx = \int_0^b x^p \, dx - \int_0^a x^p \, dx
\]

\[
= \frac{b^{p+1} - a^{p+1}}{p+1}.
\]

//

Ex 2/ \[\int_0^5 x^2 (x-5)^4 \, dx = \int_{-5}^5 (x+5)^2 x^4 \, dx \]

\[
= \int_{-5}^0 (x^6 + 10x^5 + 25x^4) \, dx
\]

\[
= \int_{-5}^0 x^6 \, dx + 10 \int_{-5}^0 x^5 \, dx + 25 \int_{-5}^0 x^4 \, dx
\]

\[
Evl \quad \frac{(-5)^7}{7} + 10 \frac{(-5)^6}{6} + 25 \frac{(-5)^5}{5}
\]

\[
= \frac{5^6}{21}.
\]