Lecture 41: Green's Theorem in the Plane

The Fundamental Theorem of Calculus tells us how to calculate the integral of $F'(x)$ over an interval $[a, b]$ by using the behavior of F itself on the boundary of the interval:

$$\int_a^b F'(x) \, dx = F(b) - F(a).$$

We had the related result for line integrals of conservative vector fields

$$\oint_C \nabla f \cdot d\mathbf{s} = f(B) - f(A),$$

where C goes from A to B. What if we replace C (or $[a, b]$) by something 2-dimensional: is there a similar result?

Green's theorem in the plane states that IF

- $\mathbf{F}(x,y) = (P(x,y), Q(x,y))$ is a C^1 vector field on a connected open set B
- C is a piecewise smooth, simple closed curve
- A is the region enclosed by C
C is oriented so that \(R \) is "on the left" (we say that \(C \) has the counterclockwise orientation).

Then

\[
\oint \mathbf{F} \cdot d\mathbf{r} = \iint_R (Q_x - P_y) \, dA.
\]

Remarks:

1. There is a demand implicit in the statement that "the region \(R \) enclosed by \(C \)" lies in \(S \). If \(S \) is not simply connected, then this will not be true for every simple closed curve in \(S \); we can't have \(C \) "go around holes" in \(S \).

2. If \(\mathbf{F} \) is conservative, then we already know that \(\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \). If not, and \(S \) is simply connected, then \(Q_x - P_y \neq 0 \) and Green's Theorem tells us how to use this to calculate \(\oint_C \mathbf{F} \cdot d\mathbf{r} \).

3. Alternatively, we can think of Green as "using the boundary values of \(\mathbf{F} \) on \(\partial R = C \) to compute an integral over the interior, exactly as in the FTC."
Green's Theorem implies the extension of "\(Q_x = P_y \implies \mathbb{F} \) conservative" to all simply connected sets \(S \): in fact, one can define "simply connected"\(^\dagger\) to mean that the region bounded by any simple closed curve in \(S \) is contained in \(S \). Hence the RHS of Green is 0 and so \(\oint_C \mathbb{F} \cdot d\mathbf{r} = 0 \) for all closed loops.

Ex 1/ Calculate \(\frac{1}{2} \oint_C (-ydx + xdy) \), where \(C \) is a circle of radius \(r \) traversed counterclockwise.

\[P = -\frac{y}{2}, \quad Q = \frac{x}{2} \implies Q_x - P_y = 1 \]

\[\implies \frac{1}{2} \oint_C -ydx + xdy = \iint_{\mathbb{R}^2} 1 \, dA = a(R) \]

regardless of what \(R \) is!! Here it's the disk of radius \(R \), and so we get \(\pi R^2 \).

\(^\dagger\) The other definition (I won't prove they are equivalent) is that the complement \(\mathbb{R}^2 \setminus S \) is connected.
Ex 2/ Calculate the line integral

\[\oint_C (x^3 \sin x - 5y) \, dx + (4x + e^{y^2}) \, dy , \]

where \(C \) is the circle shown.

\[P = x^3 \sin x - 5y, \quad Q = 4x + e^{y^2} \Rightarrow Q_x - P_y = 4 + 5 = 9 \]

\(\Rightarrow \) \((\ast) = \iint_R 9 \, dA = 9 \cdot a(R) = 36\pi \). \quad \square

Warning: The vector field \(\mathbf{F} = (P, Q) \) must be defined on all of \(R \) for Green to apply. Let \(C \) be the circle in Ex. 2 and consider

\[\oint_C \left(\frac{-y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy \right) \]

It's tempting to write \(Q_x - P_y = 0 \) (true in \(R^2 \setminus \{0\} \)) and conclude that \(\int_C \ldots = \iint_R 0 = 0 \). But we know that the answer here is actually \(2\pi \). The problem is that \(\mathbf{F} \) isn't defined at \((0,0)\), so it's not defined on all of \(R \). The integral \(\frac{1}{2\pi} \oint_C \left(\frac{-y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy \right) \) is actually the one that computes the "winding number" of \(C \) about \(0 \) (see Apostol).
So why does Green's Theorem work? For simplicity, assume \(R \) is of type I \& II. Since it's of type I (see proof), we get
\[
\oint_C P \, dx = \int_{e_1} P \, dx + \int_{e_2} P \, dx + \int_{e_3} P \, dx + \int_{e_4} P \, dx
\]

\[
= \int_a^b P(x, g(x)) \, dx + \int_a^b P(x, f(x)) \, dx
\]

\[
= -\int_a^b \{ P(x, f(x)) - P(x, g(x)) \} \, dx
\]

\[
= -\int_a^b \int_{g(x)}^{f(x)} P_y(x, y) \, dy \, dx = -\iint_R P_y \, dA.
\]

By a "symmetric" argument (swapping roles of \(x \& y \)),
\(R \) of type II \(\Rightarrow \oint_C Q \, dy = \iint_R Q_x \, dA. \)
(The sign changes by swapping \(x \& y \) changes the orientation of \(C \) to a clockwise one)

\[
\Rightarrow \oint_C P \, dx + Q \, dy = \iint_R (Q_x - P_y) \, dA.
\]

If \(R \) isn't both of type I \& type II, we can chop it into a finite union of subregions which are
Adding $\sum \iiint_{R_i} \mathbf{F} \cdot d\mathbf{A}$ gives $\iiint_{R} \mathbf{F} \cdot d\mathbf{A}$ on the RHS (of Green). On the LHS, $\sum \overrightarrow{\partial R_i} = \overrightarrow{\partial R} = C \Rightarrow \sum \oint_{\partial R_i} \mathbf{F} = \oint_{C} \mathbf{F}$ because of the cancellations along the path components in red. \hfill \square

In fact, Green's Theorem even applies to a region R with one or more holes ("multiply connected" region), provided that each part of the boundary is oriented so that R remains on the left.

In the picture shown, we write $\partial[R] = C_1 + C_2 + C_3$.

Thinking back to $\mathbf{F} = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2} \right)$, consider an annulus R with boundary $C_1 - C_2$, where C_r means the counterclockwise circle of radius r. Now \mathbf{F} is defined on R (since R avoids the origin), and $Q_x - P_y = 0$ on R. So by Green's Theorem

$$0 = \iint_{R} (Q_x - P_y) \, dA = \iint_{C_1} \mathbf{F} \cdot d\mathbf{A} - \iint_{C_2} \mathbf{F} \cdot d\mathbf{A}$$

(from Lecture 36)
\[\oint_{C_n} \mathbf{F} \cdot d\mathbf{r} = 2\pi \] for any radius \(n \). Now this isn't
hard to check by computation, but suppose we
replace \(C_n \) by "any curve \(C' \) that goes once
around the origin" — we still get \(2\pi \)
by this argument!

Ex 3/ Find the area under one arch
of the cycloid parameterized by
\(\mathbf{r}(t) = (t - \sin t, 1 - \cos t) \).

\[
A(R) = \iint_{R} 1 \, dA = \frac{1}{2} \oint_{C_1} (-y \, dx + x \, dy)
= \frac{1}{2} \oint_{C_1} \mathbf{e}_1 \cdot (\mathbf{r}'(t) \times \mathbf{r}'(t)) \, dt
\]
\[
= \frac{1}{2} \oint_{C_1} (-\{ \cos t - 1 \} \{ 1 - \cos t \} + \{ t - \sin t \} \{ \sin t \}) \, dt
\]
\[
= \oint_{C_1} \{ 1 - \cos t - \frac{1}{2} t \sin t \} \, dt
\]
\[
= \left[t - \sin t + \frac{1}{2} t \cos t - \frac{1}{2} \sin t \right]_0^{2\pi}
\]
\[
= 3\pi.
\]

Fun problem: apply to finding areas of polygons...
Finally, we turn to some vector forms of Green's Theorem. The first is a direct translation, using $dr^2 = \hat{T} \, ds$ and writing

$$\text{Curl} \, \vec{F} := (Q_x - P_y) \hat{k},$$

so that Green's Theorem becomes

$$\oint_{\partial R} \vec{F} \cdot \hat{T} \, ds = \iint_R (\text{Curl} \, \vec{F}) \cdot \hat{k} \, dA.$$

This is Stokes's Theorem in the plane, and says that the total circulation of \vec{F} around the boundary equals the integral of a measure of circulation over the interior.

Next recall that if C is parametrized by arclength, then the unit tangent and normal vectors are given by

$$\hat{T}(s) = \left(x'(s), y'(s) \right)$$
$$\hat{N}(s) = \left(y'(s), -x'(s) \right).$$

Write

$$\oint_C \vec{F} \cdot \hat{N} \, ds = \oint_C (P_x(x(s), y(s)), y'(s), -x'(s)) \, ds = \int_C Q_x \, dx + P_y \, dy = \iint_R (P_x - (-Q_y)) \, dA \quad \text{Green}$$

$$= \iint_R (P_x + Q_y) \, dA.$$
Defining the divergence

\[\text{div}(\vec{F}) = P_x + Q_y , \]

we have proved Gauss’s Divergence Theorem in the plane:

\[\oint_{\Gamma} \vec{F} \cdot \hat{n} \, ds = \iint_{R} \text{div}(\vec{F}) \, dA . \]

Here \(\vec{F} \cdot \hat{n} \) is the normal component of \(\vec{F}(\xi, \eta) \). If \(\vec{F} \) is a fluid velocity field, then this is the flow (outward flow through the boundary) per unit length; and the left-hand integral is therefore the total flux of \(\vec{F} \) across the boundary \(C = \partial[R] \).

Ex 4: If \(\vec{F} = (x^2 + y^2, 2xy) \), find the flux of \(\vec{F} \) across the boundary of the unit square and the circulation of \(\vec{F} \) around the boundary.

Flux = \[\oint_{\partial[R]} \vec{F} \cdot \hat{n} \, ds = \iint_{R} \left(P_x + Q_y \right) \, dA = \int_0^1 \int_0^1 (2x^2 + 2x) \, dy \, dx\]

= \[\int_0^1 4x \, dx = 2 \]

Circulation = \[\oint_{\partial[R]} \vec{F} \cdot \vec{T} \, ds = \iint_{R} \left(Q_x - P_y \right) \, dA = \int_0^1 \int_0^1 (2y - 2y) \, dy \, dx \]

= 0.