Lecture 2: Row reduction

Using the “Replace”, “Swap”, and “Scale” row-operations, we shall now discuss how to put any matrix in a particularly nice form:

Reduced Row-Echelon Form (RREF)

A matrix A is in RREF if all of the following hold:

(i) the first nonzero entry of each row is 1, called a “leading 1”;

(ii) when a column contains a leading 1, all other entries in that column are 0 (this is called a “pivot column”); and

(iii) when a row contains a leading 1, each row above it contains a leading 1 to the left.

The weaker notion of Row-Echelon Form (REF) is obtained by dropping (i) and weakening (ii) and (iii):

(ii') when a column contains the first nonzero entry of some row, all the entries of the column
below it are 0; and

(iii') the leading nonzero entry of a row occurs further to the right than all the leading entries in the rows above it.

Ex 1/ If "*" stands for "arbitrary numbers", then

\[
\begin{pmatrix}
* & 0 & * & * \\
0 & 0 & \ast & \ast \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
1 & 0 & * & * \\
0 & 1 & \ast & \ast \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

are in reduced row-echelon form (RREF), while (if "*" stands for "arbitrary nonzero number")

\[
\begin{pmatrix}
* & * & * & * \\
0 & 0 & \ast & * \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

are in row-echelon form (REF)

Row reduction means "some procedure for associating an RREF matrix to a given matrix A":

\[A \rightarrow \text{rref}(A). \]

Since the procedure simply applies row operations to A, the new matrix is row-equivalent to A.

FACT: There is exactly one RREF matrix row-equivalent to a given matrix A.
CONSEQUENCE: \(\text{ref}(A) \) is independent of the procedure used!

The book has a 2-stage row-reduction algorithm:
- convert \(A \) to a REF matrix
- convert the REF matrix to a RREF one.
(See the "appendix" below.) Here's a simpler version:

Row-reduction algorithm

(a) "Cursor" starts at upper left-hand entry of matrix;
(b) move cursor to right if the cursor entry and all entries below it are 0; repeat until this is no longer the case;
(c) if cursor entry = 0, swap cursor row with the first row below it having nonzero entry in the cursor column;
(d) divide cursor row by cursor entry;
(e) eliminate all other entries in the cursor column by adding suitable multiples of the cursor row to other rows;
(f) if cursor is at bottom right, stop. Otherwise, move down & to the right, and go back to (b).
Let's illustrate with an example: \[\square = \text{cursor} \]

Ex 2:

\[A = \begin{pmatrix} 0 & 1 & -1 & -1 \\ 2 & 4 & 2 & 4 & 2 \\ 2 & 4 & 3 & 3 & 3 \\ 3 & 6 & 6 & 3 & 6 \end{pmatrix} \overset{(c)}{\rightarrow} \begin{pmatrix} 2 & 4 & 4 & 2 \\ 0 & 0 & 1 & -1 & -1 \\ 2 & 4 & 3 & 3 & 3 \\ 3 & 6 & 6 & 3 & 6 \end{pmatrix} \overset{(d)}{\rightarrow} \begin{pmatrix} 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 2 & 4 & 3 & 3 & 3 \\ 3 & 6 & 6 & 3 & 5 & 6 \end{pmatrix} \]

\[\begin{pmatrix} 1 & 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 3 & -3 & 3 \end{pmatrix} \overset{(e)}{\rightarrow} \begin{pmatrix} 1 & 2 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \overset{(f)}{\rightarrow} \begin{pmatrix} 1 & 2 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \]

\[\begin{pmatrix} 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \text{rref}(A). \]

Now, how do we use this to solve a linear system?

Step 1: Convert the system to an augmented matrix

\[M = [A \mid \mathbf{b}] \]

Step 2: Apply the above algorithm to compute

\[\text{rref}(M). \]

Step 3: Convert back to a linear system and find the tuples \((x_1, \ldots, x_n)\) solving it. (More precisely: use the non-first variables to parameterize the solution set. This is sometimes called "back substitution".)
Ex 3/ \[
\begin{align*}
3x_1 - 6x_2 + 2x_3 - x_4 &= 1 \\
-2x_1 + 4x_2 + x_3 + 3x_4 &= 4 \\
x_3 + x_4 &= 2 \\
x_1 - 2x_2 + x_3 &= 1
\end{align*}
\]

Step 1

\[
M = \begin{bmatrix}
3 & -6 & 2 & -1 \\
-2 & 4 & 1 & 3 \\
0 & 0 & 1 & 1 \\
1 & -2 & 1 & 0
\end{bmatrix}
\text{scale } \begin{bmatrix} -2 & 2/3 & -1/3 \\
4 & 1 & 3 \\
2 & 0 & 1 \\
1 & -2 & 1 & 0
\end{bmatrix}
\]

Step 2

\[
\begin{bmatrix}
1 & -2 & 2/3 & -1/3 \\
0 & 0 & 2/3 & 2/3 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1/3 & 1/3
\end{bmatrix}
\text{scale } \begin{bmatrix} 1 & -2 & 2/3 & -1/3 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1/3 & 1/3 \\
0 & 0 & 1/3 & 1/3
\end{bmatrix}
\]

Step 3

\[
\text{ref } (M)
\]

Solve for the variables corresponding to pivot columns, called basic variables:

\[
\begin{align*}
-x_1 - 2x_2 & = 1 \\
x_3 - x_4 & = 2
\end{align*}
\]

\[
\begin{align*}
x_1 = 2x_2 + x_4 - 1 \\
x_3 = 2 - x_4
\end{align*}
\]
The free variables are the non-prime ones, and are so named because they can be freely chosen. They parameterize the solution set of the linear system:

\[S = \{(2x_2 + x_4 - 1, x_2, 2 - x_4, x_4) \mid x_1, x_4 \in \mathbb{R}\} \]

Ex 4

\[\begin{align*}
3x_1 - 6x_2 + 2x_3 - x_4 &= 1 \\
-2x_1 + 4x_2 + x_3 + 3x_4 &= 4 \\
x_3 + x_4 &= 2 \\
x_1 - 2x_2 + x_3 &= 0
\end{align*} \]

Some by Ex. 3 except for two

\[
\begin{bmatrix}
3 & -6 & 2 & -1 & 1 \\
-2 & 4 & 1 & 3 & 4 \\
0 & 0 & 1 & 1 & 2 \\
1 & -2 & 1 & 0 & 0
\end{bmatrix}
\]

Steps from Ex. 3

\[
\begin{bmatrix}
1 & -2 & 0 & -1 & -1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Scale \(x_3 \rightarrow -1 \)

\[
\begin{bmatrix}
1 & -2 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Replace \(x_1 - 2x_2 + x_3 \rightarrow x_1 - 2x_2 + x_4 = 0 \)

\[
\begin{bmatrix}
1 & -2 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Solution set \(S = \emptyset \)

System is consistent!
From the last example, we notice that
• If the last column of the augmented matrix is a pivot column, then the system is inconsistent.

Otherwise, steps 1–3 tell us how to solve the system, and so:
• If the last column is non-pivot, the system is consistent; it has a unique solution if there are no free variables, i.e. if all but the last column are pivots.

So far we have looked at \(m \) equations in \(n \) unknowns, with \(m = n \). What about the other cases?
• If \(m > n \), the system is called overdetermined.
• If \(m < n \), the system is called under-determined.

Q: Can an overdetermined system be consistent?
A: YES. But some equations will have to be “linear combinations” of others.

Q: Can an underdetermined system have a unique solution?
A: NO. Think about intersection of planes in space: two planes in 3-space will never intersect in a point.

A more mathematical answer can be formulated as follows: when you reduce an augmented matrix of the form
to RREF, there must be non-pivot columns, hence free variables. This is because each pivot column contains a leading 1 for some row, and there are only m rows hence \(\leq n \) leading 1's. In general, the number of pivots is at most the smaller of m & n.

APPENDIX (The book's row-reduction algorithm)

PART I Produce REF matrix:

I(a): “cursor” starts at upper left-hand entry.

I(b): if necessary, move cursor to right until you reach a nonzero column.

I(c): if cursor entry = 0, exchange cursor row with 1st row below if having nonzero entry in cursor column.

\(\text{SWAP} \)

I(d): eliminate entries below the cursor (in cursor column) by adding multiples of cursor row to rows below.

\(\text{REPLACE} \)

I(e): move the cursor down & to the right, hide all rows above it & columns to the left of it, go back to I(b).
PART II REF to RREF:

II (a): "Cursor" starts at right most leading entry

II (b): divide cursor row by cursor entry

II (c): eliminate entries above cursor (by the "replace" operation)

II (d): move cursor left & up to the next leading entry,
go back to II (b).

Again, stop when you exit the matrix.